馬幸,周偉,馬剛,常曉林(1.武漢大學(xué) 水資源與水電工程科學(xué)國家重點實驗室,湖北 武漢,430072;2.武漢大學(xué) 水工巖石力學(xué)教育部重點實驗室,湖北 武漢,430072)
?
最小粒徑截距對顆粒體數(shù)值模擬的影響
馬幸1,2,周偉1,2,馬剛1,2,常曉林1,2
(1.武漢大學(xué) 水資源與水電工程科學(xué)國家重點實驗室,湖北 武漢,430072;2.武漢大學(xué) 水工巖石力學(xué)教育部重點實驗室,湖北 武漢,430072)
摘要:基于顆粒流離散單元法,采用2種壓實度控制標(biāo)準(zhǔn),生成3種不同最小粒徑的顆粒體試樣,分別對其進行多組、多種數(shù)值試驗,從而揭示顆粒體最小粒徑與其宏觀力學(xué)特性及細觀力學(xué)響應(yīng)的關(guān)系,并分析最小粒徑對數(shù)值試驗結(jié)果精度的影響。研究結(jié)果表明:顆粒集合體試樣各力學(xué)參量與最小粒徑呈單調(diào)關(guān)系,經(jīng)推求可得出不同最小粒徑截距對應(yīng)的試樣抗變形能力;配位數(shù)與最小粒徑的對數(shù)呈較好的線性遞增關(guān)系,從細觀層面解釋了最小粒徑對試樣密實度及強度特性的影響;采用相對密度控制以及選擇較低的圍壓均能縮小由最小粒徑引起的試驗結(jié)果的差異。
關(guān)鍵詞:顆粒體;雙軸試驗;離散元;最小粒徑;壓實度控制標(biāo)準(zhǔn)
近年來,我國高堆石壩建設(shè)的迅速發(fā)展,對堆石料等粗粒土的力學(xué)特性研究提出了更高要求。從現(xiàn)有測定堆石料力學(xué)特性的試驗條件來看,常規(guī)三軸壓縮試驗是一種比較成熟的方法,該方法可得到試樣的一些重要的變形和強度參數(shù),如彈性模量、黏聚力和內(nèi)摩擦角等。但堆石體的宏觀力學(xué)性能還受到顆粒形狀和大小[1]、顆粒表面的粗糙程度、顆粒的含水率等細觀因素的影響,而常規(guī)三軸壓縮試驗僅能得到堆石體的宏觀力學(xué)表現(xiàn),無法探明堆石體在顆粒層面上的細觀力學(xué)本質(zhì)。離散單元法是一種廣泛使用的分析離散顆粒體的數(shù)值模擬方法,能夠從細觀角度對顆粒體的力學(xué)特性進行研究[2?5],并且還能克服試驗儀器的尺寸限制和加載難以控制等缺點。在對顆粒體進行離散元數(shù)值試驗時,受到計算機運行速度和計算容量的限制,通常將粒徑小于某一定值的小顆粒用粒徑為該值的顆粒等體積替換[6?9],這樣必然導(dǎo)致數(shù)值試驗的級配與試驗級配不一致,從而導(dǎo)致數(shù)值計算結(jié)果與室內(nèi)試驗結(jié)果存在差異。BAGHERZADEH-KHALKHALI 等[10]通過室內(nèi)試驗和數(shù)值試驗對比分析,指出顆粒的粒徑在很大程度上影響了顆粒體的力學(xué)特性,并且數(shù)值模擬會放大顆粒粒徑的影響。由此看來,小顆粒的等體積替換會對數(shù)值模擬結(jié)果造成明顯影響。因此,為了提高數(shù)值模擬結(jié)果的準(zhǔn)確性,有必要對最小粒徑截距對顆粒集合體的影響進行深入探究。目前,對顆粒粒徑及其分布的影響的探究主要集中于研究顆粒體整體級配的改變對其力學(xué)性質(zhì)的影響:劉軍等[11]通過二維離散元模擬研究了不同尺寸分布對顆粒堆積過程的影響;HWANG等[12?13]分別通過數(shù)值試驗和物理試驗研究了顆粒級配和結(jié)構(gòu)對砂土力學(xué)性質(zhì)的影響;HAMIDI等[14]通過室內(nèi)試驗與數(shù)值模擬結(jié)果對比分析了顆粒級配對其抗剪強度的影響;邱賢德等[15]通過室內(nèi)試驗研究了堆石體粒徑特征對其滲透性的影響;傅華等[16?18]則對堆石體尺寸效應(yīng)進行了研究。由于當(dāng)整體級配發(fā)生改變時,最大顆粒尺寸對試驗結(jié)果的影響尤為明顯,因此這些研究普遍關(guān)注最大粒徑對試樣力學(xué)性質(zhì)的影響。但顆粒最小粒徑最終會對數(shù)值模擬產(chǎn)生何種程度的影響,以及如何控制數(shù)值模擬的其他條件來減小由最小粒徑截距引起的計算結(jié)果的差異,提高計算精度,對這些問題的研究目前尚不明確。本文作者采用基于離散單元法的PFC2D程序[19],用圓形顆粒生成3 組最小粒徑不同的顆粒體,并采用 2種不同的試樣壓實度控制標(biāo)準(zhǔn)進行雙軸壓縮試驗,從宏觀和細觀2方面分析數(shù)值模擬結(jié)果,深入研究最小粒徑截距對試樣的抗剪強度、應(yīng)力?應(yīng)變、體積應(yīng)變等力學(xué)特性的影響,為提高數(shù)值計算精度提供有效參考依據(jù)。
