孫立新盛冬發(fā)
(西南林業(yè)大學(xué)土木工程學(xué)院,昆明 650224)
粘彈性地基上損傷彈性Timoshenko梁動(dòng)力學(xué)行為
孫立新?盛冬發(fā)
(西南林業(yè)大學(xué)土木工程學(xué)院,昆明 650224)
建立了粘彈性地基上損傷彈性Timoshenko梁在有限變形情況下的運(yùn)動(dòng)微分方程,這是一組非線性偏微分方程.為了便于分析,首先利用Galerkin方法對(duì)該方程組進(jìn)行簡化,得到一組非線性常微分方程.然后利用Matlab軟件進(jìn)行數(shù)值模擬,考察了載荷參數(shù)、地基粘性參數(shù)和彈性參數(shù)、損傷對(duì)梁振動(dòng)的影響.采用非線性動(dòng)力學(xué)中的各種數(shù)值方法,如時(shí)程曲線、相平面圖、Poincare截面和分叉圖,發(fā)現(xiàn)增大地基的粘彈性參數(shù),有利于增強(qiáng)結(jié)構(gòu)運(yùn)動(dòng)的穩(wěn)定性,而損傷會(huì)降低結(jié)構(gòu)運(yùn)動(dòng)的穩(wěn)定性.
粘彈性地基, 損傷, Timoshenko梁, 非線性動(dòng)力學(xué)
材料在使用過程中會(huì)發(fā)生損傷,損傷累積到一定程度會(huì)造成材料的失效破壞,對(duì)結(jié)構(gòu)的安全和可靠性的研究早已引起國內(nèi)外力學(xué)工作者的普遍重視.Pellicano和Vestroni[1]用Galerkin截?cái)喾ǚ治隽藥в袔缀畏蔷€性項(xiàng)的穩(wěn)定運(yùn)動(dòng)梁在亞臨界及超臨界速度時(shí)的動(dòng)態(tài)特性,發(fā)現(xiàn)了超臨界速度狀態(tài)下系統(tǒng)存在穩(wěn)定區(qū)域的現(xiàn)象.Nunziato JW和Cowin S C[2]提出了帶孔隙的彈性材料的非線性理論,建立了帶孔隙材料的理論框架,后經(jīng)線性化發(fā)展成為可以用于工程計(jì)算的線性理論.盛冬發(fā)[3]從考慮損傷的粘彈性材料的一種卷積本構(gòu)關(guān)系出發(fā),建立了在有限變形下?lián)p傷粘彈性Timoshenko梁的運(yùn)動(dòng)微分方程.孟紅磊[4]研究了含損傷非線性粘彈性本構(gòu)模型及數(shù)值仿真應(yīng)用,提出了一種含累積損傷的非線性粘彈性本構(gòu)方程.李晶晶[5]對(duì)有限變形條件下,Timoshenko粘彈性梁非線性分析的數(shù)學(xué)模型應(yīng)用微分求積方法進(jìn)行空域的離散,得到了簡支粘彈性梁的簡化模型.唐有綺[6]研究了軸向加速粘彈性Timoshenko梁的非線性參數(shù)振動(dòng),描述了各參數(shù)對(duì)穩(wěn)態(tài)響應(yīng)的影響.
本文從損傷線彈性理論出發(fā),建立了粘彈性地基上損傷彈性Timoshenko梁的運(yùn)動(dòng)微分方程.應(yīng)用Galerkin方法和非線性動(dòng)力學(xué)數(shù)值分析方法,在數(shù)值上分析了粘彈性地基上損傷彈性Timoshenko梁豐富的動(dòng)力學(xué)行為.分析比較了載荷參數(shù),地基粘性參數(shù)和彈性參數(shù),損傷對(duì)梁的動(dòng)力學(xué)行為的影響,以及地基粘彈性參數(shù)對(duì)結(jié)構(gòu)損傷增量的影響.
