吳英柱
(廣東石油化工學(xué)院數(shù)學(xué)系,茂名 525000)
?
高階變系數(shù)函數(shù)方程解的振動準(zhǔn)則
吳英柱*
(廣東石油化工學(xué)院數(shù)學(xué)系,茂名 525000)
摘要:利用反復(fù)迭代的思想方法,討論了一類高階變系數(shù)函數(shù)方程
解的振動性,給出了這類函數(shù)方程一切解振動的幾個(gè)充分條件:如果存在整數(shù)n≥0,使得
則上述方程的一切解振動;如果存在一個(gè)整數(shù)n≥0,使得
則上述方程的一切解也振動. 并且給出了該方程在差分方程中的若干應(yīng)用.
關(guān)鍵詞:高階; 函數(shù)方程; 非線性; 振動
高階函數(shù)方程的振動性研究受到研究者的關(guān)注[1-16].周勇等[7-8]、戴麗娜等[15]研究了方程
和
x(g(t))=p(t)x(t)+
得到了一系列結(jié)果.
在此基礎(chǔ)上,本文沿用文獻(xiàn)[7]和文獻(xiàn)[15]的方法,研究了高階非線性變系數(shù)函數(shù)方程
x(g(t))=p(t)x(t)+
(1)
的振動性,其中函數(shù)p,Qi(i=1,2,…,m):I→+=(0,∞),I?(0,∞),I是+上的一個(gè)無界子集;g:I→I且g(t)不恒等于∞.定義gi為g的i次迭代,即g0(t)=t,gi+1(t)=g(gi(t)),t≥t0,i=0,1,2,…,tI.kj≥1為正整數(shù),aj為非負(fù)實(shí)數(shù),j=1,2,…,s且.
1振動準(zhǔn)則
如果函數(shù)x:I→使得sup{|x(s)|:sIt0=[t0,∞)∩I}>0對任何t0(0,∞)成立,且對tI滿足方程(1),則稱其為方程(1)的一個(gè)解.這樣的解稱作是振動的,如果存在一列點(diǎn)I,使得且x(tn)·x(tn+1)≤0,對n=1, 2, …成立,否則稱為非振動的.
定理1如果存在整數(shù)n≥0,使得
(2)
則方程(1)一切解振動.
x(g(t))≥p(t)x(t),
(3)
(4)
把式(4)代入方程(1)得
x(g(t))≥p(t)x(t)+
(6)
由式(6)可得
x(g(t))≥p1(t)x(t),
(7)
(8)
同樣對x(g(t))≥p1(t)x(t)進(jìn)行迭代,可得
代入方程(1),可得
x(g(t))≥p(t)x(t)+
反復(fù)迭代,可得
x(g(t))≥p(t)x(t)+
推論1假設(shè)
(9)
其中β是方程
(10)
的最大正實(shí)根,則方程(1)的一切解振動.
證明設(shè)x(t)>0是方程(1)的非振動解,由定理1,有p1(t)≥p(t)/(1-A),則
因此,
(11)
當(dāng)K=1時(shí),方程(10)為β2-β+A=0,可得:
推論2當(dāng)A<1/4,且
時(shí),方程(1)的一切解振動.
所得結(jié)論實(shí)質(zhì)改進(jìn)了文獻(xiàn)[11]187的定理3.1.
(12)
則方程(1)的一切解振動.
(13)
同理,由方程(1)可得:
x(g2(t))=p(g(t))x(g(t))+
(14)
類似前面的證明,對x(g2(t))≥p(g(t))x(g(t))進(jìn)行kj+i次迭代,有
(15)
把式(13)和式(15)代入式(14)可得
x(g2(t))≥
這與條件(12)相矛盾,故不存在非振動解,則方程(1)的一切解振動.
注1不難看出定理2實(shí)質(zhì)上改進(jìn)了文獻(xiàn)[8]416中定理2的結(jié)果;由定理2可知,若
2應(yīng)用
由于方程(1)以離散變量的差分方程和具連續(xù)變量的差分方程作為其特殊情形.對于g(t)=t-,+,I=+的情形,方程(1)化為具連續(xù)變量的差分方程:
x(t-)=p(t)x(t)+).
(16)
由定理1和定理2,可得
定理3假設(shè)p(t)>0,Qi(t)≥0,且下列條件之一成立
其中n≥0為整數(shù).
同理,考慮無窮時(shí)滯的差分方程
(17)
易得:
定理4假設(shè)p(t)>0,Qi(t)≥0,且下列條件之一成立
參考文獻(xiàn):
[1]GOLDA W, WERBOWSKI J. Oscillation of linear functional equations of the second order[J]. Funkcialaj Ekvacioj, 1994,37(2):211-227.
[2]司建國, 張偉年. 一個(gè)函數(shù)方程的C2解[J]. 數(shù)學(xué)學(xué)報(bào),1998, 41(5):1061-1064.
