高翔,張悅,張愛金,付芃,李佳琳,吳建,劉巍△
?
Roscovitine在衣霉素誘導足細胞損傷中的保護作用
高翔1,2,張悅3,張愛金1,付芃1,李佳琳1,吳建1,劉巍1△
摘要:目的應用衣霉素誘導內(nèi)質(zhì)網(wǎng)應激(ERS),觀察Roscovtine對ERS導致足細胞損傷的保護作用。方法體外培養(yǎng)永生化小鼠足細胞,取37℃分化成熟細胞隨機分組:(1)正常對照組、DMSO組及衣霉素Tunicamycin(1.0 μmol/L,TM)組,各實驗組分別刺激3、6、12 h。(2)正常對照組、Tunicamycin(1.0 μmol/L,TM)組及Tunicamycin+Rosco?vitine(20、40 μmol/L,TM+ROS)組,各實驗組分別刺激12 h。應用流式細胞術及TUNEL法檢測足細胞凋亡情況;應用Western blot檢測細胞周期素依賴性蛋白激酶5(Cdk5)及ERS標志蛋白GRP78、Caspase-12、CHOP的表達變化。結果(1)與正常對照組和DMSO組相比,Tunicamycin刺激3、6及12 h后,TM組足細胞凋亡率及Cdk5、GRP78、Caspase-12和CHOP蛋白的表達水平均呈明顯的時間依賴性增高(P < 0.05);(2)加入Roscovitine干預后,與TM組相比,TM+ROS(20、40 μmol/L)組足細胞凋亡率及GRP78、Caspase-12和CHOP蛋白的表達水平均顯著降低(P < 0.05),其干預作用呈現(xiàn)明顯的劑量依賴性。結論Cdk5抑制劑Roscovitine能顯著抑制衣霉素誘導的足細胞凋亡,從而發(fā)揮細胞保護作用。Roscovitine的足細胞保護作用可能有助于糖尿病腎病的治療。
關鍵詞:足細胞;凋亡;衣霉素;細胞周期素依賴性蛋白激酶5;內(nèi)質(zhì)網(wǎng)應激;Roscovitine
△通訊作者E-mail:lwei929@126.com
糖尿病腎?。╠iabetic nephropathy,DN)是糖尿病重要的血管并發(fā)癥,是導致糖尿病患者死亡的重要原因之一。研究顯示,足細胞作為腎小球濾過屏障的重要組成部分,其損傷在DN蛋白尿和腎小球硬化的進展中發(fā)揮了重要作用[1]。內(nèi)質(zhì)網(wǎng)應激(en?doplasmic reticulum stress,ERS)是細胞對各種有害刺激最為關鍵的應答機制,而過度ERS可直接導致細胞功能異常甚至死亡。已有研究顯示,過度ERS導致的足細胞凋亡在DN的發(fā)生發(fā)展中發(fā)揮了重要作用[2]。因此,有效地抑制ERS可能會成為治療DN的新方向。然而,目前尚沒有針對DN的特異性ERS抑制劑。本課題組前期研究發(fā)現(xiàn),1型糖尿病大鼠的細胞周期素依賴性蛋白激酶(Cdk)5在足細胞的表達較正常對照大鼠明顯增高,Cdk5參與了ERS介導的細胞凋亡過程,并與大鼠腎功能受損程度密切相關;而Cdk5抑制劑Roscovitine能明顯改善糖尿病大鼠的腎功能,減輕腎組織病變程度[3]。但是,Roscovitine發(fā)揮細胞保護作用的具體機制尚不清楚。本研究通過衣霉素(Tunicamycin,TM)誘導小鼠足細胞凋亡,探討Roscovitine對足細胞過度ERS的影響,以期為DN的治療提供新思路。
1.1材料條件性永生化小鼠足細胞購自中國醫(yī)學科學院基礎醫(yī)學研究所細胞中心。Cdk5抗體購自美國Epitomics公司;β-actin、GRP78購自美國SAB公司;Caspase-12購自美國Abcam公司;CHOP購自Cell Signaling Technology公司。TM、Roscovitine和Ⅰ型膠原蛋白購自美國Sigma公司。DMEM培養(yǎng)基、胎牛血清購自美國Gibco公司。重組小鼠γ-干擾素(γ-interferon,γ-IFN)購自美國PeproTech公司。TUNEL凋亡檢測試劑盒購自美國羅氏公司。Annexin V/PI凋亡檢測試劑盒購自美國BD公司。
1.2方法
1.2.1細胞培養(yǎng)條件性永生化小鼠足細胞培養(yǎng)方法參照文獻[4]。培養(yǎng)時,培養(yǎng)瓶及培養(yǎng)板底部均預先鋪被0.1 g/L的Ⅰ型膠原蛋白。未分化足細胞用含有10%胎牛血清(FBS)、20 U/mL γ-IFN、100 U/mL青霉素和100 mg/L鏈霉素的DMEM培養(yǎng)基在33℃、5% CO2培養(yǎng)箱中培養(yǎng),促進細胞增殖傳代(許可條件)。許可條件下培養(yǎng)的足細胞按1∶10傳代后,在37℃用不添加γ-IFN的DMEM培養(yǎng)基(含10% FBS、100 U/mL青霉素和100 mg/L鏈霉素)培養(yǎng)10~15 d(非許可條件),誘導足細胞分化成熟。
