張志岐 王瑞國 張 維 王培龍 蘇曉鷗(中國農(nóng)業(yè)科學院農(nóng)業(yè)質(zhì)量標準與檢測技術研究所,農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全重點實驗室,北京100081)
?
脫氧雪腐鐮刀菌烯醇的代謝特征
張志岐王瑞國張維王培龍?zhí)K曉鷗?
(中國農(nóng)業(yè)科學院農(nóng)業(yè)質(zhì)量標準與檢測技術研究所,農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全重點實驗室,北京100081)
摘要:脫氧雪腐鐮刀菌烯醇(DON)對以谷物為基礎的食物和飼料的污染是一個全球性問題,嚴重危害了人和動物的健康。DON在人和動物體內(nèi)的代謝特征是開展DON暴露評估、毒性作用機制和干預技術等研究的基礎。近年來有關DON的吸收、分布、代謝和排泄等毒物動力學的研究引起了國內(nèi)外廣泛關注。本文將DON代謝特征的最新進展進行了全面的綜述。
關鍵詞:脫氧雪腐鐮刀菌烯醇;毒物動力學;代謝
脫氧雪腐鐮刀菌烯醇(deoxynivalenol,DON)是由禾谷鐮刀菌(Fusarium graminearum)產(chǎn)生的次級代謝產(chǎn)物[1],在以谷物小麥、大麥、燕麥、玉米等為基礎的食物和飼料中普遍存在,并且谷物中DON的污染程度與降水、花期濕度和儲存條件密切相關[2]。DON是世界上分布最廣泛、污染最嚴重的霉菌毒素之一[3-10],DON污染已成為飼料和食品安全的重要問題。DON可以影響腸道、免疫系統(tǒng)和神經(jīng)組織細胞的活性和功能,引起包括嘔吐、厭食、腹痛、腹瀉、頭痛和頭暈等癥狀,導致機體營養(yǎng)不良、免疫功能障礙和生長抑制,甚至導致休克以致死亡。這不僅嚴重危害人和動物的健康,還給養(yǎng)殖業(yè)帶來巨大的經(jīng)濟損失[11-14]。分析谷物及飼料中的DON水平是從源頭控制DON污染的有效途徑,而其代謝產(chǎn)物是DON暴露的有效生物標志物[15-16]。生理樣本如血液、尿液和組織器官可以作為DON中毒重要的診斷靶標,因此有關DON的毒物動力學研究引起了國內(nèi)外廣泛關注。本文將DON代謝特征的最新進展進行了全面綜述。
DON對以谷物為基礎的食物和飼料的污染是一個全球性問題。在歐洲針對飼料樣品中DON污染調(diào)查研究發(fā)現(xiàn),約有57%的飼料樣品存在DON污染,且污染水平為91~5 000 μg/ kg[17]。針對82個3種不同基質(zhì)(母豬飼料、小麥和玉米)的飼料樣品調(diào)查研究表明,有67種受到DON污染,污染最高水平約為9 528 μg/ kg[18]。而歐盟設定谷物中DON的最高限量為1 250 μg/ kg。西班牙、捷克和南非等國家以谷物為基礎的食品也普遍被DON污染,不同國家和地區(qū)DON污染情況見表1。此外,食物中的DON可經(jīng)動物和人的排泄物通過排污系統(tǒng)污染水源[19],造成潛在的環(huán)境污染風險。
DON又名嘔吐毒素,屬單端孢霉烯族類毒素[1],化學名稱為12,13-環(huán)氧-3,7,15-三羥基單端孢霉-9-烯-8-酮,物理狀態(tài)為無色針狀結晶,為極性化合物,易溶于水和極性有機溶劑(圖1)。由于DON在350℃高溫下化學性質(zhì)仍穩(wěn)定,不受加工和烹飪過程影響而遍及整個食物鏈[2,20]。這類小倍半萜類化合物C12和C13位置上的環(huán)氧基團對于DON的毒性至關重要,它可能與細胞中蛋白質(zhì)的氨基、羧基和羥基相互作用,結合核糖體引起核糖體應激并激活各種蛋白激酶而產(chǎn)生毒性[21-28]。
表1 DON污染的地區(qū)分布及污染特征Table 1 DON contamination area distribution and contamination characteristics
圖1 DON的化學結構Fig.1 The chemical structure of DON
3.1DON的吸收
毒物動力學研究結果顯示,DON經(jīng)口服后可以穿過機體小腸屏障被迅速吸收,進入血液循環(huán)并分布至外周各器官[24]。尤其DON還可以穿過血腦屏障(blood-brain barrier,BBB)分布至中樞神經(jīng)系統(tǒng)[24]。