SI J G, ZHANG W N. OnC2solutions of a functional equations[J]. Acta Mathematica Sinica, 1998, 41(5):1061-1064.
[3]NOWAKOWSKA W, WERBOWSKI J. Oscillation of linear functional equations of higher order[J]. Arch Matharchiv Der Mathematik, 1995, 31:251-258.
[4]DOMSHLAK Y.Oscillation properties of linear difference equations with continuous time[J]. Differential Equations and Dynamical Systems,1993,4: 331-324.
[5]JAROS J,STAVROULAKIS I P. Oscillation tests for delay equations[J]. Rocky Mountain Journal of Mathematica, 1999,29:197-207.
[6]NOWAKOWSKA W,WERBOWSKI J.Oscillatory behavior of solutions of functional equations[J]. Nonlinear Anaysis,2001(44):756-775.
[7]周勇,俞元洪. 變系數(shù)函數(shù)方程解的振動性[J].系統(tǒng)科學(xué)與數(shù)學(xué),1999,19(3):348-352.
ZHOU Y,YU Y H. Oscillation of solutions of functional equations with variable coefficients[J]. Journal of Systems Science and Mathematical Sciences,1999,19(3):348-352.
[8]周勇,劉正榮,俞元洪. 變系數(shù)函數(shù)方程解的振動準(zhǔn)則[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2000,23: 413-419.
ZHOU Y,LIU Z R,YU Y H. Oscillation criteria of functional equations with variable coefficients[J]. Acta Mathematicae Applicatae Sinica,2000,23: 413-419.
[9]ZHANG B G, CHOI S K.Oscillation and non-oscillation of class of functional equations[J]. Mathematische Nachrichten,2001(227):159-169.
[10]SHEN J H, STAVROULAKIS I P. An oscillation criteria for second order functional equations[J]. Acta Mathematica Sinica, 2002, 22B(1):56-62.
[11]張孝理,羅治國. 高階線性泛函方程的振動性[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào), 2003, 26(1):186-188.
[12]羅治國, 申建華. 線性泛函方程解的振動性的新結(jié)果[J]. 系統(tǒng)科學(xué)與數(shù)學(xué), 2003, 23(4):508-516.
LUO Z G,SHEN J H. New results for oscillation of higher order linear functional equations[J]. Journal of Systems Science and Mathematical Sciences, 2003, 23(4):508-516.
[13]林全文,全煥,廖思泉,等. 高階變系數(shù)函數(shù)方程的振動性[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識, 2009,39(12): 244-249.
LIN Q W,QUAN H,LIAO S Q,et al.Oscillation of higher-order functional equations with variable coefficients[J]. Mathematics in Practice and Theory, 2009,39(12): 244-249.
[14]LIN Q W, CHEN R L, DAI L N. Oscillatory behavior of solutions to higher order linear functional equations[J]. Journal of Biomathematics,2011,26(1): 9-16.
[15]戴麗娜,吳英柱,林全文. 高階變系數(shù)泛函方程解的振動性[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識, 2014,44(10): 271-275.
DAI L N,WU Y Z,LIN Q W.Oscillatory behavior of solutions to higher order variable coefficient functional equations[J]. Mathematics in Practice and Theory, 2014,44(10): 271-275.
[16]申淑媛,翁佩萱. 具有脈沖的非線性時(shí)滯差分方程的振動性和漸進(jìn)性[J]. 華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2005(2): 93-98.
SHEN S Y,WENG P X.Oscillation and asymptotic behavior of nonlinear delay differential equations with impulses[J].Journal of South China Normal University(Natural Science Edition),2005(2): 93-98.
【中文責(zé)編:莊曉瓊英文責(zé)編:肖菁】
Oscillation Criteria of Solutions to Higher Order Variable Coefficient Functional Equations
WU Yingzhu*
(Department of Mathematics, Guangdong University of Petrochemical Technology,Maoming 525000, China)
Abstract:By utilizing iterative method, oscillation of solutions to high-order variable coefficient functional differential equations of the formajsgn x(gkj+i(t)) is discussed. When n≥0, n is an integer, andaj>1(tI), all the solutions of the above equations are oscillation. When n≥0, n is an integer, and
all the solutions of the above equations are oscillation. Some sufficient conditions for these equations are established. Some applications in difference equations are given.
Key words:higher-order; functional equations; nonlinear; oscillation
中圖分類號:O175.1
文獻(xiàn)標(biāo)志碼:A
文章編號:1000-5463(2016)02-0107-04
*通訊作者:吳英柱,講師,Email:wuyingzhu1978@163.com.
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(1127380);茂名市科技計(jì)劃項(xiàng)目(2014050);廣東石油化工學(xué)院自然科學(xué)研究基金項(xiàng)目(513021)
收稿日期:2015-07-01《華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n