国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

連多硫酸鹽的合成、檢測與應(yīng)用

2016-04-07 00:41:53李國防張富強
商丘師范學(xué)院學(xué)報 2016年3期
關(guān)鍵詞:合成應(yīng)用檢測

李國防,張富強

(1.中國礦業(yè)大學(xué) 化工學(xué)院,江蘇 徐州 221008;2.商丘師范學(xué)院 化學(xué)化工學(xué)院,河南 商丘 476000)

?

連多硫酸鹽的合成、檢測與應(yīng)用

李國防1,2,張富強2

(1.中國礦業(yè)大學(xué)化工學(xué)院,江蘇 徐州 221008;2.商丘師范學(xué)院化學(xué)化工學(xué)院,河南 商丘 476000)

摘要:連多硫酸鹽是無機硫化物在氧化成硫酸鹽過程中形成的中間體,因在化學(xué)、工程和微生物領(lǐng)域中的重要作用,對連多硫酸鹽的研究近年來呈復(fù)蘇趨勢.結(jié)合課題組的工作,從制備、檢測和應(yīng)用三方面對連多硫酸鹽的相關(guān)研究進行總結(jié),指出合成高純度連多硫酸鹽和開發(fā)快速檢測方法是推進相關(guān)研究的關(guān)鍵.本文重點分析了連多硫酸鹽在基礎(chǔ)和應(yīng)用方面的研究現(xiàn)狀,指出現(xiàn)行基礎(chǔ)研究與工程需要相比研究體系過于較簡,而且存在研究范圍不廣的問題.指出引入原位分析技術(shù)深化基礎(chǔ)研究和利用連多硫酸鹽進行抗菌、有機物的選擇性綠色還原和貴金屬提取是未來的研究重點.

關(guān)鍵詞:連多硫酸鹽;合成;檢測;應(yīng)用

1連多硫酸鹽的存在形式與人工合成

連六硫酸鉀現(xiàn)有兩種實驗室合成方法[23, 32].方法1:以亞硝酸鉀和硫代硫酸鈉為原料,酸性介質(zhì)中低溫(-35℃)反應(yīng)得60%的連六硫酸鉀,經(jīng)多次純化析晶純度可達97.5%,由于該合成工藝操作溫度過低和操作繁瑣,因此,不是制備連六硫酸鉀的理想方法.方法2:是在6 M HCl和路易斯酸(如FeCl3)穩(wěn)定劑存在下,氯化硫(S2Cl2)和硫代硫酸鈉溶液低溫(-15℃)反應(yīng)得到含連六硫酸的鹽溶液,經(jīng)減壓濃縮過濾除去大部分NaCl,而后低溫攪拌下加入KOH甲醇溶液將連六硫酸成鹽析出,粗品(含KCl)經(jīng)2 M HCl精制得96%的連六硫酸鉀.相比于亞硝酸鉀和硫代硫酸鈉制備工藝,氯化硫/硫代硫酸鈉合成法便于操作,但工藝中將硫代硫酸鈉溶液與鹽酸同時加入到反應(yīng)體系的文獻方法,加劇了硫代硫酸鈉的酸性分解,而且由于反應(yīng)放熱且反應(yīng)快,使溫度不宜控制,副反應(yīng)嚴(yán)重.此外,使用過多水溶劑還增加減壓濃縮時間,造成不必要的能源浪費,而且長時間的升溫濃縮也會增加連六硫酸的分解.

圖1 連多硫酸鹽的線型分子結(jié)構(gòu)[1-6]         圖2 SLHR與文獻工藝[23,32] 制備連六硫酸鹽 Fig.1 Linear structure of polythionates[1-6]         Fig.2 SLHR and literature method [23,32] for the synthesis of hexathionate

針對文獻方法的弊端,我們對硫代硫酸鈉氯化硫工藝進行改進(圖2),以固體硫代硫酸鈉替代固體硫代硫酸鈉溶液,采用固液多相反應(yīng)(solid-liquid heterogeneous reaction (SLHR)),通過控制攪拌速度調(diào)整反應(yīng)速率,使反應(yīng)始終處于最佳的反應(yīng)條件,提高了合成產(chǎn)品的純度.而且,以二氯化硫替代二氯化二硫,我們提出的合成連六硫酸鹽的改進工藝同樣適合于合成高純度連五硫酸鹽.

