張伯澤, 阮 毅
(上海大學(xué),上?!?00072)
?
基于MRAS內(nèi)置式永磁同步電機(jī)無位置傳感器控制研究
張伯澤,阮毅
(上海大學(xué),上海200072)
摘要:對(duì)一種基于模型參考自適應(yīng)系統(tǒng)(MRAS)的內(nèi)置式永磁同步電機(jī)(IPMSM)無位置傳感器矢量控制策略進(jìn)行了研究。該控制策略僅需很少的參數(shù)就可以估算出電機(jī)轉(zhuǎn)速。該控制策略中,IPMSM本身作為參考模型,將含有待估參數(shù)的IPMSM數(shù)學(xué)模型作為可調(diào)模型,這兩個(gè)模型的輸出之差驅(qū)動(dòng)自適應(yīng)律,從而獲得估算轉(zhuǎn)速。在MRAS中引入比例積分環(huán)節(jié),提高了系統(tǒng)的動(dòng)態(tài)性能。該控制策略實(shí)現(xiàn)了IPMSM在極低速0.5Hz下的運(yùn)行。仿真結(jié)果表明: 提出的控制策略有良好的動(dòng)態(tài)響應(yīng)和穩(wěn)態(tài)響應(yīng),估算轉(zhuǎn)速有較高的精度,系統(tǒng)有較強(qiáng)的魯棒性,IPMSM在極低速下運(yùn)行良好。
關(guān)鍵詞:內(nèi)置式永磁同步電機(jī)(IPMSM); 模型參考自適應(yīng); 無位置傳感器控制
0引言
內(nèi)置式永磁同步電機(jī)(Interior Permanent Magnet Synchronous Motor, IPMSM)因具有體積小、質(zhì)量輕、響應(yīng)快、損耗小、功率密度大和效率高等優(yōu)點(diǎn)而獲得了廣泛應(yīng)用。IPMSM可實(shí)現(xiàn)控制精度高、動(dòng)態(tài)性能好、調(diào)速范圍寬等優(yōu)越的調(diào)速控制[1-2]。通常情況下,對(duì)IPMSM轉(zhuǎn)速和轉(zhuǎn)矩的精確控制,是用位置或速度傳感器實(shí)現(xiàn)的。然而,位置或速度傳感器的安裝需要額外的空間,且有位置或有速度傳感器系統(tǒng)的成本高、可靠性低、不易維護(hù)。
為了消除位置和速度傳感器,提出了各種控制策略,比如Kalman濾波器法[3-4]、狀態(tài)觀測(cè)器法[5-6]、滑??刂品╗7-8]、高頻信號(hào)注入法[9-10]、人工智能法[11]等。
在眾多無位置和無速度傳感器控制策略中,模型參考自適應(yīng)(Model Reference Adaptive System, MRAS)法[12-15]因?yàn)榻Y(jié)構(gòu)簡(jiǎn)單和穩(wěn)定而被廣泛采用。本文基于Popov超穩(wěn)定理論,對(duì)基于MRAS的IPMSM無位置傳感器控制進(jìn)行了研究。該控制策略僅需很少的參數(shù)就可以估算出電機(jī)轉(zhuǎn)速。該控制策略中,將不含待估參數(shù)的IPMSM本身作為參考模型,將含有待估參數(shù)的IPMSM數(shù)學(xué)模型作為可調(diào)模型,這兩個(gè)模型有相同的輸出物理量。參考模型與可調(diào)模型的輸出之間存在偏差,用這個(gè)偏差構(gòu)造一種自適應(yīng)律,來調(diào)節(jié)可調(diào)模型中的待估參數(shù)。這樣,控制目標(biāo)的真實(shí)輸出就可以追蹤參考模型的輸出,從而產(chǎn)生較準(zhǔn)確的估算轉(zhuǎn)速。最后,本文建立了系統(tǒng)仿真模型,對(duì)所提出的控制策略進(jìn)行了驗(yàn)證。仿真結(jié)果表明: 本文提出的控制策略有良好的動(dòng)態(tài)響應(yīng)和穩(wěn)態(tài)響應(yīng),估算轉(zhuǎn)速有較高的精度,系統(tǒng)有較強(qiáng)的魯棒性,IPMSM在極低速下運(yùn)行良好。
1IPMSM的數(shù)學(xué)模型
在以轉(zhuǎn)子磁場(chǎng)定向的同步旋轉(zhuǎn)d-q坐標(biāo)系中,IPMSM的電壓方程為
(1)
磁鏈方程為
(2)
將式(2)代入式(1)整理并寫為狀態(tài)方程,則IPMSM的電流數(shù)學(xué)模型為
(3)
電磁轉(zhuǎn)矩為
Te=np(ψsdisq-ψsqisd)=
np[ψfisq+(Lsd-Lsq)isqisd]
(4)
