趙正陽,劉娜女,李海紅,奚緒光,范三紅
(西北農(nóng)林科技大學(xué) 生命科學(xué)學(xué)院,陜西 楊凌 712100)
?
一種嗜熱菌Pif1解旋酶的表達(dá)純化及活性分析
趙正陽,劉娜女,李海紅,奚緒光,范三紅
(西北農(nóng)林科技大學(xué) 生命科學(xué)學(xué)院,陜西 楊凌 712100)
[摘要]【目的】 利用大腸桿菌表達(dá)純化嗜熱脫鐵去硫弧菌(Deferribacter desulfuricans)解旋酶DePif1,并對其結(jié)合與解旋DNA的活性進(jìn)行分析,為Pif1家族解旋酶結(jié)構(gòu)和功能的闡明奠定基礎(chǔ)?!痉椒ā?將促溶標(biāo)簽SUMO編碼序列和人工合成的DePif1解旋酶編碼序列依次連入pET15b載體,獲得重組融合表達(dá)載體pET15b-SUMO-DePif1,然后將其導(dǎo)入E.coli BL21(DE3)菌株進(jìn)行誘導(dǎo)表達(dá);利用Ni-NTA親和層析柱獲得融合蛋白,SUMO蛋白酶酶切去除融合標(biāo)簽,再經(jīng)Heparin和Ni-NTA柱分離獲得無標(biāo)簽的純化重組DePif1蛋白;采用熒光各向異性分析,研究pH和NaCl濃度對DePif1與DNA結(jié)合的影響及DePif1與不同底物(單鏈DNA、雙鏈DNA和G4-DNA)的結(jié)合特性;使用基于熒光共振能量轉(zhuǎn)移的stopped-flow技術(shù),分析DePif1對不同底物(G4-DNA with 5′ 26 nt tail和dsDNA with 5′ 26 nt tail)的解旋活性?!窘Y(jié)果】 每升菌液可獲得9 mg純度大于95%的DePif1解旋酶。DePif1結(jié)合不同DNA底物的強度依次為G4-DNA>單鏈DNA>雙鏈DNA,其對G4-DNA的解旋活力大于雙鏈DNA。【結(jié)論】 成功表達(dá)并純化了嗜熱脫鐵去硫弧菌Pif1解旋酶,并證明其具有特異的G4-DNA結(jié)合和解旋能力。
[關(guān)鍵詞]嗜熱脫鐵去硫弧菌;Pif1解旋酶;G4-DNA;表達(dá)純化;解旋活性
解旋酶是生物體內(nèi)一類參與幾乎所有核酸代謝過程的分子馬達(dá),通常能結(jié)合并水解ATP,并利用水解釋放的能量打開核酸雙鏈間的氫鍵,為復(fù)制、轉(zhuǎn)錄、修復(fù)和重組等過程提供單鏈模板或反應(yīng)中間物[1]。解旋酶編碼基因突變常會導(dǎo)致嚴(yán)重遺傳病的發(fā)生,如人類的Werner、Bloom、Fanconi 綜合癥等[2-3]。根據(jù)保守模體數(shù)量和序列差異,解旋酶可分為5個超家族[4]。Pif1家族解旋酶是一類依賴ATP的5′→3′解旋酶,屬于解旋酶超家族Ⅰ(SFⅠ)的一個亞家族,廣泛存在于原核、真核生物及病毒中。Pif1家族解旋酶均包含一個由300~500個氨基酸殘基組成的Pif1結(jié)構(gòu)域,該結(jié)構(gòu)域中包含7個保守模體,在不同物種間高度保守[5-6]。
釀酒酵母的ScPif1是首個被發(fā)現(xiàn)的Pif1家族成員,是在研究影響線粒體DNA重組頻率的基因時分離得到的[7]。之后的研究證明,ScPif1具有依賴單鏈DNA的ATP水解活性,并且在ATP和Mg2+存在時,能沿5′→3′方向解旋DNA-DNA或DNA-RNA底物[8-9];除此之外, ScPif1還能解旋G-四聯(lián)體DNA (G-quadruplex,G4-DNA)結(jié)構(gòu),并且解旋速度高于其他雙鏈DNA底物[10]。同時,ScPif1參與岡崎片段的加工[11],通過抑制端粒酶的活性來抑制端粒延伸[8,12],這些功能使其在維持染色體和線粒體DNA穩(wěn)定性方面發(fā)揮著重要作用[13]。釀酒酵母中還存在另一個Pif1家族成員ScRrm3,是在篩選rDNA重組相關(guān)基因時發(fā)現(xiàn)的[14]。 DNA復(fù)制過程中,ScRrm3全程隨復(fù)制叉移動,能幫助復(fù)制叉通過結(jié)合蛋白或特殊的DNA結(jié)構(gòu)等障礙,并與DNA聚合酶催化亞基ε作用,是復(fù)制體的組成元件[15]。酵母雙雜交和PULL-DOWN試驗證實,Rrm3p可直接與增殖細(xì)胞核抗原(Proliferating Cell Nuclear Antigen,PCNA))相互作用[16]。另一個研究較深入的Pif1成員是裂殖酵母(Schizosaccharomycespombe)的Pfh1。截短的Pfh1具有依賴ATP和Mg2+的5′→3′DNA解旋酶活力[17]。當(dāng)Pfh1缺失或突變時,線粒體DNA迅速丟失并能導(dǎo)致細(xì)胞死亡,因此其對維持酵母細(xì)胞核及線粒體基因組的完整是必需的[13,17]。