1.2.2實驗分組足細胞在無血清培養(yǎng)基培養(yǎng)24 h后進行后續(xù)實驗。(1)觀察TM對足細胞凋亡及蛋白表達的影響,細胞分組:正常對照(Control)組、DMSO組、TM(1.0 μmol/L)組,分別刺激3、6、12 h。(2)觀察Roscovitine對TM誘導足細胞凋亡及蛋白表達的影響,細胞分組如下:正常對照(Control)組;TM(1.0 μmol/L)組;TM+Roscovitine(20、40 μmol/L,TM+ ROS)組,各實驗組分別刺激12 h。
1.2.3流式細胞術檢測足細胞凋亡按1.2.2(1)、(2)分組并培養(yǎng)細胞,各實驗組細胞刺激結束后,加入胰酶-EDTA消化細胞,室溫1 000 r/min離心4 min,棄上清,加生理鹽水洗滌2次。收集1×105個細胞,并加入500 μL Binding buffer,反復吹打均勻制成單細胞懸液;分別加入5 μL FITC標記的An? nexin V和5 μL碘化丙啶(PI),混勻后避光室溫孵育10 min。流式細胞儀檢測細胞凋亡率,計算各組細胞Annexin-FITC 和PI染色細胞百分含量。
1.2.4Western blot檢驗相關蛋白表達按1.2.2(1)、(2)分組并培養(yǎng)細胞,收集各組細胞,提取總蛋白并行Western blot檢測蛋白表達水平。各組蛋白樣品分別取100 μg總蛋白,加6×上樣緩沖液,100℃變性5 min,經(jīng)10% SDS-PAGE凝膠電泳后,電轉移至PVDF膜。5%脫脂奶粉37℃封閉2 h,加入Cdk5(1∶1 000)、GRP78(1∶1 000)、Caspase-12(1∶500)、CHOP(1∶1 000)和β-actin(1∶2 000)抗體,4℃孵育過夜。TBST洗膜后,加辣根過氧化物酶標記的羊抗兔或鼠免疫球蛋白(Ig)G(1∶5 000),37℃孵育2 h。TBST洗膜后,滴加ECL試劑,于Odyssey FC圖像采集成像系統(tǒng)中顯影,并對條帶進行定量分析。以目的條帶和β-actin條帶積分光密度值比值作為最終結果。
1.2.5TUNEL檢測細胞凋亡率以末端脫氧核苷酸轉移酶介導的dUTP缺口末端標記(TUNEL)法,按試劑盒說明進行細胞凋亡檢測,DAPI復染細胞核。凋亡足細胞核呈綠色熒光。每張切片于凋亡細胞分布區(qū)域隨機讀取10個高倍視野,計算出平均每100個細胞中的凋亡細胞數(shù),以百分數(shù)(%)表示凋亡百分率,每張切片重復3次。
1.3統(tǒng)計學方法采用SPSS 13.0統(tǒng)計軟件進行統(tǒng)計。符合正態(tài)分布的計量資料以均數(shù)±標準差(±s)表示,多組間均數(shù)比較采用方差分析,組間多重比較用LSD-t法。P < 0.05為差異有統(tǒng)計學意義。
2.1TM對足細胞凋亡的影響TM分別處理3、6及12 h后,與對照組和DMSO組相比,TM組足細胞凋亡率均增高(P < 0.05)。同時,TM對足細胞凋亡的影響呈明顯的時間依賴性(P < 0.05),見表1、圖1。
2.2TM對足細胞中Cdk5、GRP78、Caspase-12、CHOP表達的影響與Control組和DMSO組相比,TM刺激3、6及12 h后,足細胞中Cdk5、GRP78、Caspase-12及CHOP蛋白的表達水平均顯著增高(均P < 0.05),并呈明顯的時間依賴性(P < 0.05),見表2、圖2。
Tab.1 The podocyte apoptotic rates treated by TM in three groups表1 TM處理后各組足細胞的凋亡率(n=3,%,±s)
Tab.1 The podocyte apoptotic rates treated by TM in three groups表1 TM處理后各組足細胞的凋亡率(n=3,%,±s)
*P<0.05;a與Control組比較;b與DMSO組比較;A與3 h組比較;B與6 h組比較,P < 0.05
