国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

On the characteristic polynomials of graphs with nullity n-4

2016-06-05 15:19:38,,
關(guān)鍵詞:中南大學(xué)青海資助

, ,

(1. School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China;2. Department of Mathematics, Central South University, Changsha 410083, China)

On the characteristic polynomials of graphs with nullityn-4

WUTingzeng1,FENGLihua2,MAHaicheng1

(1. School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China;2. Department of Mathematics, Central South University, Changsha 410083, China)

The nullity of a graph is the multiplicity of zeroes in its adjacency spectrum. And the nullity of a graphGwithnverticesequalstonminustherankofadjacencymatrixofG.Thecharacteristicpolynomialsofgraphswithnullityn-4iscomputed.Inparticular,itisshownthatsomegraphswithnullityn-4aredeterminedbytheirspectra.Andsomepairsofcospectralgraphswithnullityn-4arepresented.

characteristic polynomial; rank; nullity; cospectral graphs

1 Introduction

TheadjacencymatrixofGisdenotedbyA(G).ThecharacteristicpolynomialofagraphG,bydefinition,is

whereIistheidentitymatrixofordern.

ThespectrumofGconsistsoftheeigenvaluestogetherwiththeirmultiplicitiesofA(G).Twographsaresaidtobecospectralif they share the same spectrum or characteristic polynomial.

A graph is said to bedeterminedbythespectrum(DS for short) if there is no other non-isomorphic graph with the same spectrum. The nullity ofG,denotedbyη(G),isthemultiplicityofzeroesinthespectrumofG.Letr(G)betherankofA(G).Obviously,η(G)=n-r(G).Whenη(G)=0,thegraphGiscallednonsingular.

TheproblemcharacterizingallgraphsGwithη(G)>0isofgreatinterestinbothchemistryandmathematics.ForabipartitegraphGwhichcorrespondstoanalteranthydrocarboninchemistry,ifη(G)>0,itisindicatedthatthecorrespondingmoleculeisunstable.Thenullityofagraphisalsomeaningfulinmathematicssinceitisrelatedtothesingularityofadjacentmatrix.Theproblemhasnotyetbeensolvedcompletely.Anditreceivedalotofattentionfromresearchersinrecentyears,see[2-3].Herewehighlighttworesultswhichinvolveextremalnullityofgraphs.Thatis,ChengandLiu[4]characterizedthegraphswhosenullityreachtheupperboundsn-2andn-3.Changetal. [5-6]masterlyusedthedefinitionofmultiplicationofvertices(seep.53of[7])tocharacterizeallconnectedgraphswithrank4or5.Moreinformationsee[8-9].

BythedefinitionofG°m[m1,m2,…,mn],wecanobtainsomeprimarypropertiesaboutthestructureofG°m as follows.

Property 3 For any triangle inG°m, there exactly exists a complete 3-partite induced subgraph obtained by multiplying vertices on a triangle inGwhichcontainsit.Then

whereuvwdenotesatriangleinG,andthesumistakenoveralltrianglesinG.

Property4Every4-cycleinG°m must be contained in an induced subgraph obtained by multiplying every vertex on an edge, oneP3oroneC4inG.Directcomputationyields

wherethefirstsumistakenoveralledgesinG,thesecondsumistakenoverallP3’sinG,andthethirdsumistakenoverallC4’sinG.

Thispaperisorganizedasfollows.InSection2,wepresentsomelemmasandcharacterizeallgraphswithnullityn-4.InSection3,wecomputethecharacteristicpolynomialsofgraphswithnullityn-4.InSection4,weinvestigatewhichgraphswithnullityn-4areDS.Precisely,weshowthattwoclassesofregulargraphsandoneclassofnon-bipartitegraphsareDS.Andwepresentsomepairsofcospectralbipartitegraphs.

2 Preliminaries

Inthissection,wewillpresentsomeresultswhichplayakeyroleintheproofsofthemaintheorems.

Lemma 1[1]LetGbeagraphwithpverticesandqedges,andlet(d1,d2,…,dp)bethedegreesequenceofG.ThecoefficientsofthecharacteristicpolynomialofagraphGsatisfy:

(i)a0=1;

(ii)a1=0;

(iii)a2=-q;

(iv)a3=-2c3(G);

Lemma 2[10]LetGbeagraph.Fortheadjacencymatrix,thefollowingcanbeobtainedfromthespectrum.

