李菁
摘 要:本文新定義了兩種圖的運(yùn)算:多個(gè)圖的連和聯(lián)。并分別給出了多個(gè)圖的連以及多個(gè)圖的聯(lián)的Wiener指數(shù)、超Wiener指數(shù)以及逆Wiener指數(shù)的計(jì)算公式。
關(guān)鍵詞:Wiener指數(shù);逆Wiener指數(shù);超Wiener指數(shù);圖的連;圖的聯(lián)
中圖分類號:O335 文獻(xiàn)標(biāo)識碼:A
2 結(jié)論
本文介紹了多個(gè)圖的連的定義,并得出多個(gè)圖的連的三種拓?fù)渲笖?shù)(Wiener指數(shù)、超Wiener指數(shù)以及逆Wiener指數(shù))的計(jì)算公式。新定義了多個(gè)圖的聯(lián),并分別計(jì)算出多個(gè)圖的聯(lián)的Wiener指數(shù)、超Wiener指數(shù)以及逆Wiener指數(shù)。
參考文獻(xiàn):
[1] H.Wiener, Structrual determination of paraffin boiling points, J.Am.Chem. Soc.,69(1947)17-20.
[2] M.Randic,Novel molecular descriptor for structure-property studies, Chem. Phys. Lett.,211(1993)478-483.
[3] Muhuo Liu, Xuezhong Tan, The first to (k+1)-th smallest Wiener (hyperWiener) indices of connected graphs, Kragujevac Journal of Mathematics, 32(2009) 109-115.
[4] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta. Appl. Math., 66(2001) 211-249.
[5] M.V.Diudea, I.Gutman, Wiener-Type Topological indices, Croat. Chem. Acta, 71(1)(1998) 21-51.
[6] B.Zhou,I.Gutman,Relations betweenWiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett., 394(2004) 93C95.
[7] M.H.Khalifeh, H.Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl., 56 (2008) 1402-1407.
[8] Du Z, Zhou B, On the reverse Wiener indices of unicyclic graphs, Acta applicandae mathematicae, 106(2009) 293-306.