劉鈺罡,孫移坤,戴宜武
(1南方醫(yī)科大學(xué)附屬北京軍區(qū)總醫(yī)院臨床學(xué)院附屬八一腦科醫(yī)院,北京 100700;2解放軍醫(yī)學(xué)院附屬北京軍區(qū)總醫(yī)院臨床學(xué)院附屬八一腦科醫(yī)院)
?
巖藻黃素對腦膠質(zhì)瘤細胞U87增殖及自噬的影響
劉鈺罡1,孫移坤2,戴宜武1
(1南方醫(yī)科大學(xué)附屬北京軍區(qū)總醫(yī)院臨床學(xué)院附屬八一腦科醫(yī)院,北京 100700;2解放軍醫(yī)學(xué)院附屬北京軍區(qū)總醫(yī)院臨床學(xué)院附屬八一腦科醫(yī)院)
目的觀察巖藻黃素對腦膠質(zhì)瘤細胞U87增殖及自噬的影響。方法未經(jīng)處理的U87細胞作為對照組,不同濃度巖藻黃素處理的U87細胞作為實驗組,比較各組細胞生存率、細胞凋亡率及自噬體、自噬溶酶體數(shù)目和分布,另比較細胞亞顯微結(jié)構(gòu)、微管相關(guān)蛋白1輕鏈3 Ⅱ型/微管相關(guān)蛋白1輕鏈3Ⅰ型(LC3Ⅱ/LC3Ⅰ)、酵母自噬基因6同系物(Beclin1)。結(jié)果12.5、25、50、75 μmol/L巖藻黃素處理組細胞生存率分別為93.19%±5.88%、73.05%±2.33%、49.95%±1.59%、25.95%±1.40%,對照組為100.00%±1.35%,25、50、75 μmol/L巖藻黃素處理組分別與對照組比較,P均<0.05。25、50 μmol/L巖藻黃素處理組細胞凋亡率分別為12.00%±0.56%、31.97%±1.83%,對照組為2.97%±0.21%,各巖藻黃素處理組分別與對照組比較,P均<0.05。25、50 μmol/L巖藻黃素處理組細胞LC3-GFP融合蛋白轉(zhuǎn)移至自噬體膜并呈斑點狀分布于細胞質(zhì)內(nèi),且斑點數(shù)目隨藥物濃度的升高而增加;對照組LC3-GFP融合蛋白彌散分布在胞質(zhì)中。鏡下可見對照組正常的細胞器結(jié)構(gòu);50 μmol/L巖藻黃素處理組可見大量的自噬小泡、自噬體及自噬溶酶體,其中可見尚未完全降解線粒體結(jié)構(gòu)。25、50 μmol/L巖藻黃素處理組LC3Ⅱ/LC3Ⅰ分別為0.86±0.05、0.89±0.04,對照組為0.65±0.01,各巖藻黃素處理組分別與對照組比較,P均<0.05;25、50 μmol/L巖藻黃素處理組Beclin1相對表達量分別為0.39±0.02、0.59±0.04,對照組為0.23±0.01,各巖藻黃素處理組分別與對照組比較,P均<0.05。結(jié)論巖藻黃素可有效抑制U87細胞增殖,并誘導(dǎo)自噬的發(fā)生。
巖藻黃素;膠質(zhì)瘤;微管相關(guān)蛋白1輕鏈3 Ⅱ型;微管相關(guān)蛋白1輕鏈3 Ⅰ型;酵母自噬基因6同系物
膠質(zhì)瘤是常見的顱內(nèi)原發(fā)性腫瘤,分為少突神經(jīng)膠質(zhì)瘤和星形細胞瘤。星形細胞瘤是常見的原發(fā)性中樞神經(jīng)系統(tǒng)腫瘤,根據(jù)組織學(xué)和預(yù)后評分可分為Ⅰ~Ⅳ級[1],U87細胞屬于Ⅳ級神經(jīng)膠質(zhì)母細胞瘤細胞[2]。膠質(zhì)瘤預(yù)后較差,通過手術(shù)切除及術(shù)后放療、化療仍很難取得良好療效。巖藻黃素是一種從海藻中提取的類胡蘿卜素,其分子式中包含二烯烴、共軛羰基、乙?;?,這些特殊的官能團使巖藻黃素具有抗氧化活性[3~5],可誘導(dǎo)腫瘤細胞凋亡和自噬[6]。現(xiàn)已證明,巖藻黃素可減少黑色素瘤細胞和骨肉瘤細胞的浸潤和轉(zhuǎn)移能力[7,8]。但少有巖藻黃素抑制神經(jīng)膠質(zhì)瘤生長及潛在機制的相關(guān)研究。本研究觀察了巖藻黃素對U87細胞增殖及自噬的影響,旨在為其用于膠質(zhì)瘤的治療提供理論依據(jù)。