3.1.1DON穿過小腸屏障
DON的毒性源于其可以穿過生物屏障,進而影響器官中細胞的活性和功能。DON攝入后首先穿過腸道屏障。動物和人消化道中寄居細菌共生微生物,可以保護宿主免受病原微生物和毒素的侵害[29-30]。小腸對DON的吸收具有很大的物種差異性,分別為豬(82%)>雞(19%)>綿羊(5.9%~9.9%)>牛(1%)[31-34],這主要與小腸前后寄生菌群的分布有關[35-37]。
DON進入反芻動物和禽類小腸之前會接觸較高濃度的微生物,并且被代謝成脫毒產(chǎn)物去環(huán)氧脫氧雪腐鐮刀菌烯醇(deepoxydeoxynivalenol,DOM-1),由此降低了這些動物對于口服DON的敏感性[38]。
對于人和單胃動物(豬和嚙齒動物),因只在小腸結腸區(qū)具有高分布菌群,只有小部分DON到達結腸被細菌代謝成DOM-1,并且通過糞便排出體外[39],故很大比例DON可以穿過小腸上皮細胞進入血液循環(huán)而被迅速吸收。因此,相對于禽類或反芻動物,豬對DON更為敏感[31]。研究表明豬口服DON后約30 min在血漿中即可檢測到DON,并在3~4 h內(nèi)達到吸收峰,因此豬的近端小腸可以快速且高效吸收DON[40-41]。
對Caco-2細胞及禽類小腸段研究結果表明,DON主要通過被動擴散和細胞旁路吸收[42-43]。腸炎、小腸病毒感染、病原微生物以及毒素等都會降低小腸細胞間的緊密連接,從而促進腸上皮細胞對毒素的吸收[44-46]。研究顯示,閹割公豬單次或持續(xù)暴露(4周)污染DON的飼糧,其對DON的吸收率分別為54%和89%[47]。毒素持續(xù)暴露具有高生物利用率,一方面可能與給藥期間血液中DON的不完全消除有關[47],另一方面可能由DON影響腸道細胞緊密結合蛋白的表達進而引起屏障功能損傷所致[48-50]。而7日齡羅斯肉雞持續(xù)暴露(4周)污染DON飼糧后DON的吸收率反而會降低[51],這可能與DON持續(xù)暴露使肉雞適應毒素刺激,并在形態(tài)和功能層面啟動腸道修復機能有關。此外,對DON的生物利用率還與機體不同發(fā)育階段對DON的耐受性有關[52]。
3.1.2DON穿過BBB
DON對腦功能的影響可能通過外周效應發(fā)揮作用,但DON可以迅速穿過BBB,直接作用于腦細胞進而影響神經(jīng)系統(tǒng)的功能[53]。BBB是由內(nèi)皮細胞和神經(jīng)膠質(zhì)細胞構成的可選擇屏障,抑制外源分子從血漿進入腦脊液。DON穿過BBB的速度因物種而異,2~60 min不等。靜脈注射DON后豬和綿羊的腦脊液在2.5 min內(nèi)均可以檢測到DON。綿羊腦脊液中檢測的DON在5~10 min即達到峰值,而豬則在30~60 min達到峰值[53]。DON穿過小鼠BBB相對較慢,小鼠腦脊液在5 min可以檢測到DON[24]。豬血漿中的DON有20%~30%可以進入腦脊液,其在腦脊液中的半衰期與血漿中類似(20 h)[53]。小鼠到達BBB的DON約占血漿濃度的10%[24]。而對于綿羊,只有5%的DON可以穿過BBB[53]。但DON是否能穿過人和其他物種的BBB還有待于進一步研究來揭示。
3.1.3DON進入細胞的機制
目前,DON進入細胞的可能機制有2種:一種機制是DON不直接進入細胞內(nèi),而與細胞膜上的受體或蛋白相互作用激活各種激酶,進而激活下游信號通路發(fā)揮毒性效應,但至今還沒有相關研究證實;另外一種機制是DON通過脂溶性擴散或內(nèi)吞作用進入細胞[54],有研究表明DON直接進入細胞后可以結合核糖體并引發(fā)一系列毒性效應[21-27]。DON是否可以與膜上受體結合發(fā)揮毒性效應以及DON進入細胞后還可以與除核糖體之外的其他細胞器或蛋白結合仍需進一步研究來闡明。
3.2DON的分布
血液中原藥及其代謝產(chǎn)物的分布和消除速率是毒物動力學的重要參數(shù)。小鼠單次口服給藥后,DON迅速進入血液循環(huán)并分布至外周各器官[24]。DON在血漿、肝臟、腎臟、心臟和脾臟中的藥物峰時間/濃度、分布半衰期(t1/ 2α)和消除半衰期(t1/ 2β)見表2,其中DON在血漿、肝臟和腎臟中的消除動力學均遵循二室模型。DON進入腦相對較慢,且峰值較低(0.7~1.0 μg/ g)(表2)。豬靜脈注射DON或暴露污染DON飼糧后血液中DON及其代謝物的t1/ 2β為3.00~3.96 h(表3)。而豬飼喂天然污染的DON的谷物t1/ 2β相對較長。肉雞胃內(nèi)插管給藥DON后血液中游離DON的t1/ 2β約為0.6 h[32]。相反,綿羊瘤胃給藥DON的t1/ 2β則相對較長,為4.0~5.3 h[31],表明DON在反芻動物體內(nèi)消除速率較慢。