1.1試樣制備與加載方式
試樣的高×寬為700 mm×350 mm,試樣的最大顆粒粒徑dmax為60 mm,為了使試驗結(jié)果的差異性更突出,將最小粒徑截距設(shè)為差值較大的 5,10 和15 mm,采用等體積替換法將級配中粒徑小于該取值的顆粒分別用粒徑為5,10和15 mm的顆粒替換,生成3種最小粒徑不同的試樣,如圖1所示(圖1中黑色顆粒為最小粒徑顆粒),確定3組試樣的級配曲線,如圖2所示。
圖1 不同最小粒徑數(shù)值試樣Fig.1 Numerical samples with different smallest particle diameters
圖2顆粒級配曲線Fig.2Particle size distributionCurves
為了排除其他因素的影響,在生成顆粒的過程中除了級配分布會略有不同外,應(yīng)盡量保持其余控制條件一致。在數(shù)值計算中,通常采用孔隙率作為顆粒體壓實度控制標(biāo)準(zhǔn),但是,當(dāng)顆粒的級配分布發(fā)生變化時,處于同一孔隙率的顆粒體的松緊狀態(tài)也會存在差異[17],因此,本文分別考察2種不同的壓實度控制標(biāo)準(zhǔn)下,最小粒徑對顆粒體的影響。分別采用孔隙率控制和相對密度控制的標(biāo)準(zhǔn)生成 6組顆粒試樣。在二維顆粒流數(shù)值計算中,顆粒體為單位厚度的圓盤[20?21],在計算孔隙率的過程中,可以將顆粒體的體積計算簡化為顆粒體的面積計算,因此,孔隙率的定義為
式中:n 為孔隙率;Ap為顆粒體的面積;A 為試樣面積。相對密度的定義為
式中:Dr為相對密度;e為試樣孔隙比;emax為試樣最大孔隙比;emin為試樣最小孔隙比。由于 PFC2D程序中顆粒的生成是以孔隙率為控制標(biāo)準(zhǔn)的,因此需根據(jù)孔隙率與孔隙比的關(guān)系確定相對密度與孔隙率的關(guān)系。經(jīng)過孔隙比與孔隙率的轉(zhuǎn)換,相對密度可表示為
式中:nmax為試樣最大孔隙率;nmin為試樣最小孔隙率。
PFC2D模型中,顆粒體的雙軸壓縮是在上、下、左、右4面墻體所圍成的區(qū)域內(nèi)進行的[19]。利用伺服機制控制左右墻體的移動,保持側(cè)向應(yīng)力恒定,控制上下墻體的移動實現(xiàn)對顆粒體的豎向應(yīng)力加載。
1.2細觀參數(shù)取值
數(shù)值試驗采用線性接觸剛度模型,接觸力可通過接觸剛度和相對位移的關(guān)系確定。法向剛度為割線剛度,與位移和力的總量相對應(yīng),關(guān)系式如下:
式中:Fn為法向總力;kn為接觸點處法向剛度;Un為法向總位移。切向剛度為切線剛度,與位移和力的增量相對應(yīng),關(guān)系式如下:
式中:?Fs為切向位移增量;ks為接觸點切向剛度;?Us為切向位移增量。
對于線性接觸剛度模型,模型由接觸顆粒的法相剛度 kn和切向剛度 ks通過串聯(lián)接觸的方式相互作用決定。其顆粒間接觸的法向割線剛度和切向切線剛度為:
式中:上標(biāo)[A]和[B]分別為相互接觸的2個顆粒。
顆粒接觸剛度和摩擦因數(shù)μ 的取值采用類比或試算的方法間接確定[22],通過調(diào)整細觀參數(shù),使數(shù)值試驗得到的應(yīng)力?應(yīng)變曲線接近室內(nèi)三軸試驗結(jié)果,室內(nèi)試驗成果來自長江科學(xué)院所做的雙江口堆石料三軸試驗,如圖3所示,表1所示為最終的細觀參數(shù)。
圖3 數(shù)值試驗與室內(nèi)試驗對比圖Fig.3 Contrast figure between numerical test and experimental test
表1 數(shù)值試驗的細觀參數(shù)Table1 Micro-parameters of numerical test
1.3最大和最小孔隙率的確定
為了確定顆粒集合體的相對密度Dr,首先要確定顆粒集合體的最大孔隙率 nmax和最小孔隙率 nmin。本文在常用方法[23]的基礎(chǔ)上加以改進,使數(shù)值模擬的過程與室內(nèi)試驗[24]過程更接近,具體采用如下步驟確定顆粒體的最大和最小孔隙率。