哺乳類基因組中只編碼一個Pif1-Like蛋白,序列分析結(jié)果顯示,人類與小鼠Pif1-Like蛋白(分別為hPif1和mPif1)具有84%的序列相似度[18]。免疫熒光分析顯示,hPif1在細(xì)胞核和線粒體中均有存在[18]。hPif1在鎂離子和單鏈DNA存在下,能有效地水解ATP,并且以ATP水解為動力,沿5′→3′方向解旋DNA-DNA雙鏈、DNA-RNA雜合鏈、復(fù)制叉狀結(jié)構(gòu)和G4-DNA結(jié)構(gòu)[19-21]。在人腫瘤細(xì)胞中,過量表達(dá)hPif1導(dǎo)致端??s短,抑制其過表達(dá)則端粒長度恢復(fù)。結(jié)合hPif1對DNA-RNA雜交鏈的解鏈試驗、酵母雙雜交以及免疫共沉淀試驗,研究者認(rèn)為hPif1通過解旋“端粒酶RNA/端粒DNA”雜合鏈來抑制端粒酶活性[18-19]。小鼠mPif1在胚胎和造血細(xì)胞中表達(dá),雖然可與端粒酶相互作用,但并不抑制端粒酶活性[22]。
富含鳥嘌呤(G,guanine)的核酸序列可以通過4個鳥嘌呤的自組裝產(chǎn)生四鏈DNA結(jié)構(gòu),即G4-DNA。全基因序列分析表明,潛在的G4-DNA序列不僅存在于真核生物端粒序列中,而且廣泛散布在原核和真核基因組中[23-24]。G4-DNA的廣泛存在暗示其具有特定的生物學(xué)功能。研究表明,基因啟動子區(qū)的G4-DNA會影響基因的轉(zhuǎn)錄,而mRNA中的G4結(jié)構(gòu)則影響蛋白質(zhì)的翻譯。G4-DNA結(jié)構(gòu)的出現(xiàn)會成為復(fù)制與轉(zhuǎn)錄的障礙,因而需要G4-DNA結(jié)構(gòu)特異的解旋酶。目前已發(fā)現(xiàn)的具有G4-DNA解旋活性的酶包括FANCJ、BLM、WRN和Pif1解旋酶。相對于其他DNA底物,Pif1解旋酶對G4-DNA具有更高的結(jié)合和解旋活力[10,21]。
研究表明,Pif1解旋酶在不同生物體中,甚至同一生物體的不同組織中具有不同的功能[6]。因此需要對不同來源的Pif1解旋酶進(jìn)行研究,以更全面地了解Pif1家族的功能特點和作用機理。蛋白與靶DNA晶體的獲得與解析對解旋酶功能的闡明具有決定性作用,而嗜熱菌蛋白通常具有良好的熱穩(wěn)定性,有利于晶體的形成。已有多種嗜熱菌解旋酶獲得晶體結(jié)構(gòu),如DnaB、 RecG 和XPD等[25-27]。本研究以生活在深海熱液噴發(fā)口的嗜熱脫鐵去硫弧菌(Deferribacterdesulfuricans)(最適生活溫度60~65 ℃)的Pif1蛋白DePif1為對象,利用大腸桿菌系統(tǒng)實現(xiàn)DePif1的高效表達(dá)純化,分析其對不同底物的結(jié)合和解旋能力,以期為研究Pif1家族解旋酶的功能及晶體結(jié)構(gòu)奠定基礎(chǔ)。
1材料與方法
1.1材料
1.1.1菌株及質(zhì)粒E.coli2984、BL21(DE3)菌株, pET15b載體及PCR擴增獲得的SUMO促溶標(biāo)簽編碼序列,均為西北農(nóng)林科技大學(xué)生命科學(xué)學(xué)院奚緒光教授實驗室保存。
1.1.2工具酶及主要試劑NdeⅠ、EcoRⅠ-HF、XhoⅠ等限制性內(nèi)切酶購自NEB公司,Prime STAR DNA Polymerase、T4 DNA ligase 購自Takara公司,所有試劑均為分析純,所有緩沖液均由Millipore系統(tǒng)的超純水配制,Ni-NTA、Heparin Sepharose Fast Flow等層析柱購自GE公司。
1.1.3DNA底物解旋試驗中所用的DNA底物兩條鏈分別標(biāo)記熒光素(fluorescein,F(xiàn))和六氯熒光素(hexachlorofluorescein,H),而DNA結(jié)合的熒光偏振試驗中用到的DNA底物只有一條鏈標(biāo)記熒光素。制備各種底物的單鏈DNA購自上海生工生物工程公司,均經(jīng)過HPLC純化,具體序列見表1。雙鏈和G4-DNA底物通過單鏈DNA退火獲得,方法是:將單鏈DNA置于退火緩沖液(20 mmol/L Tris-HCl,100 mmol/L NaCl,pH 8.0)中90 ℃變性3 min,然后自然降溫退火。