表2 小鼠單次口服DON后在血漿及各組織中的分布及消除代謝動力學Table 2 Kinetics of DON distribution and clearance in plasma and other tissues after single oral exposure in mice[24]
3.3DON的代謝
DON的代謝是指DON在消化道被微生物或在機體的腸黏膜、肝臟、腎臟等器官被降解成多種產(chǎn)物的過程。目前DON已鑒定的代謝產(chǎn)物相對較少(圖2),主要包括DOM-1、DON葡萄糖醛酸共軛物(DON-glucuronide,DON-GlcA)、DON磺酸鹽共軛物(DON-sulfonate)以及DON硫酸鹽共軛物(DON-sulfate)。其中DON-GlcA是DON的有效毒性標志物。
表3 DON在畜禽動物中的毒物動力學Table 3 Toxicokinetics of DON in farm animals[55]
3.3.1DOM-1
DOM-1主要在微生物催化下生成[59],是不同物種中較常見的DON的代謝產(chǎn)物(嚙齒動物、豬、雞及反芻動物)。DON經(jīng)口服后在血液中檢測的DOM-1并非在小腸腔產(chǎn)生,而是在消化道中經(jīng)細菌的脫毒效應后被小腸吸收[60]。體內(nèi)試驗顯示,綿羊和牛瘤胃中微生物也可以將DON轉(zhuǎn)化成DOM-1,且奶牛的轉(zhuǎn)化效率要高[61-63]。此外,人糞便中的微生物也可以催化DON形成DOM-1[64]。雖然深湖細菌中分離的細胞色素P450(CYP450)酶可以催化DON形成16-OH-DON,但CYP450酶并不參與DON的代謝[65],因此,目前DON被微生物催化代謝的酶機制仍未闡明。除微生物外,機體組織如肝臟可能也進行DON的脫氧脫毒代謝。如豬靜脈注射DON也可以檢測到DOM-1,且DOM-1在豬膽汁中的水平要高于血液[40],但肝臟是否可以進行DON脫氧脫毒效應還需要研究來進一步闡明。
3.3.2DON-GlcA
DON與葡萄糖醛酸的共軛作用可以增加其水溶性,進而更利于其通過尿液和膽汁排出體外。DON-GlcA是在尿苷二磷酸葡醛酸轉(zhuǎn)移酶(UDP-glucuronosyltransferases,UGTs)的催化下產(chǎn)生的。因DON-GlcA的脂水分配系數(shù)(logD)值較低,其穿過細胞膜或結合核糖體效率較低,因此其毒性低于DON[66]。機體對外源性毒素的脫毒作用多發(fā)生在小腸、肝臟和腎臟,而UGTs在肝臟、小腸和腎臟分布廣泛[67]。最新研究表明肝臟微粒體可以代謝DON并將其轉(zhuǎn)化成DON-GlcA,產(chǎn)物主要包括DON-3-GlcA和DON-15-GlcA[68-69]。研究中觀察了人、大鼠、牛、豬和雞的肝臟微粒體中DON的代謝,結果表明DON C3位點的共軛能力是牛>大鼠>人(圖2)[68]。同時,在大鼠和人的微粒體中均可檢測到DON-15-GlcA[69]。DON-7-GlcA和DON-8-GlcA是新鑒定的共軛產(chǎn)物[68]。小腸和腎臟微粒體研究結果并未表明其可以進行DON的脫毒代謝。綿羊口服給藥后約75%的DON可以轉(zhuǎn)化成DON-GlcA,而靜脈注射只有21%的生物利用率,這表明很大程度上脫毒產(chǎn)物的產(chǎn)生依賴于小腸上皮細胞[31]。此外,豬口服給藥DON后血漿中可以檢測到DON-GlcA,但靜脈注射DON后卻無法檢測,說明此共軛過程很可能發(fā)生在小腸吸收前[33,47]。然而,腸道細胞是否能對DON進行脫毒代謝還有待于進一步研究。
圖2 DON在人及動物體內(nèi)的生物轉(zhuǎn)化Fig.2 Biotransformation of DON in humans and animals[58]
3.3.3其他代謝產(chǎn)物