2連多硫酸鹽的檢測

2.1化學(xué)滴定法

(1)

(2)

(3)

(4)

2.2儀器分析法

化學(xué)滴定法適用于測定單一或兩種連多硫酸鹽簡單共存的體系,對于多種連多硫酸鹽共存的混合物,除需要進行步驟繁瑣的處理程序,還要結(jié)合光譜法才能進行分析[34-40].近些年發(fā)展的色譜技術(shù)如離子色譜(Ion Chromatography)[41-48]、高效液相色譜(High Performance Liquid Chromatography)[9, 10, 12, 13, 49, 50]和毛細管電泳技術(shù)(Capillary Electrophoresis)[51-54]不但可以快速測定,而且可以測定低含量的連多硫酸鹽混合物.在這些儀器分析法中,高效液相色譜法需使用含乙腈的強極性流動相,應(yīng)做好操作毒性防護.毛細管電泳法使用磷酸鹽緩沖溶液做電泳運行液,操作安全,而且分析速度快(幾分鐘可完成操作),但用于定量分析時,為獲得好的重現(xiàn)性,必須嚴(yán)格控制操作條件.

3連多硫酸鹽的應(yīng)用

3.1用作基礎(chǔ)研究的化學(xué)試劑

連多硫酸鹽主要用于基礎(chǔ)研究,早期主要用于配制模擬鋼鐵腐蝕的環(huán)境溶液,研究鋼鐵腐蝕機理,尋找防護措施[55, 56].近年來,由于硫代硫酸鈉無氰提金的興起以及含硫礦物濕法冶金的需要,迫切需要詳細了解硫氧化合物在水中的價態(tài)轉(zhuǎn)化和機理.為此,包括我們課題組和匈牙利的Attila K.Horvath在內(nèi)的研究團體較為詳細的研究了連多硫酸鹽在水中的分解動力學(xué)和水體系中與鹵族化合物的氧化還原反應(yīng)[9, 10, 13-15, 24-26, 57-61].研究發(fā)現(xiàn),連多硫酸鹽在水中的穩(wěn)定性隨溶液的pH值升高而明顯下降,而且隨硫鏈的長度增加而大幅減弱[10, 14, 15, 24-26].無論使用單一的連三、連四、連五或是連六硫酸鹽,均發(fā)現(xiàn)其在水中的分解產(chǎn)物不但包含從連三到連六硫酸鹽的已知物,而且包含不能確定具體分子結(jié)構(gòu)的更高級的連多硫酸鹽[10, 14].這也從實驗證實了連多硫酸鹽之間在水溶液中可以相互轉(zhuǎn)化的事實,但隨時間的推移較高級別的連多硫酸鹽迅速消失,并隨反應(yīng)條件的不同分別轉(zhuǎn)化成不同的終產(chǎn)物如硫酸鹽或硫單質(zhì)[10, 14, 20, 21].研究發(fā)現(xiàn)連六硫酸鹽最易析出硫單質(zhì),連五硫酸鹽次之.我們課題組的潘長偉和匈牙利的Attila K.Horvath均在實驗基礎(chǔ)上提出了不同鏈長度的連多硫酸鹽在水中的分解轉(zhuǎn)化機理,盡管這些機理推斷經(jīng)過了計算模擬驗證,但對提出的某些轉(zhuǎn)化中間物[10, 14](如S2O3OH-、S3O3OH-和S4O3OH-)的存在還缺少直接的實驗觀察,因此,結(jié)合原位分析技術(shù)如原位紅外[37-39]或原位拉曼光譜技術(shù),對連多硫酸鹽的分解轉(zhuǎn)化進行原位檢測是提升研究深度的可靠方案.另外,現(xiàn)有連多硫酸鹽在水中的各種反應(yīng)均是在恒溫25℃條件下考察的,由于溫度是影響各類反應(yīng)的關(guān)鍵因素之一,因此,未來的研究應(yīng)考慮溫度的影響.為研究機理方便,現(xiàn)有文獻均采用單一連多硫酸鹽物種進行相關(guān)反應(yīng)研究,但真實的工程應(yīng)用體系往往比較復(fù)雜,如硫代硫酸鈉無氰提金使用包含銅銨離子在內(nèi)的混合藥劑[62, 63],故研究體系盡量接近連多硫酸鹽在工程應(yīng)用中的真實環(huán)境是未來研究的一個方向.

3.2用作綠色還原劑

由于連多硫酸鹽硫鏈上硫的電子密度高[64-67],因此,連多硫酸鹽可用作還原劑.最常用的低價硫還原劑是硫化鈉及多硫化鈉[68-70],但硫化鈉及多硫化鈉適用于堿性、中性和微酸性環(huán)境,不適合在強酸性環(huán)境中使用(酸性分解).連多硫酸鹽具有良好的水溶性,而且在較寬范圍的酸性環(huán)境中穩(wěn)定,并且連多硫酸鹽硫鏈中的硫與多硫化鈉的硫類似,其最終氧化產(chǎn)物為硫酸鹽[13, 57-59, 71],因此,連多硫酸鹽可以彌補無機硫化物在選擇性還原上的應(yīng)用缺陷,有希望用作酸性環(huán)境中的綠色還原劑.利用硫的還原性,連多硫酸鹽也有用于制備半導(dǎo)體材料如Cu2S和AgS[72-76],和除去工業(yè)廢氣中氮和硫的氧化性氣體的報道[77].