表 1 結(jié)合和解旋試驗中所用的DNA底物
注:F.熒光素;H.六氯熒光素。
Note:F.Fluorescein;H.Hexachlorofluorescein.
1.2方法
1.2.1DePif1表達(dá)載體的構(gòu)建將SUMO促溶標(biāo)簽編碼序列(上、下游引物中均含NdeⅠ/EcoRⅠ酶切位點)及由Biomatik公司合成的全長DePif1解旋酶編碼序列(上、下游均含EcoRⅠ/XhoⅠ酶切位點),分別用NdeⅠ/EcoRⅠ和EcoRⅠ/XhoⅠ雙酶切后,連入NdeⅠ/XhoⅠ雙酶切并回收的pET15b表達(dá)載體,將連接反應(yīng)產(chǎn)物導(dǎo)入E.coli2984菌株,擴增并鑒定,獲得pET15b-SUMO-DePif1重組質(zhì)粒。
1.2.2DePif1解旋酶在大腸桿菌中的表達(dá)純化用重組質(zhì)粒pET15b-SUMO-DePif1轉(zhuǎn)化E.coliBL21(DE3)菌株,37 ℃、180 r/min培養(yǎng)至A600約為0.6,加入終濃度為0.3 mmol/L的IPTG,于28 ℃、160 r/min培養(yǎng)6 h,收集菌體,按照1(g)∶8(mL)的比例加入裂解緩沖液Buffer A(50 mmol/L Tris-HCl (pH 8.0),300 mmol/L NaCl,10 mmol/L imidazole,體積分?jǐn)?shù)10% Glycerol)重懸,高壓破碎,超聲裂解打斷DNA分子降低黏度。然后于4 ℃、13 000 r/min離心30 min,在上清中加入等體積4 mol/L硫酸銨溶液,4 ℃攪拌4 h,13 000 r/min離心20 min收集沉淀。用適當(dāng)體積Buffer A溶解沉淀,透析平衡后載入Ni-NTA親和層析柱,利用AKTA蛋白純化儀梯度洗脫獲得N端融合有His-tag和SUMO標(biāo)簽的融合蛋白。按照1∶100的質(zhì)量比加入SUMO蛋白酶, 然后于4 ℃酶切16 h去除蛋白標(biāo)簽。酶切后的反應(yīng)液載入Heparin Sepharose Fast Flow層析柱,再用AKTA蛋白純化儀梯度洗脫純化。收集包含目標(biāo)蛋白的組分載入Ni-NTA親和層析柱,則殘留的標(biāo)簽蛋白與親和柱結(jié)合,去標(biāo)簽的DePif1存在于穿出液中。使用10% SDS-PAGE檢測樣品純度,用nano drop測定蛋白濃度,樣品超濾濃縮后-80 ℃凍存待用。
1.2.3DePif1 的DNA結(jié)合能力檢測采用熒光各向異性(FA)方法對DePif1的DNA 結(jié)合活性進(jìn)行檢測[28-29]。熒光標(biāo)記的核酸底物不與蛋白結(jié)合時,高度自由旋轉(zhuǎn),表現(xiàn)出低的熒光各向異性;而當(dāng)其與蛋白結(jié)合時,形成的復(fù)合物轉(zhuǎn)動性降低,各向異性值增加,因此熒光標(biāo)記的核酸底物的各向異性變化能反映蛋白與底物的結(jié)合情況。測定在Infinite F200 Pro型多功能酶標(biāo)儀(TECAN)上完成,150 μL的反應(yīng)體系中有20 mmol/L MES,5 nmol/L 熒光標(biāo)記DNA底物(分別為16 nt-ssDNA、16 bp-dsDNA、G4-DNA),2 mmol/L MgCl2,2 mmol/L DTT,以及不同濃度的DePif1蛋白(0~120 nmol/L)。將反應(yīng)體系pH分別設(shè)置為4.0,5.0,6.0,7.0,8.0和9.0,反應(yīng)體系中的NaCl濃度分別為20,50,80,100,150和200 mmol/L,振蕩混勻,37 ℃溫育5 min,然后測定各樣品的熒光各向異性值,分析pH和NaCl濃度對DePif1與G4-DNA結(jié)合的影響,并比較DePif1與單鏈DNA、雙鏈DNA和G4-DNA的結(jié)合強度。
