馬 婧, 張啟敏
(寧夏大學(xué)數(shù)學(xué)計(jì)算機(jī)學(xué)院, 銀川 750021)
?
隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)的全局散逸性
馬婧, 張啟敏*
(寧夏大學(xué)數(shù)學(xué)計(jì)算機(jī)學(xué)院, 銀川 750021)
摘要:把不確定性因素考慮到雙向聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)(BAM)中, 得到一類帶Brown運(yùn)動(dòng)的隨機(jī)時(shí)滯雙向聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)(BAM)模型. 在激活函數(shù)有界的條件下, 研究了隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)的全局散逸性. 通過Lyapunov泛函、Jensen不等式和It 公式等, 討論了隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)系統(tǒng)均方散逸的充分條件, 給出了該系統(tǒng)散逸的吸引集. 通過數(shù)值例子對(duì)所給出的結(jié)論進(jìn)行了驗(yàn)證.
關(guān)鍵詞:隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò); 均方散逸; 吸引集; Lyapunov泛函
考慮如下隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)模型:
(1)
目前主要研究了模型(1)的穩(wěn)定性問題:具有時(shí)滯的隨機(jī)BAM神經(jīng)網(wǎng)絡(luò)的指數(shù)穩(wěn)定性[1];具有時(shí)滯和脈沖的BAM 神經(jīng)網(wǎng)絡(luò)周期解的全局穩(wěn)定性[2];具有時(shí)變脈沖的BAM神經(jīng)網(wǎng)絡(luò)的全局漸進(jìn)穩(wěn)定性[3].但是在現(xiàn)實(shí)情況中, 有的BAM神經(jīng)網(wǎng)絡(luò)的軌跡并不會(huì)接近于一個(gè)平衡點(diǎn), 而是在某個(gè)時(shí)刻進(jìn)入一個(gè)有限的區(qū)域并一直保持在里面, 即散逸性. 因此, 有必要研究BAM神經(jīng)網(wǎng)絡(luò)模型的散逸性.
對(duì)于確定的模型(1)(即σij(t,x,y)=0), TU等[4]研究了一類變時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)的全局散逸性;WANG和ZHANG[5]討論了具有時(shí)變時(shí)滯和連續(xù)分布時(shí)滯的BAM 神經(jīng)網(wǎng)絡(luò)的全局散逸性. 然而,在神經(jīng)網(wǎng)絡(luò)的運(yùn)行過程中卻存在著許多不確定因素, 就神經(jīng)網(wǎng)絡(luò)系統(tǒng)本身而言, 神經(jīng)元的反應(yīng)也是隨機(jī)的, 神經(jīng)元在重復(fù)接收相同刺激時(shí), 反應(yīng)也是不同的, 小的噪聲干擾往往就能破壞整個(gè)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性, 這種小的干擾可以被布朗運(yùn)動(dòng)的導(dǎo)數(shù)所描述. 意味著研究具有噪聲干擾的BAM神經(jīng)網(wǎng)絡(luò)意義大, 更符合實(shí)際情況.本文在激活函數(shù)有界的條件下, 通過構(gòu)造Lyapunov 泛函, 給出了隨機(jī)BAM 神經(jīng)網(wǎng)絡(luò)散逸的充分條件.
1預(yù)備知識(shí)
令Rn和Rn×m分別表示n維Euclidean空間和n×m階矩陣的集合.X>0表示實(shí)對(duì)稱正定矩陣. In表示n×n的單位矩陣. 對(duì)一個(gè)矩陣A,min(A)(max(A))表示矩陣A的最小(最大)特征值. 令>0,C([-,0];Rn)表示連續(xù)函數(shù)φ的全體, 且其范數(shù)定義為:‖φ‖=sup|φ(s)|, 其中|.|是Rn的Euclidean范數(shù). 令(Ω,,{t}t≥0,P)是完備的概率空間, 其域流{t}t≥0滿足通常的條件(左極限是右連續(xù)的, 并且F0包含所有的零測度集).C1,2(+×Rn;+)表示所有非負(fù)連續(xù)函數(shù)V(t,x)在+×Rn上的集合.V(t,x)對(duì)t可導(dǎo), 對(duì)x二階可導(dǎo).