組別Control組DMSO組TM組F 3 h 3.26±0.74 3.11±0.29 13.79±0.95ab265.66*6 h 2.99±0.39 3.16±0.62 22.38±1.61abA481.13*12 h 4.36±0.94 3.97±0.56 34.87±2.56abAB522.96*F 6.35 0.17 328.71*
Fig.1 The podocyte apoptotic rates after TM treatment in four groups圖1 TM刺激后各組足細胞凋亡率
Tab. 2 The integrated optical density of proteins after TM treatment in four groups表2 TM刺激后各組足細胞蛋白表達的積分光密度值(n=3,±s)
Tab. 2 The integrated optical density of proteins after TM treatment in four groups表2 TM刺激后各組足細胞蛋白表達的積分光密度值(n=3,±s)
*P<0.05;a與Control組比較,b與DMSO組比較,c與TM 3 h組比較,d與TM 6 h組比較,P<0.05
組別Control組DMSO組TM 3 h組TM 6 h組TM 12 h組F Cdk5 0.17±0.05 0.24±0.06 0.51±0.09ab0.67±0.03abc0.83±0.06abcd56.45*GRP78 0.42±0.13 0.40±0.08 0.86±0.05ab1.09±0.13abc1.33±0.17abcd34.41*Caspase-12 0.16±0.03 0.24±0.02 0.41±0.09ab0.53±0.05abc0.66±0.08abcd33.55*CHOP 0.06±0.03 0.06±0.02 0.34±0.08ab0.59±0.07abc0.78±0.06abcd96.14*
Fig.2 Expressions of Cdk5, GRP78, Caspase-12 and CHOP after TM treatment in four groups圖2 TM刺激后各組Cdk5、GRP78、Caspase-12和CHOP蛋白的表達情況
2.3Roscovitine對TM誘導足細胞凋亡的影響TM組足細胞凋亡率高于Control組、TM+ROS(20 μmol/L)組和TM+ROS(40 μmol/L)組,并且TM+ROS(40 μmol/L)組細胞凋亡率低于TM+ROS(20 μmol/L)組,Control組凋亡率最低(均P < 0.05)。TUNEL檢測結果顯示,應用Roscovitine干預后,TM+ROS組足細胞凋亡率均顯著低于TM組(均P < 0.05),見表3、圖3。
Tab. 3 Podocyte apoptotic rates detected by flow cytometry and TUNEL after roscovitine treatment表3 流式細胞術和Tunel檢測Roscovitine處理后足細胞凋亡率 (n=3,%,±s)
Tab. 3 Podocyte apoptotic rates detected by flow cytometry and TUNEL after roscovitine treatment表3 流式細胞術和Tunel檢測Roscovitine處理后足細胞凋亡率?。╪=3,%,±s)
*P<0.05;a與Control組比較;b與TM組比較;c與TM+ROS(20 μmol/L)組比較,P < 0.05;表4同
組別Control組TM組TM+ROS(20 μmol/L)組TM+ROS(40 μmol/L)組F流式細胞術4.82±0.60 37.96±3.54a21.63±1.31ab14.04±1.77abc177.20*TUNEL 3.19±0.52 38.46±3.31a20.97±1.31ab14.18±1.02abc238.42*
Fig. 3 The podocyte apoptosis detected by TUNEL (×400)圖3 TUNEL法檢測足細胞凋亡(×400)
2.4Roscovitine對TM誘導足細胞中GRP78、Cas?pase-12和CHOP表達的影響與TM組相比,TM+ROS(20 μmol/L)組和TM+ROS(40 μmol/L)組足細胞中GRP78、Caspase-12和CHOP的蛋白表達水平降低(P < 0.05),并且TM+ROS(40 μmol/L)組較TM+ROS(20 μmol/L)組的作用效果更顯著,但這2組蛋白表達水平仍高于Control組(P < 0.05),見表4、圖4。