1.2.4DePif1的DNA解旋活性檢測采用基于熒光共振能量轉(zhuǎn)移(FRET)的stopped-flow 技術(shù),對DePif1的DNA解旋活性進(jìn)行測定[30]。在這種方法中,DNA底物兩條鏈中一條鏈的3′端標(biāo)記有熒光素(F,供體),另一條鏈的5′端標(biāo)記有六氯熒光素 (HF,受體)。當(dāng)兩條鏈結(jié)合在一起時,熒光素發(fā)射的熒光被六氯熒光素淬滅。而當(dāng)雙鏈DNA被解旋酶分開時,熒光素和六氯熒光素間的能量傳遞被打破,從而導(dǎo)致熒光素的熒光發(fā)射增強。因而DNA鏈的打開與否可通過熒光信號的變化來監(jiān)測。
為了選擇DePif1和G4-DNA底物在解旋緩沖液中孵育的適宜溫度及緩沖液中NaCl的適宜濃度,特進(jìn)行了篩選試驗。(1)孵育溫度的篩選。將DePif1和G4-DNA底物(G4-DNA with 5′ 26 nt tail)分別置于40和25 ℃解旋緩沖液中孵育5 min,然后加入1 mmol/L ATP開啟解鏈反應(yīng),通過監(jiān)測激發(fā)熒光強度變化來分析解鏈過程,篩選適宜的孵育溫度。
(2)NaCl濃度的篩選。在篩選出的適宜溫度下,將緩沖液中NaCl濃度設(shè)為20和50 mmol/L,測定DePif1對G4-DNA底物的解旋能力,篩選適宜的NaCl濃度。測定使用Bio-logic SFM-400 混合器和Bio-Logic MOS450/AF-CD光學(xué)系統(tǒng),反應(yīng)池為1.5 mm×1.5 mm 微量比色皿,反應(yīng)緩沖液包含20 mmol/L Tris-HCl (pH 7.5),20 mmol/L NaCl,2 mmol/L MgCl2,2 mmol/L DTT。DePif1解旋酶(100 nmol/L)與雙鏈DNA底物(dsDNA with 5′ 26 nt tail,4 nmol/L)或G4-DNA底物(G4-DNA with 5′ 26 nt tail,4 nmol/L)在注射器3中預(yù)先于40 ℃ 孵育5 min,ATP(終濃度1 mmol/L)在注射器4中,將2個注射器中的樣品快速混合后開始檢測熒光強度變化,激發(fā)波長為429 nm,發(fā)射波長為525 nm。
2結(jié)果與分析
2.1DePif1表達(dá)載體的構(gòu)建
將NdeⅠ/EcoRⅠ、EcoRⅠ/XhoⅠ雙酶切后的SUMO標(biāo)簽基因(309 bp)和DePif1編碼基因(1 533 bp)連入NdeⅠ/XhoⅠ雙酶切的pET15b表達(dá)載體,獲得pET15b-SUMO-DePif1重組質(zhì)粒。在目標(biāo)蛋白N-端分別融合有His-tag和SUMO標(biāo)簽,在SUMO標(biāo)簽和DePif1之間引入了SUMO蛋白酶切位點(圖1-A)。重組質(zhì)粒先通過PCR和酶切進(jìn)行鑒定,最后通過測序確證無誤后用于后續(xù)試驗。圖1-B為重組質(zhì)粒pET15b-SUMO-DePif1的PCR鑒定結(jié)果,擴增獲得了約1 800 bp片段,其包含了SUMO和DePif1編碼區(qū),與預(yù)期大小一致。圖1-C為重組質(zhì)粒pET15b-SUMO-DePif1的EcoRⅠ/XhoⅠ雙酶切結(jié)果,出現(xiàn)的大小約1 500 bp的片段為DePif1編碼序列。
2.2DePif1解旋酶的表達(dá)純化
將構(gòu)建好的重組質(zhì)粒pET15b-SUMO-DePif1導(dǎo)入大腸桿菌BL21(DE3)進(jìn)行誘導(dǎo)表達(dá),然后依次通過Ni-NAT柱親和純化、SUMO蛋白酶切除標(biāo)簽、Heparin Sepharose Fast Flow及Ni-NTA柱層析去除SUMO蛋白酶和親和標(biāo)簽等步驟,最終獲得無標(biāo)簽的DePif1。純化過程中各樣品的SDS-PAGE分析結(jié)果如圖2所示。由圖2可見,菌體裂解上清液(泳道1)和Ni-NAT親和純化樣品(泳道2)中均出現(xiàn)70 ku大小的預(yù)期條帶(DePif1分子質(zhì)量約為60 ku,SUMO標(biāo)簽約為10 ku),SUMO蛋白酶切后出現(xiàn)預(yù)期的60和10 ku 2條條帶(泳道3)。再經(jīng)過Heparin Sepharose Fast Flow和Ni-NTA柱,獲得純度大于95%的DePif1解旋酶,每升菌液可獲得9 mg重組DePif1。
圖 1表達(dá)載體pET15b-SUMO-DePif1的構(gòu)建與鑒定
A.重組載體構(gòu)建示意圖;B.重組質(zhì)粒PCR鑒定;C.重組質(zhì)粒的雙酶切鑒定;
