劉雙雙
(吉林師范大學 研究生院,吉林 長春 130103)
?
*-素環(huán)上同態(tài)或反同態(tài)的廣義導子
劉雙雙
(吉林師范大學 研究生院,吉林 長春 130103)
摘要:R是2-扭自由*-素環(huán),J是R的非零*-Jordan理想.F是R上具有非零伴隨導子d的廣義導子.若F(xy)=F(x)F(y)或F(xy)=F(y)F(x),x,y∈J,有d=0或R具有交換性.
關鍵詞:*-素環(huán);*-Jordan理想;導子;廣義導子
0引言
Bell 和Kappe[4]證明了若素環(huán)R的導子d在R的非零理想上是同態(tài)或反同態(tài),則在R上d=0.近期,Asma et al[1]得到素環(huán)的Lie理想上的這一結果.另外,Yenigul ,Argac[7]和Ashraf[2]分別在素環(huán)的σ-導子和素環(huán)的(σ,τ)-導子上證明了的上述結果.Asma Ali和Deepak Kumar[5]將這一結果推廣到素環(huán)的廣義(θ,Φ)-導子上.
本文中,我們將這一結果推廣到*-素環(huán)上*-Jordan 理想的廣義導子上.
本文將用到下面的基本交換子恒等式,:
1主要結果
引理1[[6]引理2]R是2-扭自由*-素環(huán),J是R的非零*-Jordan理想.若aJb=a*Jb=0, 則a=0或或b=0.
引理2[[7]引理3]R是2-扭自由*-素環(huán),J是R的非零*-Jordan理想.若J?Z(R),則R具有交換性.
引理3[[8]引理2.6]一個群不能是它的兩個真子群的并.
定理1R是2-扭自由*-素環(huán),J是R的非零*-Jordan理想.可加映射F:R→R
是具有伴隨導子d的廣義導子.
(i)若F是J上的同態(tài)映射,則d=0;
(ii)若F是J上的同態(tài)映射,則d=0或R具有交換性.
證明:(i)若F是J上的同態(tài)映射,
有F(xy)=F(x)y+xd(y)=F(x)F(y) x,y∈J
(1)
而F(xyz)=F(xy)z+xyd(z) x,y,z∈J
(2)
F(xyz)=F(x)F(yz)=F(x)F(y)z+F(x)yd(z)x,y,z∈J
(3)
比較(2)(3)得(F(x)-x)yd(z)=0 x,y,z∈J,即(F(x)-x)Jd(z)=0
用z*替代z得到(F(x)-x)Jd(z*)=0,而*與d可交換,則
(F(x)-x)Jd(z)*=0
由于R是*-素環(huán),由引理1得F(x)-x=0或d(z)=0.當F(x)=x時,
xy=F(xy)=F(x)y+xd(y)x,y∈J
由上式得到xd(y)=0,i.e.Jd(y)=0.由于J≠0,所以d(y)=0 y∈J.
綜上所述,d=0
(ii)若F是J上的同態(tài)映射,有F(xy)=F(x)y+xd(y)=F(y)F(x) x,y∈J
(4)
在(4)中用xy代替x,得到xyd(y)=F(y)xd(y) x,y∈J
(5)
在(5)中用zx代替x,得到zxyd(y)=F(y)zxd(y) x,y,z∈J
(6)
用z左乘(5)得到zxyd(y)=zF(y)xd(y) x,y,z∈J
(7)
綜上所述,d=0或R具有交換性.
參考文獻:
[1]Bell HE,Kappe LC.Rings in which derivations satisfy certain algebraic conditions[J],Acta.Math.Hungar,1989,53:339-346.
[2]Ali A,Rehman N,Shakir A.On Lie ideals with derivations as homomorphisms and anti-Homomorphisms[J].Acta Math.Hungar,2003,101:79-82.
[3]Yenigul M,Argac N.On prime and semiprime rings with α-derivation[J].Turk.J.Mah,1994,18:280-284.
[4]Ashrsf M,Rehman N,Quadri M A.On (σ,τ)-derivations in certain classes of rings[J].Rad.Mat,1999,9:187-192.
[5]Asma Ali,Deepak Kumar.Generalized derivations as homomorphisms or as anti-homomor-Phism in a prime ring[J].Hacettepe Journal of Mathematics and Statistics Volume,2009,38:17-20.
[6]Oukhttite L,Salhi S,Taoufip L.Commutativity conditions on derivations and Lie ideals in σ-prime rings[J].Beitrage Algebra Geom,2010,51:275-282.
[7]Oukhtite L.On Jordan ideals and derivations in rings with involution[J].Comment.Math.Univ.Carolin,2010,51:389-395.
[8]Huang S.Generalized derivations of prime rings,International Journal of Mathematics and Mathematical Sciences[J],Article ID,2007,6:85612.
[責任編輯:王軍]
Generalized derivation of the homomorphism or anti-homomorphism on *-Prime ring
LIU Shuangshuang
(Graduate School,Jilin Normal University,Changchun 130103,China)
Abstract:In the present paper it is shown that:if R is 2-torsion free *-prime ring,J be a nonzero *-Jordan ideal.F is called a generalized derivation associated with a derovation d.If Either F(xy)=F(x)F(y)or F(xy)=F(y)F(x) for all x,y∈J,then d=0or R is commutative.
Key words:*-prime ring;*-Jordan ideal;derivation;generalized derivation
中圖分類號:O153.3
文獻標識碼:A
文章編號:1672-3600(2016)03-0022-02
作者簡介:劉雙雙(1990-),女,滿族,吉林長春人,吉林師范大學碩士研究生,主要從事環(huán)論的研究.
收稿日期:2015-11-17