考慮如圖1所示的梁,設(shè)梁是等截面的,面積為q=0.2,高為q=0.1,長為l,密度為ρ.若作用于梁的載荷q(x,t)在xy平面內(nèi),則可以認(rèn)為該梁處于平面彎曲狀態(tài).根據(jù)Timoshenko梁理論,位移可設(shè)為[7]
圖1 帶損傷彈性Timoshenko梁Fig.1 Elastic Timoshenko beamswith damage
式中φ表示y軸的轉(zhuǎn)角.設(shè)梁不受軸力作用,有u(x,t)=0.根據(jù)有限變形理論,由位移可得
采用數(shù)值方法來求解非線性偏微分方程組(6),(8),揭示非線性損傷彈性Timoshenko梁的動(dòng)力學(xué)性質(zhì).但該非線性積分-偏微分方程組通常難以求解,采用伽遼金方法將問題簡化為非線性積分-常微分方程組進(jìn)行求解.
根據(jù)邊界條件(9),問題的解可取為如下的形式
圖2 不同q時(shí)系統(tǒng)的時(shí)程曲線(β8=40,β9=1)Fig.2 Time history curves of the system for different parameter q(β8=40,β9=1)
方程組中的系數(shù)在附錄B中給出.用Rung-Kutta方法對(duì)方程進(jìn)行數(shù)值求解,編制專用計(jì)算程序,同時(shí)取β1=4,β2=104,β3=3.33×105,β4=5× 103,β5=5×103,β6=36.1,β7=4.17×103,ζ=5/6,v=0.3,q0=q sin(2πt)[3].圖2~4示出了當(dāng)?shù)鼗鶑椥詤?shù)β8=40和地基粘性參數(shù)β9=1時(shí),不同的荷載參數(shù)對(duì)系統(tǒng)運(yùn)動(dòng)特性的影響.
圖3 不同q時(shí)系統(tǒng)的相平面圖(β8=40,β9=1)Fig.3 Phase-trajectory diagrams of the system for different parameter q(β8=40,β9=1)
圖4 不同q時(shí)系統(tǒng)的Poincare圖(β8=40,β9=1)Fig.4 Poincare sections of the system for different parameter q(β8=40,β9=1)
圖2~圖4分別給出了當(dāng)β9=1,β8=40時(shí),對(duì)于不同載荷q系統(tǒng)的時(shí)程圖,相平面圖和Poincare截面.可以看出,當(dāng)載荷參數(shù)q增大時(shí),系統(tǒng)由穩(wěn)定的周期運(yùn)動(dòng)向不穩(wěn)定的混沌運(yùn)動(dòng)轉(zhuǎn)化.
圖5,圖6分別給出了當(dāng)β9=1,q=0.35時(shí),對(duì)于不同地基彈性參數(shù)β8系統(tǒng)的相平面圖和分岔圖.由圖可見,當(dāng)?shù)鼗鶑椥詤?shù)β8增大時(shí),系統(tǒng)由混沌運(yùn)動(dòng)向周期運(yùn)動(dòng)轉(zhuǎn)化.增加地基的彈性參數(shù),將會(huì)抑制系統(tǒng)混沌運(yùn)動(dòng)的發(fā)生,有利于結(jié)構(gòu)運(yùn)動(dòng)的穩(wěn)定性.
圖5 不同β8時(shí)系統(tǒng)的相平面圖(q=0.35,β9=1)Fig.5 Phase-trajectory diagrams of the system for different parameterβ8(q=0.35,β9=1)
圖6 q=0.35,β9=1時(shí),擾度隨彈性參數(shù)β8變化時(shí)的分岔圖Fig.6 Bifurcation diagram of deflection with the change of the elastic parameterβ8when q=0.35,β9=1
圖7給出了當(dāng)q=0.2,β8=10時(shí),對(duì)于不同地基粘性參數(shù)β9系統(tǒng)的相平面圖.由圖可知,當(dāng)?shù)鼗承詤?shù)β9增大時(shí),粘彈性地基上的Timoshenko的運(yùn)動(dòng)會(huì)由混沌運(yùn)動(dòng)向周期運(yùn)動(dòng)轉(zhuǎn)化.