M.DS TM 5000 DNA Marker;1.重組質(zhì)粒pET15b-SUMO-DePif1
Fig.1Construction of expression vector pET15b-SUMO-DePif1
A.Schematic map of pET15b-SUMO-DePif1;B.Identification of the recombinant vector by PCR;
C.Double digestion of the pET15b-SUMO-DePif1 byEcoRⅠ andXhoⅠ;M.DS TM 5000 DNA Marker;1.pET15b-SUMO-DePif1
圖 2DePif1蛋白的SDS-PAGE分析
M.Prestained protein ladder;1.菌體裂解液上清; 2.第1輪
Ni-NTA純化;3.SUMO蛋白酶裂解; 4~5.Heparin柱純化;
6.第2輪Ni-NTA純化;7.濃縮后樣品
Fig.2SDS-PAGE analysis of DePif1 protein
M.Prestained protein ladder;1.Supernatant of cell lysates;
2.Purified by first round Ni-NTA column;3.Cleaved by
SUMO protease;4-5.Purified by Heparin column;
6.Purified by second round Ni-NTA column;
7.Concentrated DePif1
2.3DePif1解旋酶與DNA底物的結(jié)合活性
首先運用熒光各向異性方法分析DePif1與G4-DNA結(jié)合的最適pH和NaCl濃度。由圖3-A可見,pH為6.0時,不同濃度DePif1的各向異性值均明顯高于其他pH,因而最適pH為6.0。由圖3-B可見,當(dāng)DePif1濃度為20,50,100 nmol/L時,DePif1與DNA的結(jié)合活性在NaCl濃度為20或50 mmol/L時差別不大,但顯著高于其他NaCl濃度處理,但由于20 mmol/L時DePif1與單鏈底物結(jié)合不穩(wěn)定,因此選擇50 mmol/L NaCl進(jìn)行試驗。根據(jù)米氏方程得到DePif1對單鏈底物(16 nt-ssDNA)、雙鏈底物(16 bp-ds DNA)、G4底物的Km值分別為3.02±0.65,18.82±1.70和2.71±0.57,表明DePif1對不同底物的結(jié)合強度依次為G4-DNA>單鏈DNA>雙鏈DNA(圖3-C)。
2.4DePif1的DNA解旋活性
從圖4-A可以看出,DePif1在40 ℃時的解旋效率明顯優(yōu)于25 ℃。圖4-B顯示,在20 mmol/L NaCl作用下,DePif1的解旋速度和幅度均高于50 mmol/L NaCl。因此,將溫度設(shè)為40 ℃,NaCl濃度設(shè)置為20 mmol/L,分析DePif1對雙鏈DNA底物(dsDNA with 5′ 26 nt tail)和G4-DNA底物(G4-DNA with 5′ 26 nt tail)的解旋能力,結(jié)果(圖4-C)顯示,2種底物均能被DePif1解旋,但解旋效率存在較明顯的差異。利用雙指數(shù)擬合方法求得DePif1對雙鏈DNA底物的解旋參數(shù)為:Afast=21.97%,kfast=0.724 6 s-1,Aslow=27.72%,kslow=0.216 5 s-1;對G4-DNA底物的解旋參數(shù)為:Afast=79.54%,kfast=0.543 8 s-1,Aslow=12.07%,kslow=0.099 6 s-1;A代表解旋幅度,fast、slow分別指解旋過程中的快反應(yīng)和慢反應(yīng)步驟,k指速率常數(shù)。因此,DePif1對G4-DNA的解旋活性高于雙鏈DNA。
圖 3DePif1與DNA底物結(jié)合的條件與強度
A.pH對DePif1與G4-DNA結(jié)合的影響;B.NaCl濃度對DePif1與G4-DNA結(jié)合的影響;C.DePif1與不同底物結(jié)合強度的比較
Fig.3Binding conditions and strengths of DePif1 with DNA substrates
A.Effects of pH on binding of DePif1 with G4-DNA;B.Effects of NaCl concentration on binding of DePif1 with G4-DNA;