確定顆粒集合體的最大孔隙率 nmax。模擬松填法過程[25],首先生成初始孔隙率 n=0.3 的試樣,由于孔隙率較大,顆粒在空間內(nèi)隨機分布且相互無接觸,然后給顆粒賦以Y方向上的重力加速度g=?9.8 m/s2,使其在自重作用下自由下落,待顆粒體在自然狀態(tài)下達到穩(wěn)定平衡后,即可得到試樣的最大孔隙率nmax。
確定顆粒集合體的最小孔隙率 nmin。模擬振動臺工作過程[25],在確定最大孔隙率的試樣基礎(chǔ)上,在試樣頂部通過設(shè)置顆粒簇單元施加蓋板重力荷載,通過底部墻體的正弦振動模擬振動臺振動過程,直至試樣中各顆粒接觸總數(shù)趨于穩(wěn)定,即認(rèn)為試樣達到最小孔隙率nmin。
圖4所示為顆粒體最大和最小孔隙率的確定。確定的最大和最小孔隙率如表2所示。從表2可以看出:nmax,nmin,emax和emin均隨著最小粒徑的增大而增大,并且最小粒徑為5mm 試樣的 nmin和 emin明顯較小,表現(xiàn)出小顆粒較強的填充能力。
以孔隙率為壓實度控制標(biāo)準(zhǔn)時,擬定試驗考察孔隙率為0.148;以相對密度為壓實度控制標(biāo)準(zhǔn)時,擬定試驗考察相對密度為 0.75。根據(jù)表2 中顆粒體的最大和最小孔隙率,計算得出的各組試樣的孔隙率和相對密度如表3所示。表3中顆粒數(shù)隨最小粒徑的增大明顯減少,因此相應(yīng)計算速率也能得到提高,表明顆粒級配中最小粒徑截距的合理取值確實能有效提高數(shù)值模擬計算效率。
圖4顆粒體最大和最小孔隙率的確定Fig.4Determination of maximum and minimum porosity of numerical samples
表2顆粒集合體最大和最小孔隙率Table1 Maximum and minimum porosity of numerical samples
表3 按孔隙率和相對密度控制的數(shù)值試樣Table1 Numerical samplesControlled by porosity and relative density
2.1應(yīng)力?應(yīng)變關(guān)系
對6組試樣進行相同加載方式的雙軸壓縮試驗,控制圍壓分別為 0.8,1.6 和 2.4 MPa,試樣的偏應(yīng)力(σ1? σ3)與軸向應(yīng)變 εa關(guān)系曲線如圖5所示,體積應(yīng)變與軸向應(yīng)變關(guān)系曲線如圖6所示。
圖5 相同孔隙率和相對密度試樣的偏應(yīng)力?軸向應(yīng)變關(guān)系Fig.5 Relationship between deviational stress?axial strain of samples with the same porosity and relative density
圖6 相同孔隙率和相對密度試樣的體積應(yīng)變?軸向應(yīng)變關(guān)系Fig.6 Relationship between volumetric strain and axial strain of samples with the same porosity and relative density
從圖5和圖6可以看出:6 組試樣的偏應(yīng)力、體積應(yīng)變與軸向應(yīng)變關(guān)系曲線的變化規(guī)律相似,但相同圍壓下,不同最小粒徑試樣的應(yīng)力?應(yīng)變曲線和體積應(yīng)變曲線并不重合,表明最小粒徑對數(shù)值模擬計算影響的客觀存在。相同圍壓下,不論采用哪種壓實度控制標(biāo)準(zhǔn),試樣均表現(xiàn)出隨著最小粒徑增大,其應(yīng)力?應(yīng)變和體積應(yīng)變曲線初始段的斜率增大,偏應(yīng)力峰值和體積收縮程度也增大的現(xiàn)象,表明其初始切線模量和抗剪強度提高,剪脹現(xiàn)象減弱。
不同的壓實度控制標(biāo)準(zhǔn)下,試樣最小粒徑對應(yīng)力?應(yīng)變曲線的影響程度不同:采用相同孔隙率控制的3組試樣,不同最小粒徑試樣的初始模量和峰值強度差異較大,隨著圍壓的增加,這種差別逐漸增大;而采用相對密度控制的 3組試樣,其初始模量和峰值強度的差別較小。對于體積應(yīng)變曲線,2 種控制標(biāo)準(zhǔn)亦有同樣的影響。
圖7 峰值強度?圍壓關(guān)系曲線Fig.7 Relationship between peak strength andConfining stress