1.1材料U87細胞(中國醫(yī)學(xué)科學(xué)院);DMEM培養(yǎng)基和胎牛血清(Gibico公司,美國);鏈霉素和青霉素(HyClone公司,美國);MTT和巖藻黃素(Sigma公司,美國);微管相關(guān)蛋白1輕鏈3(LC3)、酵母自噬基因6同系物(Beclin1)一抗及辣根酶過氧化物標記的二抗(Cell Signaling 公司,美國);Annexin V-FITC/PI(BD公司,美國)。
1.2U87細胞培養(yǎng)將凍存于液氮中的U87細胞株取出,迅速放入37 ℃水浴中,并接種于DMEM培養(yǎng)基(含10%胎牛血清和100 μg/mL青霉素、鏈霉素)中,將培養(yǎng)皿放入37 ℃培養(yǎng)箱(95%濕度和5%CO2)中培養(yǎng),每3 d傳代1次,傳代比例為1∶3,取對數(shù)生長期細胞進行下述實驗。
1.3巖藻黃素對U87細胞生存率的影響觀察采用MTT法。取對數(shù)生長期U87細胞,胰酶消化、離心,完全培養(yǎng)基重懸細胞,細胞計數(shù)后接種于96孔板中,細胞密度為4 000/孔,培養(yǎng)過夜后以不同終濃度(0、12.5、25、50、75 μmol/L)巖藻黃素處理24 h。利用MTT分析法檢測細胞生存率,對照組和各處理組中分別加入MTT(工作濃度5 g/L),37 ℃繼續(xù)培養(yǎng)4 h,棄培養(yǎng)液,加入150 μL的DMSO充分溶解甲瓚結(jié)晶后,使用酶標儀于540 nm波長處測量吸光度值(A值)。計算細胞生存率,細胞生存率(%)=實驗組A值/對照組A值×100%。
1.4巖藻黃素對U87細胞凋亡率的影響觀察采用流式細胞儀。取對數(shù)生長期U87細胞,胰酶消化、離心,完全培養(yǎng)基重懸細胞,細胞計數(shù)后接種于6孔板中,細胞密度為1.5×105/孔,培養(yǎng)過夜后以不同終濃度(0、25、50 μmol/L)的巖藻黃素處理U87細胞24 h,胰酶消化,1 000 r/min離心,10 min收集細胞,每組加入Annexin V 5 μL及PI 5 μL,室溫下避光孵育15 min,使用流式細胞儀檢測細胞凋亡,使用CellQuest & ModFit分析凋亡率。
1.5巖藻黃素對U87細胞自噬體、自噬溶酶體數(shù)目和分布的影響觀察取對數(shù)生長期U87細胞,胰酶消化、離心,無雙抗培養(yǎng)基重懸細胞,細胞計數(shù)后接種于6孔板中的方形蓋玻片上,細胞密度1.5×105/孔,待細胞融合至80%左右時,使用Lipofectamine 3000轉(zhuǎn)染LC3-GFP質(zhì)粒。取一個1.5 mL EP管,加入125 μL Opti-MEMⅠReduced Serum Medium和5 μL Lipofectamine 3000。向另一個1.5 mL EP管中加入125 μL Opti-MEM ⅠReduced Serum Medium,5 μL P3000和2.5 μg質(zhì)粒DNA,輕吹混勻制成DNA稀釋液。將兩管輕混并室溫放置5 min后加入細胞中,使之混勻。繼續(xù)培養(yǎng)12 h后更換完全培養(yǎng)基,并分別加入不同濃度(25、50 μmol/L)的巖藻黃素處理。處理24 h后使用PBS沖洗兩遍,4%多聚甲醛固定15 min,使用dapi fluoromount G封片。使用共聚焦顯微鏡拍照,觀察自噬體、自噬溶酶體的數(shù)目和分布情況。