C.Comparison of binding strengths of DePif1 with different substrates
圖 4DePif1 DNA解旋活性的FRET分析
A.溫度對DePif1解旋活性的影響;B.NaCl濃度對DePif1解旋活性的影響;C.DePif1對 G4-DNA和
雙鏈DNA底物的解旋活性比較;F0為底物自身熒光強度,F(xiàn)為加入DePif1后的實時熒光強度
Fig.4DNA unwinding activity of DePif1 by FRET
A.Effects of temperature on unwinding activity of DePif1;B.Effects of NaCl concentration on the unwinding activity of DePif1;
C.Comparison of unwinding activities of DePif1 to G4-DNA and duplex DNA;FandF0.The fluorescence
intensities of DNA substrates in the presence and absence of DePif1,respectively
3討論
Pif1家族成員具有依賴ATP的5′→3′解旋活性,其可影響端粒、rDNA及線粒體DNA的復(fù)制,參與岡崎片段加工,在維持染色體和線粒體DNA穩(wěn)定性方面發(fā)揮重要功能[6]。本研究建立了一種嗜熱脫鐵去硫弧菌(Deferribacterdesulfuricans)Pif1解旋酶(DePif1)的表達(dá)純化流程,利用該流程每升菌液可獲得9 mg純度大于95%且具有生物活性的DePif1蛋白,這為后期DePif1解旋酶晶體的獲得奠定了基礎(chǔ)。為了使目標(biāo)蛋白在大腸桿菌中更好地表達(dá),本研究對DePif1的編碼序列分析后,利用人工合成的方法,在不影響蛋白序列的前提下對DePif1的編碼序列進(jìn)行了修飾,優(yōu)化了序列中的部分密碼子,并通過序列優(yōu)化降低了其轉(zhuǎn)錄產(chǎn)物的復(fù)雜二級結(jié)構(gòu)對表達(dá)的不利影響。在表達(dá)過程中,目標(biāo)蛋白N-端融合了His-tag和SUMO促溶標(biāo)簽,SUMO標(biāo)簽可以增加融合蛋白的可溶性,而His-tag便于融合蛋白的純化,以及SUMO蛋白酶切后SUMO標(biāo)簽的去除。純化過程中還引入了硫酸銨沉淀、復(fù)溶步驟,這有利于核酸、酯類等雜質(zhì)的去除,避免對后續(xù)結(jié)合和解旋試驗產(chǎn)生影響。
熒光各向異性(FA)是一種快速、靈敏的監(jiān)測分子運動及其影響因素的方法,監(jiān)測濃度可低至“nmol/L”級別[28-29]。本研究采用熒光各向異性法,確定了DePif1與G4-DNA底物結(jié)合的最適pH為6.0,最適NaCl濃度為20 mmol/L。但NaCl濃度為20 mmol/L時,DePif1與單鏈DNA結(jié)合不穩(wěn)定。NaCl濃度為50 mmol/L時,DePif1對不同底物的結(jié)合強度順序為G4-DNA>單鏈DNA>雙鏈DNA。相較于傳統(tǒng)的EMSA方法,基于熒光共振能量轉(zhuǎn)移(FRET)的stopped-flow檢測技術(shù),能夠在低濃度核酸條件下實時監(jiān)測蛋白與核酸的反應(yīng)過程。本研究采用此方法,對DePif1的解鏈活性進(jìn)行了分析,結(jié)果表明在ATP和5′-單鏈存在的條件下,DePif1能有效解旋雙鏈DNA和G4結(jié)構(gòu),且解旋G4結(jié)構(gòu)的能力高于雙鏈DNA。此外,DePif1在40 ℃時的解鏈活性高于25 ℃,這與其來自嗜熱菌的實際相符。綜上所述,DePif1結(jié)合和解旋G4-DNA的能力高于其他底物,而DePif1本身又是易結(jié)晶的嗜熱菌蛋白,因而適用于解旋酶/G4-DNA共結(jié)晶研究。
[參考文獻(xiàn)]
[1]Matson S W,Bean D W,George J W.DNA helicases:Enzymes with essential roles in all aspects of DNA metabolism [J].Bioessays,1994,16(1):13-22.