圖8 峰值內(nèi)摩擦角?圍壓關(guān)系曲線Fig.8 Relationship between peak internal friction angle andConfining pressure
2.2強度特性
不同圍壓下6組試樣的峰值強度(σ1? σ3)f和峰值內(nèi)摩擦角 ?f如圖7和圖8所示。從 圖7和圖8可以看出:峰值強度(σ1? σ3)f隨著圍壓的增加而增大,而峰值內(nèi)摩擦角 ?f隨著圍壓的增加而減小,反 映了圍壓的約束作用對顆粒材料強度的影響。不同最小粒徑對峰值強度產(chǎn)生了一定的影響,隨著最小粒徑的增大,試樣強度有所提高,并且圍壓的增加使得試樣強度提高的程度更加明顯。試樣最小粒徑對峰值內(nèi)摩擦角的影響也表現(xiàn)出同樣的規(guī)律。說明最小粒徑的增大,提高了整體結(jié)構(gòu)的承載能力。當(dāng)圍壓從 0.8MPa 增至2.4MPa 時,采用孔隙率控制生成的試樣 A2 和 A3 的(σ1? σ3)f較試樣A1的增幅分別從4.08%和10.05%增長至 6.71%和18.58%,?f的增幅分別從1.53%和3.50%增長至2.84%和7.49%;而采用相對密度控制生成的試樣B2和B3的(σ1? σ3)f較試樣B1的增幅分別從1.19%和 2.74%增長至 2.30%和 4.95%,?f的增幅分別從0.66%和1.29%增長至1.42%和2.71%。說 明壓實度控制標(biāo)準(zhǔn)對強度增長的程度有一定的影響,通過相對密度控制壓實的顆粒體,最小粒徑對試樣峰值強度和峰值內(nèi)摩擦角的影響明顯較小,在低圍壓下,甚至能控制在3%以內(nèi)。
為了研究試樣最小粒徑對顆粒體強度特性指標(biāo)的影響,繪 制各組試驗破壞時的莫爾圓和強度包線(如圖9)并分析各組試樣的強度指標(biāo)。常用的線性抗剪強度指標(biāo)是用摩爾庫侖破壞準(zhǔn)則來描述顆粒體的抗剪強度τ 與法向應(yīng)力σ 的線性關(guān)系:
式中:c 為黏聚力;?為內(nèi)摩擦角。而在工程實際中也常用鄧肯非線性強度理論來分析顆粒體的強度特性:
式中:?0為圍壓為 pa時的內(nèi)摩擦角;??為?~lg(σ3/pa)關(guān)系曲線上的斜率,反映了強度隨著圍壓的降低;pa為大氣壓。由式(8)和式(9)整理得到的強度指標(biāo)如表4所示。
圖9 相同孔隙率和相對密度試樣的莫爾圓和強度包線Fig.9 MohrCircles at failure and strength envelops of samples with the same porosity and relative density
表4強度指標(biāo)Table1 Strength indicator of samples
由圖9和表4可以看出:強 度指標(biāo)黏聚力c和 ??隨著試樣最小粒徑的增大而減小,此處C 反映了顆粒間的咬合力,可視為表觀黏聚力,即最小粒徑的增大使得顆粒間的咬合力減弱,表明了小顆粒的存在使得顆粒間摩擦力增強,加大了顆粒間相互滑移的難度,??的減小再次表明了圍壓的升高對最小粒徑的影響的放大作用;內(nèi) 摩擦角?和 ?0隨著試樣最小粒徑的增大而增大,與峰值強度和峰值內(nèi)摩擦角的變化規(guī)律相同,而它們與C 和 ??的變化規(guī)律不同,是由于在高低圍壓下顆粒體強度隨著最小粒徑變化的增減幅度不同。采用相對密度控制試樣的壓實度時,試樣最小粒徑對C,?,?0和 ??的影響程度較小,最大變化程度分別為 0.55%,2.37%,0.18%和 9.24%,而采用孔隙率控制時,影響程度較大,最大變化程度分別達到20.73%,12.46%,2.00%和17.64%。
從采用不同壓實度控制標(biāo)準(zhǔn)時試樣最小粒徑對各項強度指標(biāo)的影響程度可以看出:選取適當(dāng)?shù)淖钚×浇鼐嗪蛪簩嵍瓤刂茦?biāo)準(zhǔn),可以在將數(shù)值試驗與室內(nèi)試驗結(jié)果的差異控制在一定范圍內(nèi)的基礎(chǔ)上提高計算速率,擴 大對連續(xù)寬級配顆粒體數(shù)值模擬的應(yīng)用范圍。
2.3變形特性
通常取對應(yīng)峰值強度一半處應(yīng)力?應(yīng)變曲線的割線斜率來計算割線變形模量,記作 E50。計算得到不同最小粒徑試樣在各圍壓下的割線模量 E50如圖10所示。