3.3抗菌

由于微生物對人類健康的威脅一直存在,藥物開發(fā)始終貫穿人類的科學(xué)研究.與有機抗菌劑相比,無機殺菌劑具有制備簡單、性質(zhì)穩(wěn)定、價格低和不產(chǎn)生耐藥性的優(yōu)勢,因此,對無機抗菌劑的研發(fā)呈快速上升趨勢[78-85].連多硫酸鹽不穩(wěn)定,尤其是長鏈連多硫酸鹽易分解析出單質(zhì)硫[10].由于硫和一些含硫的無機物(如石灰硫磺合劑、硫化氫及其鹽等)具有較強的生物活性[86-93],因此,連多硫酸鹽具有潛在的藥用價值.硫單質(zhì)是應(yīng)用最早的皮膚病藥物[88-90],但由于其水中不溶和殺菌能力的局限性,其應(yīng)用范圍有限.連多硫酸鹽,由于具有殺菌活性,而且與膠狀硫相比,不會留下淡黃(硫磺)色斑跡,所以,連五硫酸鹽很早便有用于治療皮膚病的報道[94-96].但由于缺少純凈的連多硫酸鹽試劑,對于其余的連多硫酸鹽的抗菌基礎(chǔ)研究近50年沒有文獻報道,因此,對連多硫酸鹽及其復(fù)合材料進行抗菌活性研究既有前沿性又具有理論和現(xiàn)實意義.而且,我們課題組已在這一研究領(lǐng)域開展工作,并取得一定的研究成果.需要指出,如以抗菌為目的制備連多硫酸鹽,還應(yīng)考慮陽離子對微生物的影響,所以,根據(jù)抗菌需求設(shè)計合成特殊分子結(jié)構(gòu)的連多硫酸鹽也是未來的重要研究方向.

3.4用做復(fù)合肥和貴金屬提取劑

由于硫和鉀是植物必須的營養(yǎng)元素,連多硫酸鉀鹽如連四硫酸鉀和連五硫酸鉀是配置植物無土栽培營養(yǎng)液的重要原料[97].由于長鏈連多硫酸鉀具有微生物活性,我們課題組正與植物學(xué)家和微生物學(xué)家合作開發(fā)具有殺菌功能的綠色復(fù)合肥.有趣的是,在青霉素制備工藝中使用連四硫酸鉀替代硫代硫酸鈉配置營養(yǎng)液可以提高青霉素(penicillin)的收率[98].另外,由于含硫有很強的重金屬配位能力,連多硫酸鹽還是無氰提取貴金屬的理想藥劑[62, 63, 99, 100].

4結(jié)論與展望

由于連多硫酸鹽在化學(xué)工程、環(huán)境監(jiān)測和生物新陳代謝中的重要作用,針對連多硫酸鹽的研究近幾年呈現(xiàn)復(fù)蘇趨勢.但連多硫酸鹽無商品供應(yīng)和合成上的困難嚴(yán)重影響了相關(guān)的研究進展,因此,開發(fā)連多硫酸鹽尤其是高純連六硫酸鹽制備工藝是推進相關(guān)研究的首選任務(wù).對于連多硫酸鹽在水中的分解轉(zhuǎn)化機理盡管已有比較深入的了解,但對某些中間體或過渡產(chǎn)物(如S2O3OH等)的存在還缺乏實驗佐證,因此,引入原位技術(shù)如原位紅外和原位拉曼等分析手段是提升研究深度、明晰連多硫酸鹽分解機理的重要途徑.此外,現(xiàn)有研究連多硫酸鹽在水中的分解體系過于簡單,不能真實反映連多硫酸鹽在自然存在環(huán)境中的轉(zhuǎn)化過程.因此,在已了解單一連多硫酸鹽分解轉(zhuǎn)化反應(yīng)的基礎(chǔ)上,研究其在工程應(yīng)用環(huán)境中的變化規(guī)律即富有挑戰(zhàn)性又具有實際意義.因兼有無機和有機抗菌劑的優(yōu)點,設(shè)計合成價廉且生物活性強的新型連多硫酸鹽(如連多硫酸季銨鹽)是抗菌領(lǐng)域的重要研究方向.在綠色有機合成領(lǐng)域,研究連多硫酸鹽在有機物選擇性還原方面的應(yīng)用即富有前瞻性又具有社會、經(jīng)濟和環(huán)境意義.