Tab. 4 The integrated optical density of proteins after roscovitine treatment表4 Roscovitine處理后各組足細胞蛋白表達的積分光密度值?。╪=3,±s)
Tab. 4 The integrated optical density of proteins after roscovitine treatment表4 Roscovitine處理后各組足細胞蛋白表達的積分光密度值 (n=3,±s)
組別Control組TM組TM+ROS(20 μmol/L)組TM+ROS(40 μmol/L)組F GRP78 0.46±0.05 2.23±0.38a1.48±0.08ab0.94±0.12abc40.51*Caspase-12 0.33±0.04 1.88±0.07a0.81±0.08ab0.48±0.05abc349.56*CHOP 0.28±0.06 2.33±0.38a1.16±0.16ab0.71±0.03abc53.54*
Fig. 4 Expressions of GRP78, Caspase-12 and CHOP after roscovitine treatment in four groups圖4 Roscovitine處理后各組GRP78、Caspase-12和CHOP蛋白的表達情況
足細胞是一種終末分化的腎小球上皮細胞,附著于腎小球基底膜外側,是參與構成腎小球濾過屏障的關鍵結構。足細胞數(shù)目及密度的下降是導致DN蛋白尿產(chǎn)生和腎小球硬化的重要原因。凋亡是造成足細胞數(shù)目減少的重要原因之一[5]。
一般情況下,內(nèi)質(zhì)網(wǎng)的正常生理功能主要是折疊、修飾和降解分泌蛋白和跨膜蛋白;生理和病理狀態(tài)下,大量未折疊蛋白在內(nèi)質(zhì)網(wǎng)中蓄積會導致ERS的發(fā)生。糖尿病狀態(tài)下,高糖、ROS、游離脂肪酸、糖基化終產(chǎn)物等因素會導致內(nèi)質(zhì)網(wǎng)中大量未折疊蛋白的產(chǎn)生,從而誘發(fā)ERS。ERS導致腎臟固有細胞,如系膜細胞、足細胞凋亡,是促進DN發(fā)生發(fā)展的重要因素[6-7]。因此,抑制ERS可能成為治療DN的一個重要方法。為了研究DN進展中ERS對足細胞的影響,本研究采用TM刺激足細胞,誘導ERS的發(fā)生,結果顯示,TM處理后足細胞內(nèi)ERS標志蛋白GRP78的表達水平高于Control組,并且隨處理時間的延長,ERS相關凋亡蛋白Caspase-12和CHOP的表達水平及足細胞的凋亡率也有增高,提示TM的刺激可以誘導足細胞ERS及凋亡的發(fā)生。
ERS發(fā)生后主要通過ATF6、IRE1和PERK三種跨膜蛋白傳遞信號,調(diào)節(jié)內(nèi)質(zhì)網(wǎng)功能,從而減輕細胞損傷或誘導細胞凋亡[6]。然而,目前尚不清楚是否有其他蛋白介導了ERS引起的細胞凋亡過程。Cdk5是Cdk家族的特殊成員,是脯氨酸限制性絲/蘇氨酸蛋白激酶,普遍存在于哺乳動物的細胞內(nèi)。在氧化應激、高血糖、缺氧等因素下,Cdk5可被過度激活并過度磷酸化某些底物,從而導致細胞凋亡,參與多種疾病的發(fā)生[8]。腎組織中,Cdk5表達于足細胞中,對維持足細胞的正常結構及功能有重要作用[9]。在高糖環(huán)境中,足細胞中Cdk5的表達水平及激酶活性有顯著的增高,而抑制Cdk5的表達可以顯著降低高糖誘導的足細胞凋亡,Cdk5的過度表達及過度激活是導致糖尿病足細胞凋亡的原因[10]。Kang等[11]發(fā)現(xiàn),Cdk5參與了常染色體顯性色素性視網(wǎng)膜炎中ERS導致的細胞凋亡過程,但其是否參與ERS誘導的足細胞凋亡過程尚不清楚。本研究顯示,TM處理后,足細胞中Cdk5的蛋白表達水平顯著高于Control組,并呈明顯的時間依賴性,提示ERS可能通過提高Cdk5的表達水平而誘導足細胞凋亡。