由圖10可以看出:試樣的割線模量E50隨著最小粒徑的增大而增大。對割線模量隨最小粒徑變化的規(guī)律進行線性擬合。從擬合結(jié)果來看,割線模量與最小粒徑滿足良好的線性關(guān)系。雖然對最小粒徑的樣本取值較少,但此處最小粒徑的取值范圍為5~15 mm,占最大粒徑 60 mm 的1/12 到1/4,涵蓋了最大粒徑為60 mm的試樣進行數(shù)值計算時最小粒徑截距的大部分取值,因此,此處線性擬合結(jié)果的可信度較高,對于確定的粒徑截距便可由擬合公式推求相應(yīng)割線模量。從線性擬合的斜率可以看出:圍壓的增大同樣提高了割線模量的增長幅度,并且采用相對密度為控制標(biāo)準(zhǔn)時,割線模量隨最小粒徑的增長幅度較小。
為了較全面地分析堆石體的變形特性,還需要研究其體積變形模量或泊松比,本文擬對顆粒體的泊松比進行研究。類似上述 E50的計算,取對應(yīng)峰值強度一半的軸向應(yīng)變與徑向應(yīng)變的比值計算泊松比,記作ν50。計算得到不同最小粒徑試樣在各圍壓下的泊松比 ν50及其線性擬合結(jié)果如圖11所示。
由圖11可以看出:6組試樣的泊松比隨最小粒徑的變化規(guī)律與變形模量的變化規(guī)律所反映的變形特性一致,在相同壓實度下,泊松比隨著顆粒最小粒徑的增大而減小且滿足良好的線性關(guān)系,圍壓的增加也加大了泊松比的減小幅度,采用相對密度為控制標(biāo)準(zhǔn)時泊松比的減小幅度相比采用孔隙率為控制標(biāo)準(zhǔn)時的減小幅度較小。
從上述最小粒徑對顆粒體試樣變形特性的影響可以初步認(rèn)為:在低圍壓下,采用相對密度為控制標(biāo)準(zhǔn)時顆粒體最小粒徑對其變形模量和泊松比的影響較小,此時數(shù)值試驗的變形特性計算結(jié)果與實際室內(nèi)試驗的結(jié)果更為接近。
圖10 不同最小粒徑試樣的割線模量Fig.10 Secant modulus of samples with different minimum particle diameters
圖11 不同最小粒徑試樣的泊松比Fig.11 Poisson ratio of samples with different minimum particle diameter
2.4細觀力學(xué)響應(yīng)
配位數(shù)Cn指試樣中顆粒的平均接觸點數(shù),反映了顆粒體細觀接觸的特性,配位數(shù)越大,說明顆粒體越密實,結(jié)構(gòu)越穩(wěn)定,配位數(shù)定義如下:
圖12所示為圍壓1.6 MPa時試樣配位數(shù)隨軸向應(yīng)變的變化曲線。從圖12可以看出:6組試樣配位數(shù)變化規(guī)律相似:在剪切初始階段,試樣出現(xiàn)一定體縮,顆粒體更加密實,配位數(shù)略有上升,隨后試樣逐漸發(fā)生破壞,體積膨脹,配位數(shù)開始不斷減小,并且減小的趨勢逐漸變緩。圖12中配位數(shù)曲線不重合,再 次表明了最小粒徑對數(shù)值試驗的影響。采用同種壓實度控制標(biāo)準(zhǔn)時,配位數(shù)隨著最小粒徑的增加而增大,并且當(dāng)試樣最小粒徑為5 mm時,其配位數(shù)明顯小于最小粒徑為10 mm和15 mm的試樣,說明當(dāng)試樣最小粒徑較小時,由于小顆粒的數(shù)量較多,顆粒平均接觸點數(shù)減少,顆粒體結(jié)構(gòu)相對不穩(wěn)定,這從細觀層面解釋了此時試樣抗剪強度較低的原因。
為了進一步定量表達配位數(shù)與最小粒徑的經(jīng)驗公式,整理出6組試樣的初始配位數(shù)Cni與 lg(dmin)的關(guān)系,如圖13 所示。從圖13 可以看出:2 種壓實度控制標(biāo)準(zhǔn)下,Cni與 lg(dmin)的關(guān)系都可近似采用線性擬合,最小粒徑增大時,顆粒間接觸數(shù)增加,顆粒體結(jié)構(gòu)更加密實穩(wěn)定。比較 2種壓實度控制標(biāo)準(zhǔn),可以看出采用相對密度控制的顆粒體Cni與 lg(dmin)的線性關(guān)系更好,并且Cni的增長幅度較小。
圖12配位數(shù)與軸向應(yīng)變關(guān)系曲線Fig.12Relationship betweenCoordination number and axial strain
圖13 Cni與lg(dmin)關(guān)系圖Fig.13 Relationship betweenCni and lg(dmin)