式中:usd、usq——定子電壓直、交軸分量;
isd、isq——定子電流直、交軸分量;
Lsd、Lsq——直、交軸電感;
Rs——定子電阻;
np——電動(dòng)機(jī)極對(duì)數(shù);
ωr——IPMSM轉(zhuǎn)子電氣角速度;
ψf——轉(zhuǎn)子永磁體產(chǎn)生的磁鏈。
本文采用的坐標(biāo)變換前提是功率不變?cè)瓌t,所以上述電磁轉(zhuǎn)矩算式(4)中電動(dòng)機(jī)極對(duì)數(shù)np前的系數(shù)為1。
2基于MRAS的IPMSM無速度傳感器矢量控制策略
(5)
(6)
(7)
(8)
則可得IPMSM可調(diào)模型的狀態(tài)方程如下:
(9)
其中:
(10)
(11)
自適應(yīng)律為
(12)
F1、F2分別如下:
(13)
其中:
(14)
(15)
(16)
e為廣義誤差,將式(13)、(14)、(15)和(16)代入方程(12),同時(shí)為了提高系統(tǒng)的動(dòng)態(tài)性能,引入比例積分環(huán)節(jié),則可得轉(zhuǎn)速的自適應(yīng)律為
ω^r= kp+kip?è???÷LsqLsdisdi^sq-LsdLsqisqi^sd-é?êê
(17)
對(duì)表面貼式IPMSM的Lsd=Lsq。則式(17)可簡(jiǎn)化為
ω^r= kp+kip?è???÷[isdi^sq-isqi^sd-
(18)
根據(jù)Popov超穩(wěn)定理論,如果滿足下列條件:
(1) 傳遞函數(shù)H(s)=C(SI-A)-1嚴(yán)格真實(shí);
基于MRAS的IPMSM無位置傳感器控制系統(tǒng)框圖如圖1所示。
圖1 基于MRAS的IPMSM無位置傳感器控制系統(tǒng)框圖
3仿真研究
對(duì)提出的基于MRAS的IPMSM無位置傳感器控制系統(tǒng)進(jìn)行了仿真驗(yàn)證,負(fù)載為1N·m,電機(jī)運(yùn)行速度范圍從極低速30r/min(對(duì)應(yīng)0.5Hz)至高速3600r/min,仿真結(jié)果如圖2~圖6所示。
圖2 IPMSM的參考轉(zhuǎn)速
圖3 IPMSM的估算轉(zhuǎn)速
圖4 IPMSM估算轉(zhuǎn)速與參考轉(zhuǎn)速之差
圖5 IPMSM轉(zhuǎn)子估算位置(前段展開)
圖6 IPMSM轉(zhuǎn)子估算位置(后段展開)
IPMSM的參數(shù)如表1所示。
表1 IPMSM的參數(shù)
從仿真波形可以看出,基于MRAS的IPMSM無位置傳感器控制策略具有良好的動(dòng)態(tài)響應(yīng)和穩(wěn)態(tài)響應(yīng),在極低速0.5Hz下仍運(yùn)行良好,轉(zhuǎn)速估算在穩(wěn)態(tài)時(shí)具有較高的精度。
4結(jié)語
本文對(duì)基于MRAS的IPMSM無位置傳感器控制策略進(jìn)行了研究。該控制策略僅需很少的參數(shù)就可以估算出電機(jī)轉(zhuǎn)速。該控制策略中,將不含待估參數(shù)的IPMSM本身作為參考模型,將含有待估參數(shù)的IPMSM數(shù)學(xué)模型作為可調(diào)模型,這兩個(gè)模型有相同的輸出物理量。參考模型與可調(diào)模型的輸出之間存在偏差,用這個(gè)偏差構(gòu)造一種自適應(yīng)律,來調(diào)節(jié)可調(diào)模型中的待估參數(shù)。這樣,控制目標(biāo)的輸出就可以追蹤參考模型的輸出,從而產(chǎn)生較準(zhǔn)確的估算轉(zhuǎn)速。
最后,本文用仿真對(duì)所提出的控制策略進(jìn)行了驗(yàn)證。仿真結(jié)果表明: 研究的控制策略具有良好的動(dòng)態(tài)響應(yīng)和穩(wěn)態(tài)響應(yīng),估算轉(zhuǎn)速有較高的精度,系統(tǒng)有較強(qiáng)的魯棒性,IPMSM在極低速下運(yùn)行良好。
【參 考 文 獻(xiàn)】
[1]ACARNLEY P P, WASTON J F. Review of position-sensorless operation of brushless permanent-magnet machines[J]. IEEE Transactions on Industrial Electronics, 2006,53(2): 352-362.