1.6巖藻黃素對U87細胞亞顯微結(jié)構(gòu)的影響觀察采用透射電子顯微鏡。取對數(shù)生長期U87細胞,胰酶消化、離心,完全培養(yǎng)基重懸細胞,細胞計數(shù)后接種于培養(yǎng)皿中,細胞密度2×105/皿,培養(yǎng)過夜后,0、50 μmol/L巖藻黃素處理U87細胞24 h,收集細胞,用2.5%戊二醛磷酸緩沖液4 ℃下固定1 h,使用1%四氧化鋨在固定及梯度脫水后環(huán)氧樹脂包被。使用超微切片機切片后固定于銅網(wǎng)中,乙酸雙氧鈾和檸檬酸鉛分別固定15、3 min。使用透射電子顯微鏡觀察細胞亞顯微結(jié)構(gòu)。
1.7巖藻黃素對U87細胞LC3Ⅱ/LC3Ⅰ、Beclin1表達的影響采用Western blotting法。取對數(shù)生長期U87細胞,胰酶消化、離心,完全培養(yǎng)基重懸細胞,細胞計數(shù)后接種于培養(yǎng)皿中,細胞密度2×105/皿,培養(yǎng)過夜后加入不同終濃度(0、25、50 μmol/L)的巖藻黃素24 h,收集細胞,加入100 μL細胞裂解液,于冰上裂解30 min后以13 000 r/min離心15 min,吸取上清液至一干凈的EP管并檢測蛋白濃度。各組樣本取總蛋白40 μg,經(jīng)SDS-PAGE電泳,濕轉(zhuǎn)至PVDF膜后封閉,加一抗4 ℃過夜,次日加入辣根過氧化物標記的二抗,室溫孵育1 h,使用增強化學(xué)發(fā)光液顯影。β-actin設(shè)為內(nèi)參。使用ImageJ2X軟件分別測定LC3Ⅰ、LC3Ⅱ、Beclin1、β-actin灰度值。
2.1細胞生存率比較12.5、25、50、75 μmol/L巖藻黃素處理組細胞生存率分別為93.19%±5.88%、73.05%±2.33%、49.95%±1.59%、25.95%±1.40%,對照組為100.00%±1.35%,25、50、75 μmol/L巖藻黃素處理組分別與對照組比較,P均<0.05。
2.2細胞凋亡率比較25、50 μmol/L巖藻黃素處理組細胞凋亡率分別為12.00%±0.56%、31.97%±1.83%,對照組為2.97%±0.21%,各巖藻黃素處理組分別與對照組比較,P均<0.05。
2.3細胞自噬體、自噬溶酶體數(shù)目和分布比較對照組U87細胞LC3-GFP融合蛋白均勻分布于胞質(zhì)中;25、50 μmol/L巖藻黃素處理組細胞LC3-GFP融合蛋白轉(zhuǎn)移至自噬體膜,并呈斑點狀分布于細胞質(zhì)內(nèi),且斑點數(shù)目隨藥物升高而增加。
2.4細胞亞顯微結(jié)構(gòu)比較對照組U87胞質(zhì)內(nèi)可見正常的細胞器結(jié)構(gòu)。50 μmol/L巖藻黃素處理組可見大量的自噬小泡、自噬體及自噬溶酶體,其中可見尚未完全降解線粒體結(jié)構(gòu)。
2.5細胞LC3Ⅱ/LC3Ⅰ、Beclin1比較25、50 μmol/L巖藻黃素處理組LC3Ⅱ/LC3Ⅰ分別為0.86±0.05、0.89±0.04,對照組為0.65±0.01,各巖藻黃素處理組分別與對照組比較,P均<0.05;25、50 μmol/L巖藻黃素處理組Beclin1相對表達量分別為0.39±0.02、0.59±0.04,對照組為0.23±0.01,各巖藻黃素處理組分別與對照組比較,P均<0.05。