參考文獻:

[1]Maroy K.Refinement of the crystal structure of potassium barium hexathionate[J].Acta Chem.Scand, 1973, 27:1684-1694.

[2]Maroy K.The crystal structure of potassium pentathionate hemitrihydrate[J].Acta Chem.Scand, 1971, 25:2580-2590.

[3]Foss O, Structure of the hexathioante ion in the trans-dichloro-dien-cobalt(III) salt[J].Acta Chem.Scand, 1959, 13:201-202.

[4]Foss O, Palmork KH.Crystal Data on Salts of Hexathionic Acid[J].Acta Chem.Scand,1958, 12:1337-1339.

[6]Pappoe M, Lucas H, Bottaro C, Louise N, et al.Single Crystal Structural Characterization of Tri-, Tetraand Pentathionates[J].J Chem Crystallogr, 2013, 43:596-604.

[7]Wainwright M, Kiliham K.sulphur oxidation by fusarium solani[J].Soil Biol.Biochem., 1980, 12: 555-562.

[8]KrylovaV.Temperature Effect on the Sulfur Adsorption-Diffusion Processes from Potassium Pentathionate Solutions by Polycaproamide Film[J].Materials Science (Med?iagotyra), 2007, 13: 27-32.

[9]Cseko? G, Ren L, Liu Y, Gao Q, et al.A New System for Studying Spatial Front Instabilities: The Supercatalytic Chlorite-Trithionate Reaction[J].J.Phys.Chem.A, 2014, 118:815-821.

[10]Pan C, Liu Y, Horváth AK, Wang Z, et al.Kinetics and Mechanism of the Alkaline Decomposition of Hexathionate Ion[J].J.Phys.Chem.A, 2013, 117: 2924-2931.

[11]Wang Z, Gao Q, Pan C, Zhao Y, et al.Bisulfite-Driven Autocatalysis in the Bromate-Thiosulfate Reaction in a Slightly Acidic Medium[J].Inorg.Chem., 2012, 51:12062-12064.

[12]Xu L, Csek?G, Kégl T, Horvaáth AK.General Pathway of Sulfur-Chain Breakage of Polythionates by Iodine Confirmed by the Kinetics and Mechanism of the Pentathionate-Iodine Reaction[J].Inorg.Chem., 2012, 51:7837-7843.

[13]Cseko? G, Horvaáth AK.Kinetics and mechanism of the chlorine dioxide-trithionate reaction[J].J.Phys.Chem.A, 2012, 116: 2911-2919.

[14]Pan C, Wang W, Horváth AK, Xie J,et al.Kinetics and Mechanism of Alkaline Decomposition of the Pentathionate Ion by the Simultaneous Tracking of Different Sulfur Species by High-Performance Liquid Chromatography[J].Inorg.Chem., 2011, 50: 9670-9677.

[15]Zhang H, Jeffrey MI.A Kinetic Study of Rearrangement and Degradation Reactions of Tetrathionate and Trithionate in Near-Neutral Solutions[J].Inorg.Chem., 2010, 49:10273-10282.

[16]Takano B.Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake[J].Science, 1987, 235: 1633-1635.

[17]Takano B, Watanuki B.Quenching and liquid chromatographic determination of polythionates in natural water[J].Talanta, 1988, 35: 847-854.

[18]Makhija R, Hitchen A.Determination of polythionates and thiosulphate in mining effluents and mill circuit solutions[J].Talanta, 1978, 25: 79-84.

[19]Senanayake G.Senanayake G.Gold leaching by thiosulfate Solutions: a critical review on copper(II)-thiosulfate-oxygen interactions[J].Miner.Eng., 2005, 18: 995-1009.

[20]Wagner H, Schreier H.Investigations on the alkaline degradation of the pentathioante[J].Phosphorus and Sulfur, 1978, 4:281-284.

[21]Wagner H, Schreier H.Investigations on the sulfite degradation of polythioantes[J].Phosphorus and Sulfur,1978, 4:285-286.

[22]Foss O.Remarks on the reactivities of the penta- and hexathionate ions[J].Acta Chem.Scand., 1958, 12, 959-966.

[23]Kelly DP, Wood AP.Synthesis and Determination of Thiosulfate and Polythionates[J].Methods In Enzymology, 1994, 243:475-501.

[24]Varga D, Horvath AK.Kinetics and Mechanism of the Decomposition of Tetrathionate Ion in Alkaline Medium[J].Inorg.Chem., 2007, 46: 7654-7661.