為了方便討論, 將模型(1)表示成矩陣形式:
(2)其中:x(t)=(x1(t),x2(t),…,xn(t))T, y(t)=(y1(t),y2(t),…,yn(t))T,D=diag(d1,d2,…,dn);C=diag(c1,c2,…,cn);A=(aij)n×n,B=(bij)n×n, R=(rij)n×n, S=(sij)n×n,u=(u1,u2,…,un)T, v=(v1,v2,…,vn)T,ω(t)=(ω1(t),ω2(t),…,ωn(t))T, σ(t,x(t),x(t-))=(σij(t,x(t),x(t-)))n×n,σ(t,y(t),y(t-β))=(σij(t,y(t),y(t-β)))n×n,f(y)=(f1(y),f2(y),…,fm(y)),n(x)).
為了得到證明結(jié)果, 需要以下的假設(shè)、定義和引理.
f(y)=(f1(y),f2(y),…,fm(y))
和
假設(shè)2[2]263存在矩陣 H1≥0,H2≥0, 滿足
trace[σT(t,x(t),x(t-))σ(t,x(t),x(t-))]≤
xT(t)H1x(t)+xT(t-)H2x(t-).
引理1[5]252線性矩陣不等式
(i) S22<0, S11-S12(S22)-1(S12)T<0;
(ii) S11<0, S22-(S12)T(S11)-1S12<0.
通常的隨機(jī)系統(tǒng)dx(t)=g(t,x(t))dt+σ(t,x(t))dω(t),其中ω(t)是定義在完備概率空間(Ω,,P)上的n維布朗運(yùn)動(dòng), g(.),σ(.):+×Rn→Rn.定義如下算子L:
L V(t,x)=Vt(t,x)+Vxg(t,x)+
2主要結(jié)論
(P0≤ρ1I),
(Q0≤ρ2I),
(4)
證明考慮如下Lyapunov函數(shù)
(6)
(7)
dV1=L V(t,x(t))dt+
2xT(t)P0σT(t,y(t),y(t-))dω(t),
(8)
dV2=L V(t,y(t))dt+
2yT(t)Q0σT(t,x(t),x(t-β))dω(t).
(9)
則L V1=2xT(t)P0[-Dx(t)+Af(y(t))+
Bf(y(t-))+u]+yT(t)P1y(t)-
yT(t-)P1y(t-)+fT(y(t))P2f(y(t))-
fT(y(t-))P2f(y(t-))+
trace(σT(t,y(t)y(t-))P0σ(t,y(t),y(t-))),
trace(σT(t, x(t)x(t-β))Q0σ(t, x(t), x(t-β))).
由假設(shè)1得到:
fT(y(t))f(y(t))≤yT(t)LTLy(t),
根據(jù)定理中的已知條件和引理1得到:
L V1≤-xT(t)(1-θ)(DP0+P0D)x(t)+
2xT(t)P0u-θxT(t)(DP0+P0D)x(t)+
2xT(t)P0[Af(y(t))+Bf(y(t-))]+
yT(t)P1y(t)-yT(t-)P1y(t-)+
fT(y(t))P2f(y(t))-fT(y(t-))P2f(y(t-))+
ρ1yT(t)H1y(t)+ρ1yT(t-)H2y(t-)+
γ1[yT(t)LTLy(t)-fT(y(t))f(y(t))]≤
-xT(t)(1-θ1)(DP0+P0D)x(t)+εxT(t)x(t)+
(10)
以式(10)相同的方法得到:
L V2≤-yT(t)(1-θ2)(CQ0+Q0C)y(t)+
(11)
所以
L V=L V1+L V2≤-xT(t)Φ1(x(t))+
ε-1|P0u|2-yT(t)Φ2(y(t))+μ-1|Q0v|2,
(12)
其中
ξ(t)=(x(t)f(y(t))f(y(t-))y(t)y(t-))T,
Φ1=(1-θ1(DP0+P0D)-εI),
Φ2=(1-θ2(CQ0+Q0C)-μI).