除了DON-GlcA,DON代謝生成DON-sulfonate和DON-sulfate也是在動物體內(nèi)降低毒性的途徑。DON-sulfonate可以降低豬的嘔吐反應[70],對豬外周血單核細胞以及豬小腸上皮細胞均無毒害作用[71]。在雞和大鼠中可以檢測到DON-10-sulfonate、DON-3-sulfate及DOM-1磺酸鹽共軛物(DOM-1-10-sulfonate)[72]。在綿羊尿中也可以檢測到DON-3-sulfate[73]。
總之,所有DON共軛物的產(chǎn)生均是其重要的解毒途徑。DON與葡萄糖醛酸共軛并通過尿液排出是其主要的代謝途徑。而截止目前UGTs具體哪個酶亞族參與催化形成DON-GlcA還未知。同時,DON代謝存在明顯的物種差異,而這種差異的調(diào)節(jié)機制仍需進一步研究來闡明。
3.4DON的排泄
DON主要以DON、DOM-1、DON-GlcA以及DOM-1-GlcA的形式通過尿液排出。有研究顯示,人攝入的DON約91%以DON-GlcA的形式排出體外,并且以DON-15-GlcA為主[74-75]。豬攝入的DON約68%以DON和DON-GlcA的形式通過尿排出,約20%以DOM-1和DON的形式通過糞便排出[40,47]。DON/ DOM-1以及DON-GlcA/ DOM-1-GlcA的排泄一方面可能通過血液在腎小球的過濾作用,另一方面可能通過由小腸、腎臟和肝臟上皮細胞中分布的P-糖蛋白排出[54]。DON及其代謝物的排泄速度較快,豬和綿羊攝取DON后,血漿中約1/2的DON在6 h后被排出[31,40]。DON在動物中的高排泄率表明其原型及代謝物與血漿白蛋白結合率較低。而近期研究發(fā)現(xiàn)DON可以和人血漿白蛋白相互作用[76],表明DON在人中具有較長的血漿半衰期,增加了DON對人潛在的危害。
3.5DON及其代謝產(chǎn)物的殘留
檢測動物源性食品如肌肉、肝臟、腎臟、牛奶和雞蛋中DON的殘留可以為消費者提供風險評估的依據(jù)。研究表明,DON以原型和DOM-1形式在豬可食用組織腎臟中的殘留量最高,其他組織的殘留量順序分別為肝臟>肌肉>脾臟>脂肪(表4)。DON在腎臟的高殘留量可能與尿液濃縮有關,且與DON在豬體內(nèi)主要以尿的形式排出是一致的。奶牛飼喂DON水平為8.21 mg/ kg(干物質(zhì)基礎)的飼糧后,牛奶中DON及DOM-1的轉(zhuǎn)化率分別為0.000 1~0.000 2和0.000 4~0.002 4[63]。蛋雞飼糧中DON濃度為11.9 mg/ kg時,蛋黃和蛋清中DON和DOM-1殘留均低于檢測限(分別為2.5和1.0 μg/ kg)[77]。因此,DON在牛奶和雞蛋中的殘留很低。
表4 DON及其代謝產(chǎn)物DOM-1在豬可食用組織中的殘留Table 4 Residues of DON and its metabolite DOM-1 in edible tissues of pigs[55]
DON對以谷物為基礎的食物和飼料中的污染是一個全球性問題。DON因其不易降解的穩(wěn)定特性而遍及整個食物鏈。DON污染作為飼料和食品安全的重要問題,嚴重危害了人和動物的健康。DON的吸收、分布、代謝以及在動物源性食品的殘留分布等研究可以為人類、畜禽健康風險評估提供理論基礎。DON的毒物動力學研究顯示其可以被快速吸收進入血液循環(huán)分布至外周各器官,并能穿過BBB。DON吸收進入機體后可以代謝成脫毒產(chǎn)物降低其毒性。DON與葡萄糖醛酸共軛并通過尿液排出是其主要的代謝途徑。盡管DON在不同物種的毒物代謝動力學的研究已取得部分進展,但DON的代謝途徑及其在臨床診斷和畜禽安全風險評估中的應用還有待深入研究。如DON在反芻動物和單胃動物的代謝途徑和代謝產(chǎn)物的物種差異性非常明顯,造成這種差異的調(diào)節(jié)機制目前尚不清楚。與同屬單端孢霉烯族類毒素的T2毒素相比,DON的代謝產(chǎn)物鑒定的相對較少。DON是否還存在其他代謝物也需要進一步研究來揭示。將轉(zhuǎn)錄組學、蛋白質(zhì)組學與代謝組學技術有機結合,建立基于生理學分析為基礎的畜禽健康風險評估的臨床診斷工具,分析DON的暴露濃度、在動物機體生理標本殘留濃度以及對應的臨床癥狀的關聯(lián)性還面臨著巨大的挑戰(zhàn)。
參考文獻:
[1] BENNETT J W,KLICH M.Mycotoxins[J]. Clinical Microbiology Reviews,2003,16(3):497-516.