圖8給出了當(dāng)q=0.3,β9=1,β8=40時(shí),粘彈性地基上損傷Timoshenko梁和無損Timoshenko梁的相平面圖.由圖可以看出,在運(yùn)動(dòng)條件相同情況下,有損Timoshenko梁的動(dòng)力學(xué)行為比無損時(shí)穩(wěn)定性低,說明損傷降低了梁運(yùn)動(dòng)的穩(wěn)定性.
圖9(a)給出了當(dāng)q=0.2,β8=10時(shí),地基粘性參數(shù)對(duì)彈性損傷Timoshenko梁的最大損傷增量的影響,從圖中可以看出雖然損傷增量有所波動(dòng),但變化較小,故地基的粘性參數(shù)對(duì)結(jié)夠損傷增量的影響不是太大.圖(b)給出了當(dāng)q=0.2,β9=1時(shí),地基彈性參數(shù)對(duì)彈性損傷Timoshenko梁的最大損傷增量的影響,可以看出隨著地基彈性參數(shù)的增大,結(jié)構(gòu)的損傷增量有下降的趨勢(shì).增加地基彈性參數(shù),有利于減少結(jié)構(gòu)在使用過程中的損傷.
圖7 不同β9時(shí)系統(tǒng)的相平面圖(q=0.2,β8=10)Fig.7 Phase-trajectory diagrams of the system for different parameterβ9(q=0.2,β8=10)
圖8 q=0.3時(shí)系統(tǒng)的相平面圖(β8=40,β9=1)Fig.8 Phase-trajectory diagrams of the system when q=0.3(β8=40,β9=1)
圖9 地基粘彈性參數(shù)對(duì)結(jié)構(gòu)損傷增量的影響Fig.9 Influence of the viscoelastic parameters of foundation on the damage increment of the structure
建立了粘彈性地基上損傷彈性Timoshenko梁在有限變形情況下的控制方程,通過Galerkin方法得到了簡支梁的運(yùn)動(dòng)方程.采用非線性動(dòng)力學(xué)中的各種數(shù)值方法,計(jì)算得到各種響應(yīng)圖形,如時(shí)程曲線、相圖和Poincare截面和分叉圖.揭示了粘彈性地基上損傷彈性Timoshenko梁的豐富動(dòng)力學(xué)行為.經(jīng)過分析和計(jì)算,可以得到如下的主要結(jié)論:
(1)載荷參數(shù)對(duì)Timoshenko梁動(dòng)力響應(yīng)有較大影響.載荷越大,系統(tǒng)越不穩(wěn)定,使系統(tǒng)由穩(wěn)定的周期運(yùn)動(dòng)向不穩(wěn)定的混沌運(yùn)動(dòng)轉(zhuǎn)化.
(2)地基參數(shù)對(duì)結(jié)構(gòu)動(dòng)力響應(yīng)也有較大的影響,可以看出增大地基的粘性參數(shù)和彈性參數(shù)有利于增強(qiáng)結(jié)構(gòu)的穩(wěn)定性.
(3)損傷會(huì)降低粘彈性地基上彈性Timoshenko梁運(yùn)動(dòng)的穩(wěn)定性.
(4)增加地基彈性參數(shù),有利于降低結(jié)構(gòu)使用過程中的損傷.