[2]張伯澤,阮毅.內(nèi)置式永磁同步電機(jī)最大轉(zhuǎn)矩電流比控制研究[J].電機(jī)與控制應(yīng)用,2015,42(2): 13-15.
[3]BOLOGNANI S, TUNIANA L, ZIGLIOTTO M. Extended kalman filter tuning in sensorless PMSM drives[J]. IEEE Transactions on Industry Applications, 2003,39(6): 1741-1747.
[4]CAUX S. Kalman filter and redundant observer comparison for sensorless PMSM velocity control[C]∥IEEE International Symposium on Industrial Electro-nics, 2005: 887-892.
[5]SHINNAKA S. New sensorless vector control using minimum-order flux state observer in a stationary reference frame for permanent magnet synchronous motors[J]. IEEE Transactions on Power Systems, 2006, 53(2): 388-398.
[6]JONES J A, LANG J H. A state observer for the permanent-Magnet Synchronous Motor[J]. IEEE Transactions on Industrial Electronics, 1989,36(3): 374-382.
[7]LI C, ELBULUK M. A sliding mode observer for sensorless control of permanent magnet synchronous motors[C]∥Proceedings of IEEE Industry Applications Society Annual Meeting, Chicago, 2001: 1273-1278.
[8]ZHOU F, LI B Z, YANG J G. A sliding mode speed/position observer integrated with a PI controller for PM synchronous motors[C]∥ IEEE International Conference on Robotics and Biomimetics, 2007: 1372-1377.
[9]JANG J H, HA J I. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection[J]. IEEE Transactions on Industry Applications, 2004,40(6): 1595-1604.
[10]CORLEY M J,LORENZ R D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds[J].IEEE Transactions on Industry Applications, 1998,34(4): 784-789.
[11]BATZEL T D, LEE K Y. A diagonally recurrent neural network approach to sensorless operation of the permanent magnet synchronous motor [C]∥Proceedings of IEEE Industry Power Engineering Society Summer Meeting, Seattle, WA, 2000: 2441-2445.
[12]LIANG Y, LI Y. Sensorless control of PM synchronous motors based on MRAS method and initial position estimation[C]∥Proceedings of IEEE International Conference on Electrical Machines and Systems, Beijing, China, 2003: 96-99.
[13]KIM Y S, KIM S K, KWON Y A. MRAS based sensorless control of permanent magnet synchronous motor[C]∥Proceedings of IEEE Annual Conference of the Society of Instrument and Control Engineering, Fukui, Japan, 2003: 1632-1637.
[14]YAN R Z, LI B Z, ZHOU F.Sensorless control of PMSMs based on parameter-optimized MRAS speed observer[C]∥Proceedings of IEEE International Conference on Automation and Logistics, Qingdao, China, 2008: 1573-1578.
[15]RASHED M, MACCONNEL P, STRONCACH A, et al. Sensorless indirect rotor field orientation speed control of permanent magnet sycnchronous motor using adaptive flux estimator [C]∥Proceedings of IEEE International Conference Decision and Control, Seville, Spain, 2005: 647-652.
Research of Interior Permanent Magnet Synchronous Motor Sensorless Control Based on MRAS
ZHANGBoze,RUANYi
(Shanghai University, Shanghai 200072, China)
Abstract:One novel control strategy for IPMSM sensorless control based on MRAS was presented. This control strategy can estimate the rotor speed with a few parameters. IPMSM itself was selected as reference model, and the mathematical model of IPMSM which includes estimated parameters was regarded as adaptive model. The output error of these two models was used to drive the adaption mechanism and the estimated speed was obtained. Also the PI control in MRAS to increase the dynamic performance was introduced.Using this control strategy, IPMSM could work under very low speed condition of 0.5Hz. The simulation results verify the proposed control strategy was effective, it had excellent dynamic and static responses, the estimated speed had good precision and the system was robust and could still work well in the very low speed range.
Key words:interior permanent magnet synchronous motor(IPMSM); model reference adaptive system(MRAS); sensorless control
收稿日期:2015-09-15
中圖分類號(hào):TM 351
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1673-6540(2016)04- 0013- 04
作者簡(jiǎn)介:張伯澤(1976—),男,博士研究生,研究方向?yàn)殡娏﹄娮优c電力傳動(dòng)。
阮毅(1955—),男,博士,教授,博士生導(dǎo)師,研究方向?yàn)殡娏﹄娮优c電力傳動(dòng)。