[2] WU Q H,LOHREY L,CRAMER B,et al.Impact of physicochemical parameters on the decomposition of deoxynivalenol during extrusion cooking of wheat grits [J]. Journal of Agricultural and Food Chemistry,2011,59(23):12480-12485.
[3] MONTES R,SEGARRA R,CASTILLO M á.Trichothecenes in breakfast cereals from the Spanish retail market[J].Journal of Food Composition and Analysis,2012,27(1):38-44.
[4] JAJI? I,JURI? V,ABRAMOVI? B. First survey of deoxynivalenol occurrence in crops in Serbia[J].Food Control,2008,19(6):545-550.
[5] MALACHOVA A,DZUMAN Z,VEPRIKOVA Z,et al. Deoxynivalenol,deoxynivalenol-3-glucoside,and enniatins:the major mycotoxins found in cereal-based products on the czech market[J].Journal of Agricultural and Food Chemistry,2011,59(24):12990 -12997.
[6] TRAN S T,SMITH T K,GIRGIS G N.A survey of free and conjugated deoxynivalenol in the 2008 corn crop in Ontario,Canada[J].Journal of the Science of Food and Agriculture,2012,92(1):37-41.
[7] TRAN S T,SMITH T K.A survey of free and conjugated deoxynivalenol in the 2009,2010 and 2011 cereal crops in Australia[J].Animal Production Science,2013,53(5):407-412.
[8] CUI L,SELVARAJ J N,XING F G,et al. A minor survey of deoxynivalenol in Fusarium infected wheat from Yangtze-Huaihe river basin region in China[J]. Food Control,2013,30(2):469-473.
[9] BENSASSI F,ZAIED C,ABID S,et al.Occurrence of deoxynivalenol in durum wheat in Tunisia[J]. Food Control,2010,21(3):281-285.
[10] SHEPHARD G S,WESTHUIZEN L V D,KATERERE D R,et al.Preliminary exposure assessment of deoxynivalenol and patulin in South Africa[J].Mycotoxin Research,2010,26(3):181-185.
[11] LOMBAERT G A,PELLAERS P,ROSCOE V,et al. Mycotoxins in infant cereal foods from the Canadian retail market[J]. Food Additives&Contaminants,2003,20(5):494-504.
[12] BRYDEN W L.Mycotoxins in the food chain:human health implications[J].Asia Pacific Journal of Clinical Nutrition,2007,16:95-101.
[13] CHAYTOR A C,HANSEN J A,VAN HEUGTEN E,et al. Occurrence and decontamination of mycotoxins in swine feed[J].Asian-Australasian Journal of Animal Sciences,2011,24(5):723-738.
[14] WU Q H,DOHNAL V,HUANG L L,et al.Metabolic pathways of trichothecenes[J].Drug Metabolism Reviews,2010,42(2):250-267.
[15] MEKY F A,TURNER P C,ASHCROFT A E,et al. Development of a urinary biomarker of human exposure to deoxynivalenol[J].Food and Chemical Toxicology,2003,41(2):265-273.
[16] WARTH B,SILYOK M,F(xiàn)RUHMANN P,et al.Development and validation of a rapid multi-biomarker liquid chromatography/ tandemmass spectrometry method to assess human exposure to mycotoxins[J]. Rapid Communications in Mass Spectrometry,2012,26(13):1533-1540.
[17] SCHOTHORST R C,VAN EGMOND H P. Report from SCOOP task 3. 2. 10“collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states”-Subtask:trichothecenes[J].Toxicology Letters,2004,153(1):133-143.
[18] MONBALIU S,VAN POUCKE C,DETAVEMIER C L,et al.Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/ MS method[J].Journal of Agricultural and Food Chemistry,2010,58(1):66-71.
[19] SCHENZEL J,HUNGERBüHLER K,BUCHELI T D.Mycotoxins in the environment:Ⅱ.Occurrence and origin in swiss river waters[J].Environmental Science &Technology,2012,46(24):13076-13084.
[20] BRYDEN W L.Mycotoxin contamination of the feed supply chain:implications for animal productivity and feed security[J].Animal Feed Science and Technology,2012,173(1/2):134-158.
[21] CUNDLIFFE E,CANNON M,DAVIES J.Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins[J].Proceedings of the National Academy of Sciences of the United States of America,1974,71(1):30-34.
[22] BIN-UMER M A,MCLAUGHLIN J E,BASU D,et al. Trichothecene mycotoxins inhibit mitochondrial translation-implication for the mechanism of toxicity [J].Toxins,2011,3(12):1484-1501.
[23] PESTKA J J,ZHOU H R,MOON Y,et al. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes:unraveling a paradox[J].Toxicology Letters,2004,153(1):61-73.
[24] PESTKA J J,ISLAM Z,AMUZIE C J.Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse[J].Toxicology Letters,2008,178(2):83-87.