Roscovitine是一種強效的二代細胞周期蛋白依賴性激酶抑制劑,對Cdk5的激酶活性具有高效的抑制作用[12]。高濃度Roscovitine處理Heymann腎炎大鼠模型結果顯示,其對腎小球中足細胞有很好的保護作用[13]。筆者前期研究顯示,應用Roscovi?tine處理糖尿病大鼠,能夠有效地減輕糖尿病大鼠腎功能的損傷及病理改變,具有明顯的腎臟保護作用[3]。本研究顯示TM誘導的足細胞凋亡可以被Roscovitine抑制,足細胞凋亡率在Roscovitine干預組顯著低于單純TM處理組,并且40 μmol/L的干預效果顯著優(yōu)于20 μmol/L組。同時,Western blot結果顯示,Roscovintine的干預可以顯著降低足細胞中ERS相關凋亡蛋白CHOP和Caspase-12的表達水平,表明Cdk5明顯參與了ERS誘導的足細胞凋亡過程,采用Roscovitine抑制Cdk5活性對降低ERS導致的足細胞凋亡具有良好的效果,具有一定的腎臟保護作用。
綜上所述,在DN發(fā)展過程中,ERS可通過增強Cdk5的表達而誘導足細胞凋亡,抑制Cdk5可能會成為治療DN的新靶點。雖然大量體內(nèi)外研究證實Roscovitine可通過抑制Cdk5發(fā)揮神經(jīng)、腎臟等保護功能,并且可以從不同方面干預DN的進展,然而還缺乏長期、大量的臨床研究證實。本研究結果為DN的防治提供了新的思路和方向。
[1] Reidy K, Kang HM, Hostetter T, et al. Molecular mechanisms of dia?betic kidney disease [J]. J Clin Invest, 2014, 124(6):2333-2340. doi: 10.1172/JCI72271.
[2] Zhuang A, Forbes JM. Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy [J]? J Endocrinol, 2014, 222(3):R97-111. doi: 10.153 0/JOE-13-0517.
[3] Zhang Y, Zhou Y, Zhang Y, et al. Effects of Cdk5 inhibitor Roscovi?tine on renal function and nestin expression in diabetic rat [J]. Chi?nese Pharmacological Bulletin, 2013, 29(8):1077-1078. [張悅,周毅,張怡,等. Cdk5抑制劑Roscovitine對糖尿病大鼠腎功能及nestin表達的影響[J].中國藥理學通報, 2013, 29(8):1077-1078].
[4] Mundel P, Reiser J, Zú?iga Mejía Borja A, et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines [J]. Exp Cell Res, 1997, 236:248-258.
[5] Anil Kumar P, Welsh GI, Saleem MA, et al. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus [J]. Front Endocrinol (Lausanne), 2014, 5:151. doi: 10.3389/fendo.2014.00151.
[6] Madhusudhan T, Wang H, Dong W, et al. Defective podocyte insu?lin signalling through p85-XBP1 promotes ATF6-dependent mal?adaptive ER-stress response in diabetic nephropathy [J]. Nat Com?mun, 2015, 6:6496. doi: 10.1038/ncomms7496.
[7] Ding Y, Choi ME. Autophagy in diabetic nephropathy [J]. J Endocri? nol, 2015, 224(1):R15-30. doi: 10.1530/JOE-14-0437.
[8] Arif A. Extraneuronal activities and regulatory mechanisms of the atypical cyclin- dependent kinase Cdk5 [J]. Biochem Pharmacol, 2012, 84(8):985-993. doi: 10.1016/j.bcp.2012.06.027.