[2]Ellis N A,Groden J,Ye T Z,et al.The Bloom’s syndrome gene product is homologous to RecQ helicases [J].Cell,1995,83(4):655-666.
[3]Gray M D,Shen J C,Kamath-Loeb A S,et al.The Werner syndrome protein is a DNA helicase [J].Nature Genetics,1997,17(1):100-103.
[4]Caruthers J M,McKay D B.Helicase structure and mechanism [J].Current Opinion in Structural Biology,2002,12(1):123-133.
[5]Bessler J B,Zakian V A.The Pif1p subfamily of helicases:Region-specific DNA helicases [J].Trends in Cell Biology,2001,11(2):60-65.
[6]Bochman M L,Sabouri N,Zakian V A.Unwinding the functions of the Pif1 family helicases [J].DNA Repair,2010,9(3):237-249.
[7]Foury F,Kolodynski J.Pif mutation blocks recombination between mitochondrial rho+ and rho-genomes having tandemly arrayed repeat units inSaccharomycescerevisiae[J].Proceedings of the National Academy of Sciences,1983,80(17):5345-5349.
[8]Zhou J Q,Monson E,Teng S C,et al.Pif1p helicase,a catalytic inhibitor of telomerase in yeast [J].Science,2000,289(5480):771-774.
[9]Boulé J B,Zakian V A.The yeast Pif1p DNA helicase preferentially unwinds RNA-DNA substrates [J].Nucleic Acids Research,2007,35(17):5809-5818.
[10]Ribeyre C,Lopes J,Boulé J B,et al.The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequencesinvivo[J].PLoS Genetics,2009,5(5):e1000475.
[11]Budd M E,Reis C C,Smith S,et al.Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase δ [J].Molecular and Cellular Biology,2006,26(7):2490-2500.
[12]Schulz V P,Zakian V A.TheSaccharomycesPIF1 DNA helicase inhibits telomere elongation and de novo telomere formation [J].Cell,1994,76(1):145-155.
[13]Pinter S F,Aubert S D,Zakian V A.TheSchizosaccharomycespombePfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA [J].Molecular and Cellular Biology,2008,28(21):6594-6608.
[14]Keil R L,McWilliams A D.A gene with specific and global effects on recombination of sequences from tandemly repeated genes inSaccharomycescerevisiae[J].Genetics,1993,135(3):711-718.
[15]Azvolinsky A,Dunaway S,Torres J Z,et al.TheS.cerevisiaeRrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes [J].Genes & Development,2006,20(22):3104-3116.
[16]Schmidt K H,Derry K L,Kolodner R D.SaccharomycescerevisiaeRRM3,a 5′ to 3′ DNA helicase,physically interacts with proliferating cell nuclear antigen [J].Journal of Biological Chemistry,2002,277(47):45331-45337.
[17]Zhou J Q,Qi H,Schulz V P,et al.Schizosaccharomycespom-bepfh1+Encodes an essential 5′ to 3′ DNA helicase that is a member of the PIF1 subfamily of DNA helicases [J].Molecular Biology of the Cell,2002,13(6):2180-2191.
[18]Mateyak M K,Zakian V A.Human PIF helicase is cell cycle regulated and associates with telomerase [J].Cell Cycle,2006,5(23):2796-2804.
[19]Zhang D H,Zhou B,Huang Y,et al.The human Pif1 helicase,a potentialEscherichiacoliRecD homologue,inhibits telomerase activity [J].Nucleic Acids Research,2006,34(5):1393-1404.
[20]George T,Wen Q,Griffiths R,et al.Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks [J].Nucleic Acids Research,2009,37(19):6491-6502.
[21]Sanders C.Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity [J].Biochem J,2010,430:119-128.
[22]Snow B E,Mateyak M,Paderova J,et al.Murine Pif1 interacts with telomerase and is dispensable for telomere functioninvivo[J].Molecular and Cellular Biology,2007,27(3):1017-1026.