膠質(zhì)瘤是常見的顱內(nèi)原發(fā)性腫瘤(約60%),根據(jù)組織學(xué)和預(yù)后評分可分為Ⅰ~Ⅳ級,U87細胞屬于Ⅳ級膠質(zhì)母細胞瘤細胞,具有惡性增殖的生長特性[1,9~11],手術(shù)很難切除干凈,且術(shù)后復(fù)發(fā)率高,平均生存周期短[12]。盡管目前手術(shù)治療結(jié)合放療和化療取得了長足進步,但治療效果并不理想,因此亟需新的治療方法和治療靶點[13]。研究[14~18]證明,維生素A和其中間代謝產(chǎn)物視黃酸具有抑制膠質(zhì)瘤細胞生長,誘導(dǎo)其發(fā)生凋亡,阻滯細胞周期,抑制其侵襲和遷移的作用。巖藻黃素是一種類胡蘿卜素,具有和視黃酸相同的化學(xué)結(jié)構(gòu),即共軛基團和羥基基團,可能是其發(fā)揮作用的分子基礎(chǔ)。
細胞死亡分為程序性死亡和非程序性死亡兩種,細胞凋亡是指為維持內(nèi)環(huán)境穩(wěn)定,由基因控制的細胞自主有序的死亡,最早是1972年由Kerr等[19]根據(jù)形態(tài)學(xué)特征首先提出的。本研究發(fā)現(xiàn),與對照組比較,25、50、75 μmol/L巖藻黃素處理組細胞生存率明顯降低,并呈濃度依賴性,提示巖藻黃素可以有效抑制U87細胞增殖。本研究還發(fā)現(xiàn),與對照組比較,25、50 μmol/L巖藻黃素處理組細胞凋亡率升高,提示巖藻黃素還通過其他途徑誘導(dǎo)細胞的死亡。
自噬是一種程序性死亡,為進化過程中高度保守和至關(guān)重要的自我保護系統(tǒng)[20],自噬亦稱第二類程序性死亡。越來越多證據(jù)表明,化學(xué)藥物或植物藥物誘導(dǎo)的自噬,在治療癌癥和神經(jīng)膠質(zhì)瘤方面起到越來越重要的作用[21]。已有大量實驗證實,自噬可以作為一種有效途徑,在殺死腫瘤細胞中發(fā)揮重要作用,如姜黃素可以誘導(dǎo)膠質(zhì)瘤自噬從而產(chǎn)生抗腫瘤效果[22],神經(jīng)酰胺可誘導(dǎo)膠質(zhì)瘤細胞自噬性死亡[23]等。酸性小泡的形成和促進自噬小體的運輸過程中,LC3蛋白的參與起重要作用[24]。在自噬發(fā)生時,LC3蛋白的總量特別是LC3Ⅱ蛋白表達量隨之升高,LC3Ⅱ在組裝溶酶體、自噬體及最后誘導(dǎo)激活自噬中起重要作用,其表達量亦反映自噬的程度[25,26]。Beclin1是被證實的第一個自噬相關(guān)腫瘤因子[27],其雜合性降低是細胞發(fā)生惡變的轉(zhuǎn)化因素之一[28,29]。有研究[30]表明,Beclin1一方面有利于吞噬泡的形成從而促進自噬體的形成,另一方面有助于自噬體的成熟[31]。本研究顯示,相對于對照組,25、50 μmol/L巖藻黃素處理組LC3Ⅱ/LC3Ⅰ、Beclin1表達升高,證實巖藻黃素可誘導(dǎo)U87細胞自噬的發(fā)生。LC3蛋白是自噬的關(guān)鍵蛋白,在LC3-GFP瞬時轉(zhuǎn)染實驗中發(fā)現(xiàn),25、50 μmol/L組巖藻黃素處理后的U87細胞,LC3-GFP蛋白轉(zhuǎn)移至自噬體膜并呈斑點狀分布于細胞質(zhì)內(nèi),且斑點數(shù)目隨藥物濃度的升高而增加,進一步證實巖藻黃素誘導(dǎo)了U87細胞自噬的發(fā)生。透射電子顯微鏡觀察,50 μmol/L巖藻黃素處理組細胞中存在大量的自噬體、自噬溶酶體,提示U87細胞中細胞器的降解是通過巖藻黃素誘導(dǎo)其自噬的發(fā)生。
總之,我們發(fā)現(xiàn)巖藻黃素可以抑制U87細胞的增殖,并誘導(dǎo)U87細胞的凋亡,進一步證明巖藻黃素可以誘導(dǎo)U87細胞的自噬性死亡,提出自噬可能成為一種新的抗瘤途徑,其主要的機制是通過形成自噬溶酶體降解和消化細胞器、蛋白、DNA碎片發(fā)揮殺傷作用。
[1] Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases[J]. Nat Rev Cancer, 2003,3(7):489-501.