顆粒體的體積變形在細觀上可以通過試樣孔隙率的變化來體現(xiàn)。分析圍壓1.6 MPa下最小粒徑分別為10 mm和15 mm的試樣在加載過程中孔隙率與相對密度的變化,如圖14所示。從圖14 可以看出:試樣孔隙率在加載過程中,表現(xiàn)出與體積應(yīng)變相同的規(guī)律,先減小后增大,即隨著應(yīng)力的增大,顆粒體先出現(xiàn)體積收縮變得密實,孔隙率減小,在應(yīng)力增大到顆粒體趨于破壞時,迫使顆粒間發(fā)生滑移和翻越,顆粒體體積膨脹,孔隙率增大??紫堵?n=0.148 時顆粒體較相對密度 Dr=0.75 時更加密實,因此表現(xiàn)出更明顯的剪脹性,孔隙率的變化程度也更加明顯。對比圖14中不同最小粒徑試樣的孔隙率和相對密度的變化,dmin=15 mm時的變化稍明顯,說明了小顆粒對大顆粒間空隙的填充能力強,顆粒體最小粒徑較小時,試樣在加載過程中的體積變化也較小。
圖14孔隙率與軸向應(yīng)變關(guān)系曲線Fig.14Relationship between porosity and axial strain
由于試樣選用的是連續(xù)寬級配的顆粒,粒徑差異較大,可能出現(xiàn)一些小顆粒位于較大顆粒的孔隙中而自身不受力的情況,它們對整體結(jié)構(gòu)的應(yīng)力變形和強度特性不產(chǎn)生影響,為無效顆粒,可視為孔隙,為了進一步研究顆粒體細觀孔隙的變化,對試樣的結(jié)構(gòu)孔隙率ns進行分析。結(jié)構(gòu)孔隙率定義為
式中:i=?Ap/A,?Ap為無效顆粒的面積。試樣的結(jié)構(gòu)孔隙率隨軸向應(yīng)變的變化如圖15所示,此 時圍壓為1.6 MPa。
圖15 結(jié)構(gòu)孔隙率與軸向應(yīng)變關(guān)系曲線Fig.15 Relationship between structure porosity and axial strain
從圖15可以看出:結(jié)構(gòu)孔隙率隨著加載的進行呈現(xiàn)先減小再增大的趨勢,加載初始階段,顆粒體變得密實,無效顆粒也隨之減少,隨著加載的進行,試樣逐漸發(fā)生破壞,體積開始膨脹,無效顆粒數(shù)明顯增多,結(jié)構(gòu)孔隙率明顯增大。當(dāng)dmin=5 mm和dmin=10 mm時,初始結(jié)構(gòu)孔隙率稍大于初始孔隙率,表明顆粒體的承載能力主要取決于大顆粒,最小粒徑較小時,顆粒體中更容易出現(xiàn)無效顆粒,因此,在數(shù)值計算中選取極小的最小粒徑截距,力求與室內(nèi)試驗級配完全一致并不一定能提高計算結(jié)果的精度,反而降低了計算效率。
1)在同一級配曲線的基礎(chǔ)上選取不同最小粒徑截距,以 PFC2D為工具,生成了3種不同最小粒徑的顆粒試樣,對其進行了多組數(shù)值試驗,得出了一些關(guān)于最小粒徑截距的宏、細觀規(guī)律。
2)顆粒體最小粒徑對其密實度產(chǎn)生一定影響,隨著最小粒徑的增加,試 樣密實程度指標(biāo)nmax,nmin,emax和 emin逐步增大。其細觀層面則表現(xiàn)為配位數(shù)與最小粒徑的對數(shù)呈較好線性遞增關(guān)系。
3)顆粒體最小粒徑對試樣的力學(xué)特性有一定的影響。強度方面,隨著最小粒徑的增大,試樣的(σ1? σ3)f,?f,?和 ?0逐漸增大,c 和 ??逐漸減小,同一相對密度下,最小粒徑對各強度指標(biāo)的影響程度較小,大部分在 5%以內(nèi)。變形方面,隨著最小粒徑的增加,E50逐步增大,ν50逐步減小,且均與最小粒徑呈較好的線性關(guān)系,經(jīng)擬合可得出其他最小粒徑截距時對應(yīng)的E50和 ν50。
4)采用相對密度為壓實度控制標(biāo)準(zhǔn),并且降低圍壓,能減小最小粒徑對試樣力學(xué)特性的影響,此時選取較大的最小粒徑截距,不僅能保證數(shù)值模擬結(jié)果的可信度,同時也提高了計算效率,為數(shù)值試驗中最小粒徑截距的合理選取提供了有效依據(jù)。
參考文獻:
[1]SZARF K,COMBE G,VILLARD P.Polygons vs.clumps of discs: a numerical study of the influence of grain shape on the mechanical behaviour of granular materials[J].Powder Technology,2011,208(2): 279?288.