[25] PESTKA J J.Deoxynivalenol:mechanisms of action,human exposure,and toxicological relevance[J]. Archives of Toxicology,2010,84(9):663-679.
[26] PESTKA J J.Deoxynivalenol-induced proinflammatory gene expression:mechanisms and pathological sequel-ae[J].Toxins,2010,2(6):1300-1317.
[27] SUNDST?L ERIKSEN G,PETTERSSON H,LUNDH T.Comparative cytotoxicity of deoxynivalenol,nivalenol,their acetylated derivatives and de-epoxy metabolites[J].Food and Chemical Toxicology,2004,42 (4):619-624.
[28] D?NICKE S,GOYARTS T,D?LL S,et al.Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs[J]. Toxicology Letters,2006,165 (3):297-311.
[29] BARNETT A M,ROY N C,McNABB W C,et al. The interactions between endogenous bacteria,dietary components and the mucus layer of the large bowel [J].Food&Function,2012,3(7):690-699.
[30] SMITH H W.Observations on the flora of the alimentary tract of animals and factors affecting its composition[J].Journal of Pathology and Bacteriology,1965,89(1):95-122.
[31] PRELUSKY D B,VEIRA D M,TREMHOLM H L. Plasma pharmacokinetics of the mycotoxin deoxynivalenol following oral and intravenous administration to sheep[J]. Journal of Environmental Science and Health,Part B:Pesticides,F(xiàn)ood Contaminants and Agricultural Wastes,1985,20(6):603-624.
[32] OSSELAERE A,DEVREESE M,GOOSSENS J,et al.Toxicokinetic study and absolute oral bioavailability of deoxynivalenol,T-2 toxin and zearalenone in broiler chickens[J]. Food and Chemical Toxicology,2013,51:350-355.
[33] ROHWEDER D,KERSTEN S,VALENTA H,et al. Bioavailability of the Fusarium toxin deoxynivalenol (DON)from wheat straw and chaff in pigs[J].Archives of Animal Nutrition,2013,67(1):37-47.
[34] PRELUSKY D B,TRENHOLM H L,LAWRENCE G A,et al.Nontransmission of deoxynivalenol(vomitoxin)to milk following oral administration to dairy cows [J]. Journal of Environmental Science and Health,PartB:Pesticides,F(xiàn)ood Contaminants and Agricultural Wastes,1984,19(7):593-609.
[35] FREY J C,PELL A N,BERTHIAUME R,et al.Comparative studies of microbial populations in the rumen,duodenum,ileum and faeces of lactating dairy cows [J].Journal of Applied Microbiology,2010,108(6):1982-1993.
[36] FARNER D S.The hydrogen ion concentration in avian digestive tracts[J].Poultry Science,1942,21:445-450.
[37] AO T,CANTOR A H,PESCATORE A J,et al. In vitro evaluation of feed-grade enzyme activity at pH levels simulating various parts of the avian digestive tract[J].Animal Feed Science and Technology,2008,140(3/4):462-468.
[38] ROTTER B A,PRELUSKY D B,PESTKA J J.Toxicology of deoxynivalenol(vomitoxin)[J].Journal of Toxicology and Environmental Health,1996,48(1):1-34.
[39] ERIKSEN G S,PETTERSSON H,JOHNSEN K,et al.Transformation of trichothecenes in ileal digesta and faeces from pigs[J]. Archives of Animal Nutrition,2002,56(4):263-274.
[40] D?NICKE S,VALENTA H,D?LL S.On the toxicokinetics and the metabolismof deoxynivalenol (DON)in the pig[J].Archives of Animal Nutrition,2004,58(2):169-180.
[41] PRELUSKY D B,HARTIN K E,TRENHOLM H L,et al. Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine[J].Fundamental and Applied Toxicology,1988,10(2):276-286.
[42] AWAD W A,ASCHENBACH J R,SETYABUDI F M,et al.In vitro effects of deoxynivalenol on small intestinal D-glucose uptake and absorption of deoxynivalenol across the isolated jejunal epithelium of laying hens[J].Poultry Science,2007,86(1):15-20.
[43] SERGENT T,PARYS M,GARSOU S,et al.Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations[J].Toxicology Letters,2006,164 (2):167-176.
[44] MARESCA M,F(xiàn)ANTINI J.Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases[J]. Toxicon,2010,56(3):282-294.
[45] SCHULZKE J D,GüENZEL D,JOHN L J,et al.Perspectives on tight junction research[J].Annals of the New York Academy of Sciences,2012,1257:1-19.
[46] TAKAHASHI A,KONDOH M,SUZUKI H,et al. Pathological changes in tight junctions and potential applications into therapies[J].Drug Discovery Today,2012,17(13/14):727-732.
[47] GOYARTS T,D?NICKE S.Bioavailability of the Fusarium toxin deoxynivalenol(DON)from naturally contaminated wheat for the pig[J]. Toxicology Letters,2006,163(3):171-182.