[2] Dunbar E, Yachnis AT. Glioma diagnosis: immunohistochemistry and beyond[J]. Adv Anat pathol, 2010,17(3):187-201.
[3] Hu T, Liu D, Chen Y, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro[J]. Int J Biol Macromol, 2010,46(2):193-198.
[4] Sachindra NM, Sato E, Maeda H, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites[J]. J Agric Food Chem, 2007,55(21):8516-8522.
[5] Heo SJ, Jeon YJ. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage[J]. J Photochem Photobiol, 2009,95(2):101-107.
[6] Heo SJ, Ko SC, Kang SM, et al. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage[J]. Eur Food Res Technol, 2008,228(1):145-151.
[7] Chung TW, Choi HJ, Lee JY, et al. Marine algal fucoxanthin inhibits the metastatic potential of cancer cells[J]. Biochem Biophys Res Commun, 2013,439(4):580-585.
[8] Rokkaku T, Kimura R, Ishikawa C, et al. Anticancer effects of marine carotenoids, fucoxanthin and its deacetylated product, fucoxanthinol, on osteosarcoma[J]. Int J Oncol, 2013,43(4):1176-1186.
[9] Ahn BH, Min G, Bae YS, et al. Phospholipase D is activated and phosphorylated by casein kinase-Ⅱ in human U87 astroglioma cells[J]. Exp Mol Med, 2006,38(1):55-62.
[10] Camphausen K, Purow B, Sproull M, et al. Orthotopic growth of human glioma cells quantitatively and qualitatively influences radiation-induced changes in gene expression[J]. Cancer Res, 2005,65(22):10389-10393.
[11] Nakada M, Niska JA, Miyamori H, et al. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells[J]. Cancer Res, 64(9):3179-3185.
[12] Soffietti R, Kocher M, Abacioglu UM, et al. A european organisation for research and treatment of cancer phase Ⅲ trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results[J]. J Clin Oncol, 2013,31(1):65-72.
[13] Corwin D, Holdsworth C, Rockne RC, et al. Toward patient-specific, biologically optimized radiation therapy plans for the treatment of glioblastoma [J]. PLoS One, 2013, 8(11):e79115.
[14] Tani E, Morimura T, Kaba K, et al. Preliminary study of the effects of vitamin A on antineoplastic activities of chemotherapeutic agents in glioma[J]. Neurol Med Chir, 1980,20(7):665-677.
[15] Yung WA, Lotan R, Lee P, et al. Modulation of growth and epidermal growth factor receptor activity by retinoic acid in human glioma cells[J]. Cancer Res, 1989,49(4):1014-1019.
[16] Gumireddy K, Sutton LN, Phillips PC, et al. All-trans-retinoic acid-induced apoptosis in human medulloblastoma: activation of caspase-3/poly(ADP-ribose) polymerase 1 pathway[J]. Clin Cancer Res, 2003,9(11):4052-4059.
[17] Ying M, Wang S, Sang Y, et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition[J]. Oncogene, 2011,30(31):3454-3467.
[18] Liang C, Yang L, Guo S. All-trans retinoic acid inhibits migration, invasion and proliferation, and promotes apoptosis in glioma cells in vitro[J]. Oncol Lett, 2015,9(6):2833-2838.
[19] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972,26(4):239-257.
[20] Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy[J]. Curr Opin Cell Biol, 2004,16(6):663-669.
[21] Shinojima N, Yokoyama T, Kondo Y, et al. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy[J]. Autophagy, 2007,3(6):635-637.
[22] 倪琦,曾思恩,譚寧,等.姜黃素對肝癌Hep1細胞增殖及凋亡的影響[J].山東醫(yī)藥,2010,50(7):6-8.
[23] 張露勇,羅菲亞,胡培麗,等.神經(jīng)酰胺通過JNK-C-Jun信號通路誘導(dǎo)膠質(zhì)瘤細胞自噬性死亡[J].首都醫(yī)科大學(xué)學(xué)報,2015,35(2):276-281.