[23]Rawal P,Kummarasetti V B R,Ravindran J,et al.Genome-wide prediction of G4 DNA as regulatory motifs:Role inEscherichiacoliglobal regulation [J].Genome Research,2006,16(5):644-655.
[24]Johnson J E,Smith J S,Kozak M L,et al.Invivoveritas:Using yeast to probe the biological functions of G-quadruplexes [J].Biochimie,2008,90(8):1250-1263.
[25]Singleton M R,Scaife S,Raven N D,et al.Crystallization and preliminary X-ray analysis of RecG,a replication-fork reversal helicase fromThermotogamaritimacomplexed with a three-way DNA junction [J].Acta Crystallographica Section D:Biological Crystallography,2001,57(11):1695-1696.
[26]Bailey S,Eliason W K,Steitz T A.The crystal structure of theThermusaquaticusDnaB helicase monomer [J].Nucleic Acids Research,2007,35(14):4728-4736.
[27]Fan L,Fuss J O,Cheng Q J,et al.XPD helicase structures and activities:Insights into the cancer and aging phenotypes from XPD mutations [J].Cell,2008,133(5):789-800.
[28]Dou S X,Wang P Y,Xu H Q,et al.The DNA binding properties of theEscherichiacoliRecQ helicase [J].Journal of Biological Chemistry,2004,279(8):6354-6363.
[29]Xi X G,Deprez E.Monitoring helicase-catalyzed DNA unwinding by fluorescence anisotropy and fluorescence cross-correlation spectroscopy [J].Methods,2010,51(3):289-294.
[30]Zhang X D,Dou S X,Xie P,et al.RecQ helicase-catalyzed DNA unwinding detected by fluorescence resonance energy transfer [J].Acta Biochimica et Biophysica Sinica,2005,37(9):593-600.
Expression,purification and activity analysis of Pif1 helicase from thermophileDeferribacterdesulfuricans
ZHAO Zheng-yang,LIU Na-nü,LI Hai-hong,XI Xu-guang,FAN San-hong
(CollegeofLifeSciences,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
Abstract:【Objective】 This study expressed and purified the Pif1 helicase of thermophile Deferribacter desulfuricans in E.coli and analyzed its DNA binding and unwinding activity to lay foundation for the elucidation of the structure and function of Pif1 family helicases.【Method】 Based on the expression vector pET15b,a recombinant plasmid pET15b-SUMO-DePif1 was constructed by cloning the SUMO coding sequence and the synthetic DePif1 gene into the downstream of its His-tag.The recombinant plasmid was transformed into E.coli strain BL21(DE3) and the fusion DePif1 was induced by IPTG.Firstly,DePif1 with His6-SUMO tag from the supernatant of cell lysates was captured by affinity chromatography with a Ni-NTA column.Then,the fusion tag was cleaved by SUMO protease and tag-free DePif1 helicase was obtained by further purification with Heparin Sepharose Fast Flow and Ni-NTA chromatography.Finally,the effects of pH and NaCl concentrations on DNA binding,the characteristics of DePif1 binding with different substrates (single-stranded DNA,double-stranded DNA,and G4-DNA) and unwinding activities of DePif1 against different substrates (G4-DNA with 5′ 26 nt tail and ds DNA with 5′ 26 nt tail) were analyzed by fluorescence anisotropy and stopped-flow based FRET.【Result】 According to the above protocol,9 mg DePif1 with >95% purity was obtained for every liter of broth.DePif1 can bind with different DNA substrates with the binding activity in decreasing order of G4-DNA>ss-DNA>ds-DNA.Its unwinding activity to G4-DNA was higher than to ds-DNA. 【Conclusion】 DePif1 helicase was expressed and purified successfully.DePif1 can bind and unwind G4-DNA specially.
Key words:Deferribacter desulfuricans;Pif1 helicase;G4-DNA;expression and purification;activity analysis
[文章編號]1671-9387(2016)01-0169-08
[中圖分類號]Q71
[文獻(xiàn)標(biāo)志碼]A
[作者簡介]趙正陽(1989-),男,河南洛陽人,在讀碩士,主要從事生物大分子結(jié)構(gòu)與功能研究。E-mail:yangokay@yeah.net[通信作者]范三紅(1971-),男,陜西合陽人,副教授,博士,碩士生導(dǎo)師,主要從事生物化學(xué)與生物信息學(xué)研究。
[基金項目]國家自然科學(xué)基金項目(31370798,11304252)
[收稿日期]2014-04-25
DOI:網(wǎng)絡(luò)出版時間:2015-12-0214:2510.13207/j.cnki.jnwafu.2016.01.025
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20151202.1425.050.html
E-mail:shfan@nwsuaf.edu.cn