[25]Zhang H, Dreisinger DB.The kinetics for the decomposition of tetrathionate in alkaline solutions[J].Hydrometallurgy, 2002, 66: 59-65.

[26]Horváth AK, Nagypal I, Epstein I.R Oscillatory Photochemical Decomposition of Tetrathionate Ion[J].J.Am.Chem.Soc., 2002, 124:10956-10957.

[27]Rolla E, Chakrabartl CL.Kinetics of Decomposition of Tetrathionate, Trithionate, and Thiosulfate in Alkaline Media[J].Environ.Sci.Technol., 1982, 16: 852-857.

[28]Naito K, Shieh M,Okabe T.The chemical behavior of low valence sulgue compound.V.decomposition and oxidation of tetrathioante in the aqueous solution[J].Bull.Chem.Soc.Japan, 1970, 43:1372-1376.

[29]Fava A, Silvanbo R.Kinetics of the Catalytic Rearrangement of Tetrathionate[J].J.Am.Chem.Soc., 1955, 77: 5792-5794.

[30]Stamn VH, Seipold O, Goehring M. Die reaktionen zwischen polythionsauren und schwefliger saure bzw.thioschwefelsaure[J].Z.Anorg.Chem., 1941, 247:277-306.

[31]Sharada K, Vasudeva Murthy AR.Formation of Polythionates by the Reaction between Polythiopiperidines and Sulphite and Thiosulphate[J].Z.Anorg.Chem.Bd, 1960, 306: 196-202.

[32]Goehring VM, Feldmann U.Neue Verfahren zur Darstellung van Kaliumpentathio nat und von Kaliumhexathionat[J].Z.Anorg.Chem., 1948, 257: 223-226.

[33]Ritter RD, Krueger JH.Nucleophilic Substitution at Sulfur.Reactions Involving Trithionate Ion[J].J.Am.Chem.Soc., 1970, 92: 2316-2321.

[34]Koh T, Iwaji Iwasaki I.The Determination of Micro Amounts of Polythionates.V.* A Photometric Method for the Determination of Polythionates When Two Species of Them, Tetra-, Penta- and Hexathionate, are Present Together[J].Bull.Chem.Soc.Japan, 1965, 39: 703-708.

[35]Koh T, Taniguchi K.Spectrophotometric Determination of Total Amounts of Polythionates (Tetra-, Penta-, and Hexathionate) in Mixtures with Thiosulfate and Sulfite[J].Anal.Chem., 1973, 45: 2018-2022.

[36]Miura Y, Kitamura H, Koh T.Spectrophotometric Determination of Micro Amounts of Tetrathionate Via Its Oxidation with Permanganate[J].Mikrochim.Acta, 1991, 1: 235-243.

[37]Holman D.A, Bennett D.W.A Multicomponent Kinetics Study of the Anaerobic Decomposition of Aqueous Sodium Dithionite[J].J.Phys.Chem., 1994, 98: 13300-13307.

[38]Holman D A, Thompson A W, Bennett D W Quantitative Determination of Sulfur-Oxygen Anion Concentrations in Aqueous Solution:Multicomponent Analysis of Attenuated Total Reflectance Infrared Spectra[J].Anal.Chem., 1994, 66: 1378-1384.

[39]Voslar M, Matejka P, Schreiber I.Oscillatory Reactions Involving Hydrogen Peroxide and Thiosulfate-Kinetics of the Oxidation of Tetrathionate by Hydrogen Peroxide[J].Inorg.Chem., 2006, 45: 2824-2834.

[40]Koh T, Taniguchi K.Spectrophotometric Determination of Micro Amounts of Hexathionate in Mixtures with Thiosulfate and Sulfite by Means of Its Sulfitolysis[J].Anal.Chem., 1974, 46:1679-1683.

[41]Miura Y, Saitoh A, Koh T.Determination of sulfur oxyanions by ion chromatography on a silica ODS column with tetrapropylammonium salt as an ionpairing reagent[J].J.Chromatog.A., 1997, 770: 157-164.

[42]KoH T.Analytical Chemistry of Polythionates and Thiosulfate A Review[J].Analytical Sciences, 1990, 6: 3-14.

[43]O'Reilly JW, Shaw MJ, Dicinoski GW, Grosse AC,et al.Separation of polythionates and the gold thiosulfate complex in gold thiosulfate leach solutions by ion-interaction chromatography[J].Analyst, 2002, 127: 906-911.

[44]Miura Y, Kawaoi A.Determination of thiosulfate, thiocyanat and polythionates in a mixture by ion-pair chromatography with ultraviolet absorbance detection[J].J.Chromatog.A, 2000, 884:81-87.