[2]DURáN O,KRUYT N P,LUDING S.Micro-mechanical analysis of deformationCharacteristics of three-dimensional granular materials[J].International Journal of Solids and Structures,2010,47(17): 2234?2245.
[3]ZHANG Xiao.Simulation of permanent deformation of unbound granular materials under repeated loading by DEM[J].Procedia-Social and Behavioral Sciences,2013,96: 505?511.
[4]羅勇,龔曉南,連峰.三維離散顆粒單元模擬無黏性土的工程力學(xué)性質(zhì)[J].巖土工程學(xué)報,2008,30(2): 292?297.LUO Yong,GONG Xiaonan,LIAN Feng.Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flowCode[J].Chinese Journal of Geotechnical Engineering,2008,30(2): 292?297.
[5]周健,池永.土的工程力學(xué)性質(zhì)的顆粒流模擬[J].固體力學(xué)學(xué)報,2004,25(4): 377?382.ZHOU Jian,CHI Yong.Simulating soil properties by particle flowCode[J].Acta Mechanica Solida Sinica,2004,25(4): 377?382.
[6]馬剛,周偉,常曉林,等.堆石料縮尺效應(yīng)的細觀機制研究[J].巖石力學(xué)與工程學(xué)報,2012,31(12): 2473?2482.MA Gang,ZHOU Wei,CHANG Xiaolin,et al.Mesoscopic mechanism study of scale effects of rockfill[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(12): 2473?2482.
[7]周偉,花俊杰,馬剛,等.堆石壩初次蓄水變形機理研究[C]//李錫夔.顆粒材料計算力學(xué)研究進展.大連: 大連理工大學(xué)出版社,2012: 273?282.ZHOU Wei,HUA Junjie,MA Gang,et al.Study on deformation mechanism of rockfill dams during an initial impoundment process[C]//LI Xikui.Development ofComputational Mechanics of Granular Materials.Dalian: Dalian University Press,2012: 273?282.
[8]周偉,謝婷蜓,馬剛,等.基于顆粒流程序的真三軸應(yīng)力狀態(tài)下堆石體的變形和強度特性研究[J].巖土力學(xué),2012,33(10): 3008?3012.ZHOU Wei,XIE Tingting,MA Gang,et al.Stress and deformation analysis of rockfill in true triaxial stressConditions based on PFC[J].Rock and Soil Mechanics,2012,33(10): 3008?3012.
[9]周偉,劉東,馬剛,等.基于隨機散粒體模型的堆石體真三軸數(shù)值試驗研究[J].巖土工程學(xué)報,2012,34(4): 748?755.ZHOU Wei,LIU Dong,MA Gang,et al.Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model[J].Chinese Journal of Geotechnical Engineering,2012,34(4): 748?755.
[10]BAGHERZADEH-KHALKHALI A,MIRGHASEMI A A.Numerical and experimental direct shear tests forCoarse-grained soils[J].Particuology,2009,7(1): 83?91.
[11]劉軍,于剛,趙長兵,等.不同尺度分布散粒材料砂堆形成過程的二維離散元模擬[J].計算力學(xué)學(xué)報,2008,25(4): 568?573.LIU Jun,YU Gang,ZHAOChangbing,et al.2D DEM simulation on the sandpile formation for granular materials with different grain size distributions[J].Chinese Journal ofComputational Mechanics,2008,25(4): 568?573.
[12]HWANG S I.Effect of texture on the performance of soil particle-size distribution models[J].Geoderma,2004,123(3): 363?371.
[13]王淑云,魯曉兵,時忠民.顆粒級配和結(jié)構(gòu)對粉砂力學(xué)性質(zhì)的影響[J].巖土力學(xué),2005,26(7):1029?1032.WANG Shuyun,LU Xiaobing,SHI Zhongmin.Effects of grain size distribution and structure on mechanical behavior of silty sands[J].Rock and Soil Mechanics,2005,26(7):1029?1032.
[14]HAMIDI A,AZINI E,MASOUDI B.Impact of gradation on the shear strength-dilation behavior of well graded sand-gravel mixtures[J].Scientia Iranica,2012,19(3): 393?402.
[15]邱賢德,閻宗嶺,劉立,等.堆石體粒徑特征對其滲透性的影響[J].巖土力學(xué),2004,25(6): 950?954.QIU Xiande,YAN Zongling,LIU Li,et al.Effect of particle-sizeCharacteristics on seepage property of rockfill[J].Rock and Soil Mechanics,2004,25(6): 950?954.