(i) The number of vertices.

(ii) The number of edges.

(iii) WhetherGisregular.

(iv) WhetherGisregularwithanyfixedgirth.

(v) The number of closed walk of any length.

(vi) WhetherGisbipartite.

Theorem 1[4]Suppose thatGisasimplegraphonnverticesandn≥2.Thenη(G)=n-2ifandonlyifGisisomorphictoKn1,n2∪kK1,wheren1+n2+k=n,n1andn2>0,andk≥0.

Theorem 2[5]LetGbeaconnectedgraph.Thenr(G)=4ifandonlyifG∈M(G1,G2,G3,G4,G5,G6,G7,G8),whereGi(i=1,2,…,8)isdepictedinFig.1.

CombiningTheorems1and2,wecanobtainthefollowingresult.

Fig.1 The graphs G1,G2,G3,G4,G5,G6,G7,G8,G9

3 The characteristic polynomials of graphs with nullity n-4

Inthissection,wewillcomputethecharacteristicpolynomialsofgraphswithrank4.

Proof

cd)xa+b+c+d-2-2bcdxa+b+c+d-3+abcdxa+b+c+d-4

bd+ce)x2-2abcx+abdc+abec+dbec]

xa+b+c+d+e-4[x4-(ab+ae+be+bc+cd+de)·

x2-2abex+abed+adec+abcd+abec]

cf+cd+de+ef)x2-2bcfx+abed+

abcd+bdec+abcf+abef+bcef+fbcd+fbed]

3abcd4-cycles.ByLemma1,wehave

bc+bd+cd)x2-

2(abc+abd+acd+bcd)x-3abcd]

abef+acdf+bcde4-cycles.ByLemma1,wehave

[x4-(ab+ac+af+bc+be+cd+

df+de+fe)x2-2(abc+def)x+abed+

abdf+acbe+aced+acef+afed+abcd+fcde+

abcf+bcef+fbcd+fbed]

[x4-(ab+bc+cd)x2+abcd]

[x4-(ab+bc+cd+ed)x2+abcd]

[x4-(ab+cd)x2+abcd]

Bytheaboveargument,weobtainthedesiredresult.

4 The spectral characterization of graphs with nullity n-4

MaandRen[15]investigatedwhichkindofcompletemultipartitegraphisDSsinceitiswellknownthatnotallcompletemultipartitegraphsareDS.Andtheyprovedthefollowingresults.

ByTheorems5and6,weobtaindirectlyacorollaryasfollows.

Theorem 7

(ii) The complete regular 4-partite graph is DS.

Additionally, by the definition ofG5。 m[m1,m2,m3,m4],wenotethatG5°m is a complete 4-partite graphs. Observing Theorem 4, it is easy to see that only the fifth coefficient of characteristic polynomial ofG5°m is negative, which implies that the following proposition.

Theorem 9 2Kt,tisDS.

Fromtheargumentabove,weobtainthatGisDS.

Proof. By Theorem 4 (vii) and (viii), we obtain that

Therefore,G∪kK1andH∪kK1arecospectral,wherea,k≥0.

5 Conclusion

[1] BIGGS N. Algebraic graph theory [M]. Cambridge: Cambridge University Press, 1993.

[2] BOROVICANIN B, GUTMAN I. Nullity of graphs [C]. Applications of Graph Spectra, Math Inst. Belgrade, 2009:107-122.

[3] GUTMAN I, BOROVICANIN B. Nullity of graphs: an updated survey [C]. Selected Topics on Applications of Graph Spectra, Math Inst. Belgrade, 2011: 137-154.

[4] CHENG B, LIU B. On the nullity of graphs [J]. Electron J Linear Algebra Ela, 2007, 16: 60-67.

[5] CHANG G, HUANG L, YEH H. A characterization of graphs with rank 4 [J]. Linear Algebra Appl, 2011, 434(8): 1793-1798.

[6] CHANG G, HUANG L, YEH H. A characterization of graphs with rank 5 [J]. Linear Algebra Appl, 2012, 436(11): 4241-4250.

[7] GOLUMBIC M. Algorithmic graph theory and perfect graphs [M]. Amsterdam: North-Holland Publishing Co, 2004.