由期望的性質(zhì)和Jensen不等式得到:
dEV(t)=EL V(t)dt≤[-(min(Φ1)E|x|2+
ε-1|P0u|2+μ-1|Q0v|2]dt<0,
(13)
EV(t,x(t),y(t))=EV(t0,x(t0),y(t0))+
(14)
另一方面
EV(t,x(t),y(t))≥min(P0)|Ex(t)|2+
(15)
(17)
相應(yīng)的吸引集為:
證明考慮如下Lyapunov函數(shù)
(20)
(21)
類似定理1的證明即可證明推論2.
3例子
通過以下的例子對(duì)給出的結(jié)論進(jìn)行驗(yàn)證.考慮二階隨機(jī)BAM神經(jīng)網(wǎng)絡(luò)模型(2), 其中
取如下激活函數(shù):
f1(y1)=tanh(-0.02t),
f2(y2)=tanh(-0.02t),
f1(y1(t-))=tanh(-0.14t),
f2(y2(t-))=tanh(-0.08t),
H1=0.04I, H2=0.04I.然后, 令ε=0.3,μ=0.6,通過MATLAB中的線性矩陣不等式工具箱, 計(jì)算線性矩陣不等式(3)、(4), 得到:
4小結(jié)
引入了一類隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)系統(tǒng),討論了隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)系統(tǒng)的均方散逸問題.該隨機(jī)模型較確定性模型更符合實(shí)際,能更好地反應(yīng)神經(jīng)網(wǎng)絡(luò)的特性,在引入布朗運(yùn)動(dòng)的基礎(chǔ)上,運(yùn)用Lyapunov泛函、隨機(jī)微分方程基本理論,建立了隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)系統(tǒng)散逸的充分條件,所得到的結(jié)論為隨機(jī)微分方程的應(yīng)用提供了理論依據(jù).
圖1 t=500時(shí)的隨機(jī)BAM神經(jīng)網(wǎng)絡(luò)散逸性的數(shù)值模擬
圖2 t=300時(shí)的隨機(jī)BAM神經(jīng)網(wǎng)絡(luò)散逸性的數(shù)值模擬
參考文獻(xiàn):
[1]SUN G, ZHANG Y. Exponential stability of impulsive stochastic BAM neural networks with time-varying delay[J]. Neurocomputing, 2014, 131: 323-330.
[2]WANG F, SUN D. Global exponential stability and periodic solutions of BAM neural networks with time delays and impulses[J]. Neurocomputing, 2015, 155: 261-276.
[3]SAYLI M, YILMAZ E. Global robust asymptotic stability of variable-time impulsive BAM neural networks[J]. Neural Networks, 2014, 60: 67-73.
[4]TU Z W, WANG L W,ZHA Z W. Global dissipativity of a class of BAM neural networks with time-varying delays and unbounded delays[J]. Communication in Nonlinear Science & Numerical Simulation, 2013, 18: 2562-2570.
[5]WANG L S, ZHANG L. Global dissipativity of a class of BAM neural networks with both time-varing and continuously distributed delays[J]. Neurocomputing, 2015, 152: 250-260.
[6]WANG Y, XIE L. Robust control of a class of uncertain nonlinear systems[J]. Systems & Control Letters, 1992, 19: 141.
【中文責(zé)編:莊曉瓊英文責(zé)編:肖菁】
Global Dissipativity for Stochastic BAM Neural Networks with Time Delay
MA Jing, ZHANG Qimin*
(School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, China)
Abstract:Considering the randomness, which is one of the uncertain factors in the bidirectional associative memory(BAM) neural networks system, it is obtained that a class of stochastic bidirectional associative memory(BAM) neural networks with time delay and Brownian motion. Under the condition of the bounded activation function of the equation, it discusses the global dissipativity for stochastic bidirectional associative memory (BAM) networks with time delay. By using Lyapunov functions, Jensen’s inequality and It’s formula,it provides the sufficient condition for the global dissipativity in the mean square of such stochastic bidirectional associative memory (BAM) neural networks;it also gives the attractive set of the system. Finally, the numerical example is provided to demonstrate the effectiveness of the conclusion. The conclusion is a generalization of the existing literature in the paper.
Key words:stochastic BAM neural networks; global dissipativity in mean; attractive set in mean; Lyapunov functions
中圖分類號(hào):O193
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-5463(2016)02-0096-06
*通訊作者:張啟敏,教授,Email:zhangqimin64@sina.com.
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(11261043,11461053)
收稿日期:2015-06-09《華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n