1 Pellicano F,Vestroni F.Nonlinear dynamics and bifurcations of an axially moving beam.Journal of Vibration A-coustics,2000,122:21~30
2 Nunziato JW,Cowin SC.A Nonlinear Theory of Elastic Materials with Voids.Archive for Rational Mechanics and Analysis,1979,72:175~201
3 盛冬發(fā).幾何非線性損傷的損傷粘彈性Timoshenko梁的動(dòng)力學(xué)行為.動(dòng)力學(xué)與控制學(xué)報(bào),2004,2(4):77~83(Sheng D F.Dynamical behaviors of nonlinear viscoelastic Timoshenko beamswith damage.Journal of Dynamics and Control,2004,2(4):77~83(in Chinese))
4 孟紅磊,鞠玉濤.含損傷非線性粘彈性本構(gòu)模型及數(shù)值仿真應(yīng)用.固體火箭技術(shù),2012,35(6):764~768(Meng H L,Ju Y T.Nonlinear viscoelastic equation with cumulative damage and its application on numerical simulation.Journal of Solid Rocket Technology,2012,35(6):764~768(in Chinese))
5 李晶晶,程昌鈞.粘彈性Timoshenko梁非線性動(dòng)力學(xué)行為的微分求積分析.振動(dòng)與沖擊,2010,29(4):143~147(Li J J,Hu Y J,Cheng C J,Zheng J.Differential quadraturemethod for nonlinear dynamical behavior of viscoelastic timoshenko beam.Journal of Vibration and Shock,2010,29(4):143~147(in Chinese))
6 唐有綺.軸向變速黏彈性Timoshenko梁的非線性振動(dòng).力學(xué)學(xué)報(bào),2013,45(6):132~136(Tang Y Q.Nonlinear vibrations of axially accelerating viscoelastic timoshenko beams.Chinese Journal of Theoretical and Applied Mechanics,2013,45(6):132~136(in Chinese))
7 Timoshenko S,Gere J.Mechanics of Materials.New York:Van Nostrand Reinhold Company,1972
8 Cowin S C,Nunziato JW.Linear elastic materials with voids.Journal of Elasticity,1983(13):125~147
9 張燕,盛冬發(fā),程昌鈞.在有限變形條件下?lián)p傷粘彈性梁的動(dòng)力學(xué)行為.力學(xué)季刊,2004,25(2):232~238(Zhang Y,Sheng D F,Cheng C J.Dynamicalbehaviors of visco-elastic beamswith damage under finite deformation. Chinese Quarterly of Mechanics,2004,25(2):232~238
10李根國,朱正佑.具有分?jǐn)?shù)導(dǎo)數(shù)本構(gòu)關(guān)系的非線性粘彈性Timoshenko梁動(dòng)力學(xué)行為分析.非線性動(dòng)力學(xué)學(xué)報(bào),2001,8(1):19~26(Li G G,Zhu Z Y.Dynamical behaviors of nonlinear viscoelastic Timoshenko beam with fractional derivative constitutive relation.Journal Nonlinear Dynamics in Science and Technology,2001,8(1):19~26(in Chinese))
11 Sheng D F,Cheng C J.Dynamical behaviors of nonlinear viscoelastic thick plateswith damage.International Journal of Solids and Structures,2004,41:7287~7308
附錄A
附錄B
DYNAM ICAL BEHAVIORSOF ELASTIC TIMOSHENKO BEAMS W ITH DAMAGE ON VISCOELASTIC FOUNDATION
Sun Lixin?Sheng Dongfa
(Civil Engineering Institute,Southwest Forestry University,Kunming 650224,China)
The differential equations of motion governing nonlinear dynamical behavior of elastic Timoshenko beams with damage on viscoelastic foundation are given in this paper.It is known that the derived equations are a set of nonlinear partial-differential equations.To this end,the Galerkinmethod is firstly applied to simplify this set of equations,and a set of ordinary-differential equations are obtained.The Matlab software is then used to simulate the dynamical behaviors of the elastic Timoshenko beams.Meanwhile,the influence of the load and the viscoelastic parameters of foundation and the damage on the dynamic behaviors of beams is also studied.Various numericalmethods of nonlinear dynamics are used including time history curves,phase-trajectory diagram,Poincare sections and bifurcation figures.It is found that The stability ofmovement of the structure is strengthened when the viscoelastic parameters of foundation are increased,but the damage of the Timoshenko beams reduces the stability ofmovement of the structure.
viscoelastic foundation, damage, Timoshenko beams, nonlinear dynamics
10.6052/1672-6553-2016-002
2015-12-08收到第1稿,2016-01-04收到修改稿.
?通訊作者E-mail:sunlixin55@qq.com
Received 8 December 2015,revised 4 January 2016.
?Corresponding author E-mail:sunlixin55@qq.com