[45]Zou H, Jia Z, Zhang Y, Lu P.Separation of aqueous polythionates by reversed-phase ion-pair liquid chromatography with suppressor-conductivity detection[J].Anal.Chim.Acta, 1993, 284: 59-65.

[47]Rabin SB, Stanbury DM.Separation and Determination of Polythionates by Ion-Pair Chromatography[J].Anal.Chem., 1985, 57: 1130-1132.

[48]Wolkoff AW, Larose RH.Separation and Detection of Low Concentrations of Polythionates by High Speed Anion Exchange Liquid Chromatography[J].Anal.Chem., 1975, 47:1003-1008.

[49]Varga D, Nagypal I, Horvath AK.Complex Kinetics of a Landolt-Type Reaction: The Later Phase of the Thiosulfate-Iodate Reaction[J].J.Phys.Chem.A., 2010, 114:5752-5758.

[50]Takano B, McKibben MA, Barnes HL.Liquid Chromatographic Separation and Polarographic Determination of Aqueous Polythionates and Thiosulfate[J].Anal.Chem., 1984, 56: 1594-1600.

[51]óReilly JW, Dicinoski GW, Miura Y, Haddad PR.Separation of thiosulfate and the polythionates in gold thiosulfate leach solutions by capillary electrophoresis[J].Electrophoresis, 2003, 24: 2228-2234.

[52]Padarauskas A, Paliulionyte V, Ragauskas R, Dikcius A.Capillary electrophoretic determination of thiosulfate and its oxidation products[J].J.Chromatog.A., 2000, 879: 235-243.

[53]O′Reilly JW, Dicinoski GW, Shaw MJ, Haddad PR.Chromatographic and electrophoretic separation of inorganic sulfur and sulfur-oxygen species[J].Anal.Chim.Acta., 2001, 432:165-192.

[54]Timerbaev AR.Inorganic biological analysis by capillary electrophoresis[J].Analyst, 2001, 126: 964-981.

[55]Shayegani M, Zakersafaee P.Failure analysis of reactor heater tubes SS347H in ISOMAX unit[J].Eng.Failure Anal., 2012, 22: 121-127.

[56]Horowitz H.H chemical studies of polythionic acid stress-corrosion craking[J].Corros.Sci., 1983, 23: 353-362.

[57]Druschel GK, Hamers RJ, Luther G, Banfield JF.Kinetics and Mechanism of Trithionate and Tetrathionate Oxidation at Low pH by Hydroxyl Radicals[J].Aquatic Geochemistry, 2003, 9: 145-164.

[58]Cseko G, Horvath AK.Non-triiodide based autoinhibition by iodide ion in the trithionate-iodine reaction[J].J.Phys.Chem.A., 2010, 114: 6521-6526.

[59]Druschel G, Hamers RJ, Banfield J.Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2and Fe3+[J].Cosmochimica Acta, 2003, 67: 4457-4469.

[61]Huff Hartz KE, Nicoson JS, Wang L DW.Kinetics and Mechanisms of S(IV) Reductions of Bromite and Chlorite Ions[J].Inorg.Chem., 2003, 42: 78-87.

[62]Senanayake G.Gold leaching by copper(II) in ammoniacal thiosulphate solutions in the presence of additives.Part I: A review of the effect of hard-soft and Lewis acid-base properties and interactions of ions[J].Hydrometallurgy, 2012, 115: 1-20.

[63]Jeffrey MI, Brunt SD.The quantification of thiosulfate and polythionates in gold leach solutions and on anion exchange resins[J].Hydrometallurgy, 2007, 89: 52-60.

[64]Christidis PC, Rentzeperis PJ, Kirfel A, Will G.Experimental charge density in polythionate anions I.X-ray study of electron density distribution in potassium trithionate, K2S306[J].Zeitschrift für Kristallographie, 1985, 173:59-74.

[65]Christidis PC, Rentzeperis PJ.Experimental charge density in polythionate anions: II.X-ray study of the electron density distribution in potassium tetrathionate, K2S406[J].Zeitschrift für Kristallographie, 1989, 188:31-42.

[66]Meye B, Peter L, Spitzerib K.Trends in the Charge Distribution in Sulfanes, Sulfanesulfonic Acids, Sulfanedisulfonic Acids, and Sulfurous Acid[J].Inorg.Chem., 1977, 16: 27-33.

[67]Foss O.The prevalenve of unbranched sulfur chains in polysulfides and polythionic compounds[J].Acta Chem.Scand., 1950, 4: 404-415.