[9] Griffin SV, Hiromura K, Pippin J, et al. Cyclin-dependent kinase 5 is a regulator of podocyte differentiation, proliferation, and morphol?ogy [J]. Am J Pathol, 2004, 165(4):1175-1185.
[10] Zhang Y, Li H, Hao J, et al. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway [J]. Exp Cell Res, 2014, 326(2):219- 229. doi: 10.1016/j.yex?cr.2014.04.014.
[11] Kang MJ, Chung J, Ryoo HD. CDK5 and MEKK1 mediate proapoptotic signalling following endoplasmic reticulum stress in an au?tosomal dominant retinitis pigmentosa model [J]. Nat Cell Biol, 2012, 14(4): 409-415. doi: 10.1038/ncb2447.
[12] Le Tourneau C, Faivre S, Laurence V, et al. Phase I evalua?tion of seliciclib (R- roscovitine), a novel oral cyclin- dependent ki?nase inhibitor, in patients with advanced malignancies [J]. Eur J Cancer, 2010, 46(18):3243-3250. doi: 10.1016/j.ejca.2010.08.001.
[13] Milovanceva-Popovska M, Kunter U, Ostendorf T, et al. R-rosocvi?tine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury [J]. Kidney Int, 2005, 67(4):1362-1370. doi:10.1111/j.1523-1755.2005.00213.x.
(2015-06-08收稿2015-08-24修回)
(本文編輯陸榮展)
作者單位:1河北醫(yī)科大學病理學教研室(郵編050017);2河北醫(yī)科大學第二醫(yī)院血管外科;3河北醫(yī)科大學診斷學教研室
The role of roscovitine in tunicamycin induced podocyte injury
GAO Xiang1, 2, ZHANG Yue3, ZHANG Ai′jin1, FU Peng1, LI Jialin1, WU Jian1, LIU Wei1△
1 Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; 2 Department of Vascular Surgery, the Second Hospital of Hebei Medical University, 3 Department of Diagnostics, Hebei Medical University
△Corresponding Author E-mail: lwei929@126.com
Abstract:Objective To observe the protective effects of roscovitine on the podocyte injury induced by endoplasmic reticulum stress (ERS) caused by tunicamycin. Methods The differentiated podocytes cultured at 37℃were randomly di?vided into: (1) Control group, DMSO group and tunicamycin group (TM, 1.0 μmol/L). The treatment was given for 3, 6 and 12 hours in three groups. (2) For control group, tunicamycin group, tunicamycin+roscovitine group (20, 40 μmol/L, TM+ROS), the treatment was given for 12 hours. The podocyte apoptosis was detected by flow cytometry and TUNEL method. The ex?pressions of Cdk5, GRP78, Caspase-12 and CHOP were detected by Western blot assay. Results (1) Compared with con?trol group and DMSO group, the podocyte apoptosis was increased significantly in a time dependent manner after tunicamy?cin treatment in TM group; the protein expressions of Cdk5, GRP78, Caspase-12 and CHOP were also up-regulated signifi?cantly in TM group (P < 0.05). (2) Flow cytometry and TUNEL analysis showed that tunicamycin induced apoptosis in podo?cytes, which was significantly inhibited by roscovitine in a concentration dependent manner in TM+ROS group as compared to that of TM group (P < 0.05). The protein expressions of GRP78, Caspase-12 and CHOP were also significantly decreased in a concentration dependent manner in TM+ROS group compared to those of TM group (P < 0.05). Conclusion Roscovi?tine, the inhibitor of Cdk5, can reduce the podocyte apoptosis induced by tunicamycin. The protective effects of roscovitine on podocytes can be a novel approach of treating diabetic nephropathy.
Key words:podocyte; apoptosis; Tunicamycin; Cdk5; endoplasmic reticulum stress; Roscovitine
中圖分類號:R692.6
文獻標志碼:A
DOI:10.11958/59025
基金項目:國家自然科學基金資助項目(81400731);河北省自然科學基金資助項目(H2013206139,H2015206257);河北省衛(wèi)生和計劃生育委員會重點科技研究計劃項目(20130140);河北醫(yī)科大學大學生創(chuàng)新性實驗計劃資助項目(201410089018)
作者簡介:高翔(1982),男,主治醫(yī)師,碩士,主要從事糖尿病血管病變研究