[8] WANG X, ZHAO X, YAO B. Spanning trees of totally edge-growing network models [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(1): 48-53.

[9] TANG B, REN H. The number of perfect matching in two types of 3-regular graph [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53 (5): 54-58.

[10] van DAM E, HAEMERS W. Which graphs are determined by their spectrum? [J]. Linear Algebra Appl, 2003, 373: 241-272.

[11] van DAM E, HAEMERS W. Developments on spectral characterizations of graphs [J]. Discrete Math, 2009, 309: 576-586.

[12] CAMARA M, HAEMERS W. Spectral characterizations of almost complete graphs [J]. Discrete Appl Math, 2014, 176: 19-23.

[13] LIU F, HUANG Q, LAI H. Note on the spectral characterization of some cubic graphs with maximum number of triangles [J]. Linear Algebra Appl, 2013, 438(3): 1393-1397.

[14] ZHANG X, ZHANG H. Some graphs determined by their spectra [J]. Linear Algebra Appl, 2009, 431(9): 1443-1454.

[15] MA H, REN H. On the spectral characterization of the union of complete multipartite graph and some isolated vertices [J]. Discrete Math, 2010, 310: 3648-3652.

2015-11-28

國(guó)家自然基金資助項(xiàng)目 (11101245, 11271208, 11301302, 11561056);青海省自然基金資助項(xiàng)目(2016-ZJ-947Q);山東省自然基金資助項(xiàng)目(BS2013SF009);中南大學(xué)數(shù)學(xué)與交叉科學(xué)項(xiàng)目資助項(xiàng)目;青海民族大學(xué)自然科學(xué)基金資助項(xiàng)目(2015XJZ12)

吳廷增(1978年生),男;研究方向:數(shù)學(xué)化學(xué)、圖的匹配理論和計(jì)算機(jī)網(wǎng)絡(luò);E-mail:mathtzwu@163.com

零度為n-4的圖的特征多項(xiàng)式*

吳廷增1, 馮立華2, 馬海成1

(1. 青海民族大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 青海 西寧 810007;2. 中南大學(xué)數(shù)學(xué)系, 湖南 長(zhǎng)沙 410083)

圖的零度是指圖的鄰接譜中零特征根的重?cái)?shù)。顯然,n個(gè)頂點(diǎn)的圖G的零度等于n減去其鄰接矩陣的秩。計(jì)算了零度為n-4的所有圖的特征多項(xiàng)式。特別地, 證明了許多零度為n-4的圖是譜唯一確定的, 并構(gòu)造了許多對(duì)零度為n-4的同譜圖。

特征多項(xiàng)式; 秩; 零度; 同譜圖

O157.6;O

A

0529-6579(2016)06-0057-07

10.13471/j.cnki.acta.snus.2016.06.008

猜你喜歡
中南大學(xué)青海資助
中南大學(xué)建筑與藝術(shù)學(xué)院作品選登
高校資助育人成效的提升路徑分析
大學(xué)(2021年2期)2021-06-11 01:13:28
中南大學(xué)教授、博士生導(dǎo)師
安全(2021年4期)2021-05-19 07:56:52
中南大學(xué)校慶文創(chuàng)產(chǎn)品設(shè)計(jì)
湖南包裝(2020年6期)2021-01-20 02:02:10
“隱形資助”低調(diào)又暖心
大美青海
青海行七首(錄二)
岷峨詩稿(2017年4期)2017-04-20 06:26:36
青海 管放相宜 漸入佳境
美國(guó)防部資助研發(fā)能垂直起降的無人機(jī)
艾米莉·狄金森的自然:生態(tài)批評(píng)的解讀
育儿| 临清市| 平泉县| 河西区| 宽城| 南阳市| 九江县| 友谊县| 道孚县| 苏尼特右旗| 海安县| 察雅县| 阜城县| 广汉市| 道孚县| 尖扎县| 泽州县| 开化县| 阜阳市| 绥棱县| 平潭县| 文成县| 红安县| 江都市| 晋中市| 高邑县| 行唐县| 博罗县| 南宫市| 绵阳市| 介休市| 江安县| 柘城县| 博乐市| 五家渠市| 望奎县| 阳谷县| 西和县| 聂拉木县| 高台县| 日喀则市|