[68]Zhou J, Luo Y, Li Q, Shen J, et al.Assembly of indole fluorophore in situ for hydrogen sulfide signaling through substrate triggered intramolecular reduction-cyclization cascade: a sensitive and selective probe in aqueous solution[J].New J.Chem., 2014, 38: 2770-2773.

[69]Huber D, Andermann G, Leclerc G.Selective reduction of aromatic / aliphatic nitro groups by sodium sulfide[J].Tetra.Lett., 1988, 29: 635-638.

[70]Lin Y, Lang JrSA.Selective reduction of nitro-heterocycles with sodium sulfide in aqueous p-dioxane[J].J.Heterocycl.Chem., 1980, 17: 1273-1275.

[71]Lu Y, Gao Q, Xu L, Zhao Y, et al.Oxygen-Sulfur Species Distribution and Kinetic Analysis in the Hydrogen Peroxide-Thiosulfate System[J].Inorg.Chem., 2010, 49: 6026-6034.

[74]Ancutiene I, Ivanauskas R.Formation of mixed copper sulphide and silver sulphide layers on low density polyethylene film[J].Proceedings of the Estonian Academy of Sciences, 2009, 58: 35-39.

[75]Ancutiene I, Janickis V, Ivanauskas R.Formation and characterization of conductive thin layers of copper sulfide (CuxS) on the surface of polyethylene and polyamide by the use of higher polythionic acids[J].Appl.Surf.Sci., 2006, 252: 4218-4225.

[76]Janickis V, Maciulevicius R, Ivanauskas R, Ancutien I.Chemical deposition of copper sulfide films in the surface of polyamide by the use of higher polythionic acids[J].Colloid.Polym.Sci., 2003, 281:84-89.

[77]Sliger AG, O'Donnell JJ, Cares W.R Sulfur dioxide removal process[P], US 4634582, 1987.

[78]Soenen SJ, Parak WJ, Rejman J, Manshian B.(Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications[J].Chem.Rev., 2015, 115: 2109-2135.

[79]Fasciani C, Silvero MJ, Anghel MA, Argüello GA, et al.C.Aspartame-Stabilized Gold-Silver Bimetallic Biocompatible Nanostructures with Plasmonic Photothermal Properties, Antibacterial Activity, and Long-Term Stability[J].J.Am.Chem.Soc., 2014, 136: 17394-17397.

[80]Pang M, Hu J, Zeng H.Synthesis, Morphological Control, and Antibacterial Properties of Hollow/Solid Ag2S/Ag Heterodimers[J].J.Am.Chem.Soc., 2010, 132: 10771-10785.

[81]Li Y, Yang L, Zhao Y, Li B, et al.Preparation of AgBr@SiO2core@shell hybrid nanoparticles and their bactericidal activity[J].Mater.Sci.Eng., C, 2013, 33: 1808-1812.

[82]Lv M, Su S, He Y, Huang Q, et al.Long-Term Antimicrobial Effect of Silicon Nanowires Decorated with Silver Nanoparticles[J].Adv.Mater., 2010, 22: 5463-5467.

[83]Zhang H, Chen G.Potent Antibacterial Activities of Ag/TiO2Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method[J].Environ.Sci.Technol., 2009, 43: 2905-2910.

[84]Fu F, Li L, Liu L, Cai J, et al.Construction of Cellulose Based ZnO Nanocomposite Films with Antibacterial Properties through One-Step Coagulation[J].ACS Appl.Mater.Interfaces, 2015, 7: 2597-2606.

[85]Yang X, Li J, Liang T, Ma C,et al.Antibacterial activity of two-dimensional MoS2sheets[J]. Nanoscale, 2014, 6: 10126-10133.

[86]Madelaine V, Oliveira RM, Perez AL, Rodríguez-Cruz FA, et al.M Lime sulfur toxicity to broad mite, to its host plants and to natural enemies[J].Pest Manage.Sci., 2013, 69: 738-743.

[87]Holb IJ, Schnabel G.A detached fruit study on the post-inoculation activity of lime sulfur against brown rot of peach (Monilinia fructicola) [J].Australasian Plant Pathology, 2008, 37: 454-459.

[88]Rao KJ, Paria S.Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens[J].RSC Adv., 2013, 3: 10471-10478.

[89]Baldwin MM.Sulfur in Fungicides[J].Ind.Eng.Chem.Res., 1950, 42: 2227-2230.

[90]Weld JT, Gunther A.The antibacterial properties of sulfur[J].J.Exp.Med., 1947, 85: 531-542.

[91]Song Z, Ng M, Lee Z, Dai W, et al.Hydrogen sulfide donors in research and drug development[J].Med.Chem.Commun,2014, 5: 557-570.