[48] DIESING A K,NOSSOL C,DANICKE S,et al.Vul-nerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application[J].PLoS One,2011,6(2):e17472.
[49] PINTON P,BRAICU C,NOUGAYREDE J P,et al. Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism[J].Journal of Nutrition,2010,140(11):1956-1962.
[50] DIESING A K,NOSSOL C,PANTHER P,et al.Mycotoxin deoxynivalenol(DON)mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2[J]. Toxicology Letters,2011,200(1/2):8-18.
[51] YNUNS A W,BLAJET-KOSICKA A,KOSICKI R,et al.Deoxynivalenol as a contaminant of broiler feed:intestinal development,absorptive functionality,and metabolism of the mycotoxin[J]. Poultry Science,2012,91(4):852-861.
[52] OSSELAERE A,DEVEREESE M,WATTEYN A,et al.Efficacy and safety testing of mycotoxin-detoxifying agents in broilers following the European Food Safety Authority guidelines[J]. Poultry Science,2012,91 (8):2046-2054.
[53] PRELUSKY D B,HARTIN K E,TRENHOLM H L. Distribution of deoxynivalenol in cerebral spinal fluid following administration to swine and sheep[J].Journal of Environmental Science and Health,Part B:Pesticides,F(xiàn)ood Contaminants,and Agricultural Wastes,1990,25(3):395-413.
[54] VIDEMANN B,TEP J,CAVERT S,et al. Epithelial transport of deoxynivalenol:involvement of human P-glycoprotein(ABCB1)and multidrug resistance-associated protein 2(ABCC2)[J]. Food and Chemical Toxicology,2007,45(10):1938-1947.
[55] D?NICKE S,BREZINA U.Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals:consequences for diagnosis of exposure and intoxication and carry over[J].Food and Chemical Toxicology,2013,60:58-75.
[56] D?NICKE S,BROSIG B,KAHLERT S,et al. The plasma clearance of the Fusarium toxin deoxynivalenol(DON)is decreased in endotoxemic pigs[J]. Food and Chemical Toxicology,2012,50(12):4405-4411.
[57] GOYARTS T,BRüSSOW K P,VALENTA H,et al. On the effects of the Fusarium toxin deoxynivalenol(DON)administered per os or intraperitoneal infusion to sows during days 63 to 70 of gestation[J].Mycotoxin Research,2010,26(2):119-131.
[58] WU Q H,WANG X,YANG W,et al. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans:an update[J]. Archives of Toxicology,2014,88(7):1309-1326.
[59] YOSHIZAWA T,TAKEDA H,OHI T.Structure of a novel metabolite from deoxynivalenol,a trichothecene mycotoxin,in animals[J].Agricultural and Biological Chemistry,1983,47(9):2133-2135.
[60] WORRELL N R,MALLETT A K,COOK W M,et al.The role of gut micro-organisms in the metabolism of deoxynivalenol administered to rats[J].Xenobiotica,1989,19(1):25-32.
[61] SWANSON S P,NICOLETTI J,ROOD H D,Jr,et al. Metabolism of three trichothecene ycotoxins,T-2 toxin,diacetoxyscirpenol and deoxynivalenol,by bovne rumen microorganisms[J].Journal of Chromatography B:Biomedical Sciences and Applications,1987,414:335-342.
[62] HEDMAN R,PETTERSSON H.Transformation of nivalenol by gastrointestinal microbes[J]. Archives of Animal Nutrition,1997,50(4):321-329.
[63] SEELING K,D?NICKE S,VALENTAET H,et al. Effects of Fusarium toxin-contaminated wheat and feed intake level on the biotransformation and carry-over of deoxynivalenol in dairy cows[J].Food Additives and Contaminants,2006,23(10):1008-1020.
[64] GRATZ S W,DUNCAN G,RICHARDSON A J.The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol[J]. Applied and Environmental Microbiology,2013,79(6):1821-1825.
[65] ITO M,SATO I,ISHIZAKA M,et al.Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol[J].Applied and Environmental Microbiology,2013,79(5):1619-1628.
[66] WU X,MURPHY P,CUNNICK J,et al.Synthesis and characterization of deoxynivalenol glucuronide:its comparative immunotoxicity with deoxynivalenol[J]. Food and Chemical Toxicology,2007,45(10):1846-1855.
[67] TUKEY R H,STRASSBURG C P.Human UDP-glucuronosyltransferases:metabolism,expression,and dis-ease[J].Annual Review of Pharmacology and Toxicology,2000,40:581-616.
[68] MAUL R,WARTH B,KANT J S,et al.Investigation of the hepatic glucuronidation pattern of the Fusarium mycotoxin deoxynivalenol in various species[J]. Chemical Research in Toxicology,2012,25(12):2715-2717.