[16]傅華,韓華強,凌華.堆石料級配縮尺方法對其室內(nèi)試驗結(jié)果的影響[J].巖土力學(xué),2012,33(9): 2645?2649.FU Hua,HAN Huaqiang,LING Hua.Effect of grading scale method on results of laboratory tests on rockfill materials[J].Rock and Soil Mechanics,2012,33(9): 2645?2649.
[17]王永明,朱晟,任金明,等.筑壩粗粒料力學(xué)特性的縮尺效應(yīng)研究[J].巖土力學(xué),2013,34(6):1799?1807.WANG Yongming,ZHU Sheng,REN Jinming,et al.Research on scale effect ofCoarse-grained materials[J].Rock and Soil Mechanics,2013,34(6):1799?1807.
[18]朱俊高,翁厚洋,吳曉銘,等.粗粒料級配縮尺后壓實密度試驗研究[J].巖土力學(xué),2010,31(8): 2394?2398.ZHU Jungao,WENG Houyang,WU Xiaoming,et al.Experimental study ofCompact density of scaledCoarse-grained soil[J].Rock and Soil Mechanics,2010,31(8): 2394?2398.
[19]CUNDALL P A,STRACK O D L.Particle FlowCode in2Dimensions.PFC2DVersion 3.0[M].Minneapolis: ItascaConsulting Group Inc,2002(3):1?96.
[20]周健,廖雄華,池永,等.土的室內(nèi)平面應(yīng)變試驗的顆粒流模擬[J].同濟大學(xué)學(xué)報,2002,30(9):1044?1050.ZHOU Jian,LIAO Xionghua,CHI Yong,et al.Simulating plane strain test of soils by particle flowCode[J].Journal of Tongji University,2002,30(9):1044?1050.
[21]NICOT F,HADDA N,SIBILLE L,et al.Some micromechanical aspects of failure in granular materials based on second-order work[J].Comptes Rendus Mécanique,2014,342(3):174?188.
[22]周健,池毓蔚,池永,等.砂土雙軸試驗的顆粒流模擬[J].巖土工程學(xué)報,2000,22(6): 701?704.ZHOU Jian,CHI Yuwei,CHI Yong,et al.Simulation of biaxial test on sand by particle flowCode[J].Chinese Journal of Geotechnical Engineering,2000,22(6): 701?704.
[23]常在,楊軍,程曉輝.砂土強度和剪脹性的顆粒力學(xué)分析[J].工程力學(xué),2010(4): 95?104.CHANG Zai,YANG Jun,CHENG Xiaohui.Granular mechanical analysis of the strength and dilatancy of sands[J].Engineering Mechanics,2010(4): 95?104.
[24]日本土質(zhì)工學(xué)會.粗粒料的現(xiàn)場壓實[M].郭熙靈,文丹,譯.北京: 中國水利水電出版社,1998:1?17.Japanese Society of Soil Mechanics and Foundation Engineering.FieldCompaction ofCoarse-grained materials[M].GUO Xiling,WEN Dan,translate.Beijing:China Water Power Press,1998:1?17.
[25]SL 237—1999,土工試驗規(guī)程[S].SL 237—1999,Soil test procedures[S].
(編輯 羅金花)
Effect of minimum particle size on assembly in numerical simulation
MA Xing1,2,ZHOU Wei1,2,MA Gang1,2,CHANG Xiaolin1,2
(1.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072,China? 2.Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Education Ministry,Wuhan University,Wuhan 430072,China)
Abstract:The effect of the minimum size of particles on the strength properties and deformationCharacteristics of particles and the accuracy of simulations were simulated by the particle flowCode in two dimensions(PFC 2D).Three specimens with different minimum size of particles were analyzed,and two differentCompactnessControl standards wereConsidered.The results show that the mechanical parameters are monotone function about the minimum particle size,and that the anti-distortionCapacity of assemblies with different minimum particle sizesCan beCalculated through the function.On the other hand,linearly increasing relationship was found betweenCoordination number and logarithmic minimum particle size,the impact of minimum particle size on density and strength properties was explained from the micro level.Finally,the influence of the minimum particle size on the results of the simulation were reduced by using relative densityControl standard and lowConfining stress.
Key words:assembly?biaxialCompression test?discrete element?minimum particle size?compactnessControl standard
中圖分類號:TV311
文獻標(biāo)志碼:A
文章編號:1672?7207(2016)01?0166?10
DOI:10.11817/j.issn.1672-7207.2016.01.024
收稿日期:2014?12?24;修回日期:2015?02?12
基金項目(Foundation item):國家自然科學(xué)基金資助項目(51379161);國家優(yōu)秀青年科學(xué)基金資助項目(51322905)(Project(51379161)supported by the National Natural Science Foundation ofChina? Project(51322905)supported by the National Science Foundation for Excellent Young Scholars ofChina)
通信作者:周偉,教授,博士生導(dǎo)師,從事高壩結(jié)構(gòu)數(shù)值仿真研究;E-mail: zw_mxx@163.com