[92]Castro H, Cabeza-Rivera F, Green D.Combined therapy with sodium thiosulfate and parathyroidectomy in a patient with calciphylaxis[J].Dialysis & Transplantation, 2011, 40:264-266.

[93]Park YH, Park CH, Kim HJ.The effect of topical sodium thiosulfate in experimentally induced myringosclerosis[J].The Laryngoscope, 2010, 120:1405-1410.

[94]Greenberg L.Comparative Laboratory Evaluation of Antiseborrheic Dermatitis Preparations[J].J.Pharm.Sci., 1961, 50: 480-482.

[95]Neesby TE.Stabilized polythionates as medical cosmetics[P].US 2551627, 1951.

[96]Neesby TE, New Brunswick NJ.Stabilizing aqueous solutions of polythionates and polythionic acids[P].US 2768875, 1956.

[97]Bolhuis HH.Composition suitable as fertillizer containing sulphur as a polythionic acid compound or a salt thereof[P].EP 0949221A1, 1999.

[98]Peterson MH.Production of penicillin in presence of polythionate[P].US 2871164, 1959.

[99]Hackl RP, Ji J, West-sells PG.Method for thiosulfate leaching of precious metal-containing materials[P].US 20100111751A1, 2010.

[100]Fleming C, Wells J, Thomas KG.Process for recovering gold from thiosulfate leach solutions and slurries with ion exchange resin[P].US 6344068B1, 2002.

[責(zé)任編輯:徐明忠]

Preparation, detection and application of polythionates

LI Guofang1,2,ZHANG Fuqiang2

(1.College of Chemical Engineering,China University of Mining and Technology,Xuzhou221008,China;2.School of Chemical & Engineering, Shangqiu Normal University, Shangqiu 476000,China)

Abstract:Abstract Polythionates, intermediates in the oxidation process of sulfur compounds to sulphate, play important role in different fields of chemistry as well as that of chemical technology and biology, and investigation of different reactions of polythionates has been living its renessaince nowadays.Based on recent work of our research group, the progress of polythionates related preparation, detection and application is reviewed.And the key to promote the research of polythionates is to synthesize high purity products and to develop rapid detection method for polythionates.We focus on analyzing the research status of polythionates covering fundamental and applied research and point out that the reaction system of existing fundamental research related polythionates, in comparison to the fact of its practical application, tends to be too simple and needs to be branched out to the area of research.Potential new directions, furthering fundamental research based on real-time observation, used for antiseptics, green selective reducing agent of organic matters, and recovering precious metals from materials, in this area of research are highlighted.

Key words:polythionates; preparation; detection; application

中圖分類號:O612.6

文獻標(biāo)識碼:A

文章編號:1672-3600(2016)03-0033-07

作者簡介:李國防(1970-),男,河南睢縣人,商丘師范學(xué)院副教授,在讀博士.主要從事抗菌材料制備與應(yīng)用的研究.

基金項目:國家自然科學(xué)基金資助項目(21271125)

收稿日期:2015-12-01

猜你喜歡
合成應(yīng)用檢測
“一元一次不等式組”檢測題
“一元一次不等式”檢測題
“不等式”檢測題
綜合化學(xué)實驗設(shè)計:RGO/MnO復(fù)合材料的合成及其電化學(xué)性能考察
考試周刊(2016年85期)2016-11-11 02:09:06
八種氟喹諾酮類藥物人工抗原的合成及鑒定
滿文單詞合成系統(tǒng)的設(shè)計
科技視界(2016年18期)2016-11-03 00:34:31
GM(1,1)白化微分優(yōu)化方程預(yù)測模型建模過程應(yīng)用分析
科技視界(2016年20期)2016-09-29 12:03:12
煤礦井下坑道鉆機人機工程學(xué)應(yīng)用分析
科技視界(2016年20期)2016-09-29 11:47:01
氣體分離提純應(yīng)用變壓吸附技術(shù)的分析
科技視界(2016年20期)2016-09-29 11:02:20
會計與統(tǒng)計的比較研究
于都县| 皮山县| 徐州市| 襄城县| 远安县| 虎林市| 汉阴县| 社会| 五指山市| 蚌埠市| 从江县| 清徐县| 安阳县| 永宁县| 朔州市| 庆云县| 新乡市| 璧山县| 香格里拉县| 吉安县| 双辽市| 梅河口市| 佛山市| 栖霞市| 丽水市| 山西省| 子洲县| 揭阳市| 东明县| 集安市| 乐业县| 云梦县| 财经| 泸溪县| 喀喇| 宿迁市| 马关县| 巴楚县| 阿克苏市| 金山区| 永康市|