[69] UHLIG S,IVANOVA L,F(xiàn)AESTE C K.Enzyme-assisted synthesis and structural characterization of the 3-,8-,and 15-glucuronides of deoxynivalenol[J]. Journal of Agricultural and Food Chemistry,2013,61 (8):2006-2012.
[70] YOUNG J C,TRENHOLM H L,F(xiàn)RIEND D W,et al. Detoxification of deoxynivalenol with sodium bisulfite and evaluation of the effects when pure mycotoxin or contaminated corn was treated and given to pigs[J]. Journal of Agricultural and Food Chemistry,1987,35 (2):259-261.
[71] D?NICKE S,HEGEWALD A K,KAHLERT S,et al. Studies on the toxicity of deoxynivalenol(DON),sodium metabisulfite,DON-sulfonate(DONS)and deepoxy-DON for porcine peripheral blood mononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1 and IPEC-J2,and on effects of DON and DONS on piglets[J].Food and Chemical Toxicology,2010,48(8/9):2154-2162.
[72] WAN D,HUANG L L,PAN Y H,et al.Metabolism,distribution,and excretion of deoxynivalenol with combined techniques of radiotracing,high-performance liquid chromatography ion trap time-of-flight mass spectrometry,and online radiometric detection [J]. Journal of Agricultural and Food Chemistry,2014,62(1):288-96.
[73] SALIM R. Effect of adsorption on calibration graphs obtained for lead,cadmium and copper in natural water samples[J].Journal of Environmental Science and Health,Part A:Environmental Science and Engineering,1987,22(2):125-139.
[74] TURNER P C,HOPTON R P,WHITE K L M,et al. Assessment of deoxynivalenol metabolite profiles in UK adults[J].Food and Chemical Toxicology,2011,49(1):132-135.
[75] WARTH B,SULYOK M,F(xiàn)RUHMANN P,et al.Assessment of human deoxynivalenol exposure using an LC-MS/ MS based biomarker method[J].Toxicology Letters,2012,211(1):85-90.
[76] LI Y Q,WANG H,JIA B X,et al.Study of the interaction of deoxynivalenol with human serum albumin by spectroscopic technique and molecular modelling [J].Food Additives and Contaminants,Part A:Chemistry Analysis Control Exposure&Risk Assessment,2013,30(2):356-364.
[77] VALENTA H,D?NICKE S. Study on the transmission of deoxynivalenol and de-epoxy-deoxynivalenol into eggs of laying hens using a high-performance liquid chromatography-ultraviolet method with clean-up by immunoaffinity columns[J].Molecular Nutrition&Food Research,2005,49(8):779-785.
(責任編輯田艷明)
[78] GOYARTS T,D?NICKE S,VALENTA H,et al.Carry-over of Fusarium toxins(deoxynivalenol and zearalenone)from naturally contaminated wheat to pigs[J]. Food Additives&Contaminants,2007,24 (4):369-380.
[79] GOYARTS T,D?NICKE S,BRüSSOW K P,et al. On the transfer of the Fusarium toxins deoxynivalenol (DON)and zearalenone(ZON)from sows to their fetuses during days 35-70 of gestation[J].Toxicology Letters,2007,171(1/2):38-49.
Metabolic Characteristics of Deoxynivalenol
ZHANG Zhiqi WANG Ruiguo ZHANG Wei WANG Peilong SU Xiaoou?
(Institute of Quality Standards and Testing Technology for Agricultural Products,Chniese Academy of Agricultural Science,Key Laboratory of Agrifood Safety and Quality,Ministry of Agriculture,Beijing 100081,China)
Abstract:Deoxynivalenol(DON)contamination of food and feed based on grain is a global problem,and it causes serious damage to human and animal health. Metabolic characteristics of DON in humans and animals are the foundation of the DON exposure assessment,toxicology mechanism and intervention technique research. In recent years,the absorption,distribution,metabolism and excretion of DON have caused wide public concern. This paper reviewed the latest research progress of the metabolic characteristics of DON.[Chinese Journal of Animal Nutrition,2016,28(3):641-651]
Key words:deoxynivalenol;toxicokinetics;metabolism
Corresponding author?,professor,E-mail:suxiaoou@caas.cn
通信作者:?蘇曉鷗,研究員,博士生導師,E-mail:suxiaoou@caas.cn
作者簡介:張志岐(1983—),女,山東德州人,博士后,主要從事飼料安全與質(zhì)量控制方向的研究。E-mail:zzq19830619@163.com
基金項目:“十二五”農(nóng)村領域國家科技計劃(2011BAD26B0450);公益性行業(yè)(農(nóng)業(yè))科研專項經(jīng)費(20120388-01)
收稿日期:2015-09-15
doi:10.3969/ j.issn.1006-267x.2016.03.002
中圖分類號:S811.2
文獻標識碼:A
文章編號:1006-267X(2016)03-0641-11