[24] Matsushita M, Suzuki NN, Obara K, et al. Structure of Atg5.Atg16, a complex essential for autophagy[J]. J Biol Chem, 2007,282(9):6763-6772.
[25] Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene[J]. J Clin Invest, 2003,112(12):1809-1820.
[26] Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes[J]. Nat Cell Biol, 2004,6(12):1221-1228.
[27] Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8[J]. Science, 2004,304(5676):1500-1502.
[28] Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival[J]. Science, 1998,281(5381):1322-1326.
[29] Antonsson B, Martinou JC. The Bcl-2 protein family[J]. Exp Cell Res, 2000,256(1):50-57.
[30] Wirawan E, Lippens S, Vanden Berghe T, et al. Beclin1: a role in membrane dynamics and beyond[J]. Autophagy, 2012,8(1):6-17.
[31] Yin X, Cao L, Kang R, et al. UV irradiation resistance-associated gene suppresses apoptosis by interfering with BAX activation[J]. EMBO Rep, 2011,12(7):727-734.
Effect of fucoxanthin on proliferation and autophagy of human glioma U87 cells
LIU Yugang1, SUN Yikun, DAI Yiwu
(1 Clinical College of General Hospital of Beijing Military Region, Southern Medical University, Beijing 100700, China)
ObjectiveTo observe the effect of fucoxanthin on the proliferation and autophagy of glioma U87 cells. MethodsThe untreated U87 cells were taken as the control group, and U87 cells treated with different concentrations of fucoxanthin were taken as the experimental group. The viability, the apoptosis rate, the number and distribution of autophagosome and autolysosome were compared between different groups. Meanwhile, the cell ultrastructure, microtubule-associated protein 1 light chain 3Ⅱ/microtubule-associated protein 1 light chain 3Ⅰ (LC3Ⅱ/LC3Ⅰ), and Beclin-1 were compared between the two groups.ResultsThe cell survival rates of the experiment groups treated with 12.5, 25, 50 and 75 μmol/L fucoxanthin were 93.19%±5.88%, 73.05%±2.33%, 49.95%±1.59% and 25.95%±1.40%, respectively. The viability of the control group was 100.00%±1.35%. Significant difference was found between the experimental groups treated with 25, 50, 75 μmol/L fucoxanthin and the control group (all P<0.05). The apoptosis rates of the experimental groups treated with 25 and 50 μmol/L fucoxanthin were respectively 12.00%±0.56% and 31.97%±1.83%, and it was 2.97%±0.21% in the control group (all P<0.05). Fucoxanthin induced autophagy in dose-dependent manner, which was assayed by transient transfection of LC3-GFP. Compared with the control group, there were more lysosome and autophagolysosomes, indicated by LC3-GFP, in U87 cells treated with fucoxanthin (25 and 50 μmol/L). Fucoxanthin-treated cells displayed many lysosome and autophagolysosomes which were observed by transmission electron microscopy. In the experiment groups treated with fucoxanthin (25 and 50 μmol/L), the expression of LC3Ⅱ/LC3Ⅰand Beclin1 was 0.86±0.05, 0.89±0.04 and 0.39±0.02, 0.59±0.04.In the control group, the expression of LC3Ⅱ/LC3Ⅰand Beclin1 was 0.65±0.01 and 0.23±0.01.Compared with the control group, autophagic-related protein expression of LC3Ⅱ/LC3Ⅰand Beclin1 was significantly increased in the experimental groups (all P<0.05). ConclusionFucoxanthin can effectively inhibit the proliferation of U87 cells and induce autophagy.
fucoxanthin; glioma; microtubule-associated protein 1 light chain 3 II; microtubule-associated protein 1 light chain 3 I; Beclin1
國家自然科學(xué)基金資助項目(81271391)。
劉鈺罡(1989-),男,在讀碩士,主要研究方向為抗膠質(zhì)瘤相關(guān)機制。E-mail: 332074883@qq.com
簡介:戴宜武(1964-),男,博士,教授,博士生導(dǎo)師,主要研究方向為神經(jīng)干細胞增殖分化相關(guān)機制及抗膠質(zhì)瘤相關(guān)機制的神經(jīng)修復(fù)。E-mail: dyw100200@163.com
10.3969/j.issn.1002-266X.2016.15.002
R739.4
A
1002-266X(2016)15-0004-04
2016-01-18)