国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

微生物降解抗生素的研究進(jìn)展

2016-03-24 07:59:57劉元望李兆君成登苗胡海燕張文娟中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室北京0008山西師范大學(xué)地理科學(xué)學(xué)院山西臨汾04004
關(guān)鍵詞:降解微生物抗生素

劉元望,李兆君*,馮 瑤,成登苗,胡海燕,張文娟,2(.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京0008;2.山西師范大學(xué)地理科學(xué)學(xué)院,山西臨汾04004)

?

微生物降解抗生素的研究進(jìn)展

劉元望1,李兆君1*,馮瑤1,成登苗1,胡海燕1,張文娟1,2
(1.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京100081;2.山西師范大學(xué)地理科學(xué)學(xué)院,山西臨汾041004)

摘要:近幾十年來,抗生素的大量使用所引起的公共健康、資源利用和環(huán)境污染等問題倍受社會(huì)關(guān)注。由于微生物對(duì)抗生素削減的高效、低耗、環(huán)保和操作簡(jiǎn)單等優(yōu)點(diǎn),微生物降解法已成為處理抗生素污染的有效途徑。在綜述近幾十年來利用微生物方法處理抗生素污染的技術(shù)、抗生素降解功能微生物的篩選、降解條件優(yōu)化、降解效果及其降解機(jī)制等方面研究進(jìn)展的基礎(chǔ)上,指出了今后的研究方向。

關(guān)鍵詞:微生物;抗生素;降解

劉元望,李兆君,馮瑤,等.微生物降解抗生素的研究進(jìn)展[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(2):212-224.

抗生素(Antibiotics)是由微生物(包括細(xì)菌、真菌、放線菌)產(chǎn)生的具有抗病原體或其他活性的一類次級(jí)代謝產(chǎn)物,能干擾其他活細(xì)胞的發(fā)育功能??股刈鳛橐志驓⒕愃幬镆驯粡V泛應(yīng)用于人類疾病治療、畜禽及水產(chǎn)養(yǎng)殖等多個(gè)領(lǐng)域,主要包括四環(huán)素類、磺胺類、β-內(nèi)酰胺類、氟喹諾酮類和大環(huán)內(nèi)酯類等[1]。我國(guó)是抗生素生產(chǎn)和使用大國(guó),每年抗生素生產(chǎn)量達(dá)21萬t,使用量達(dá)18.9萬t,其中獸用抗生素占到使用量的一半以上[2]。研究發(fā)現(xiàn),生物體攝入大量抗生素類藥物后除部分被機(jī)體代謝外,有40%~90%以原藥或初級(jí)代謝產(chǎn)物的形式隨糞便和尿液排出體外[3],最終又通過施肥等方式進(jìn)入土壤環(huán)境或者通過滲漏和污水排放進(jìn)入水體環(huán)境。近年來,關(guān)于抗生素類污染物在水體、沉積物和土壤中被檢出的國(guó)內(nèi)外相關(guān)報(bào)道層出不窮,甚至在蔬菜、奶類和肉類等產(chǎn)品中也發(fā)現(xiàn)了抗生素殘留[4-8]。

研究發(fā)現(xiàn),長(zhǎng)期暴露在抗生素環(huán)境下,不僅人和動(dòng)物的患病和發(fā)病率會(huì)升高,而且對(duì)植物的葉綠素合成、酶分泌和根系生長(zhǎng)都有影響[9-10]。此外微生物也會(huì)逐漸適應(yīng)抗生素環(huán)境,并產(chǎn)生抗生素耐藥性和抗性基因(Antibiotic resistance genes,ARGs)[11-12]。同時(shí),低濃度抗生素對(duì)生態(tài)環(huán)境中微生物種群也能夠起到篩選作用,使具有抗生素耐藥性的微生物種群得以保留并逐漸壯大,而對(duì)其敏感的種群不斷死亡消失,直接后果就是使微生物種群結(jié)構(gòu)失衡,對(duì)生態(tài)環(huán)境及人類健康造成極大的危害。據(jù)報(bào)道,2014年全球有70萬人因抗生素耐藥性的產(chǎn)生而死亡,因此解決抗生素問題迫在眉睫[13]。

為了解決抗生素污染問題,除了減少抗生素的濫用,如何去除環(huán)境體系中殘留的抗生素已經(jīng)成為近年來研究的熱點(diǎn)。目前,對(duì)含有抗生素殘留污水的理化處理方法已進(jìn)行了大量的研究和實(shí)踐[14-15],包括高級(jí)氧化法、活性炭吸附法、低溫等離子體技術(shù)和膜處理法等[16]。但是這些理化法處理所需成本高、管理復(fù)雜,除了高級(jí)氧化法對(duì)抗生素的去除率可達(dá)95%外,其他方法的去除效率都較低,并且都對(duì)固態(tài)介質(zhì)中抗生素殘留處理存在局限性。因此,有關(guān)抗生素的微生物降解研究逐漸成為熱點(diǎn)[17]。本文基于近年來抗生素污染微生物處理方法、抗生素降解功能菌的篩選、降解條件、降解效果和降解機(jī)制方面的研究進(jìn)行了系統(tǒng)的綜述,旨在為后續(xù)抗生素微生物降解研究提供參考。

1 微生物處理方法

1.1活性污泥法

活性污泥法(Activated sludge process,ASP)是國(guó)內(nèi)外處理抗生素污水最常見的方法。利用活性污泥消除污水中抗生素的方法一般包括物理吸附(腐殖質(zhì)、活性炭、絮凝劑)、化學(xué)反應(yīng)和微生物降解。ASP發(fā)展時(shí)間早,工藝成熟,積累了大量的運(yùn)行和管理經(jīng)驗(yàn)。因此該方法經(jīng)常用于含抗生素廢水的處理。

四環(huán)素類抗生素(TCs)在活性污泥中的去除主要以吸附為主,微生物降解較小甚至不存在微生物降解[18-21]。與TCs不同,磺胺類抗生素(SAs)在ASP中的去除主要是微生物降解起作用[22-24],但是不同的SAs降解效果不盡相同。Yang等[25]研究發(fā)現(xiàn),在相同降解條件下,磺胺間甲氧嘧啶(SMM)降解率為19%,磺胺甲唑(SMX)為24%,而磺胺二甲嘧啶(SDM)為30%。污泥齡(SRT)和反應(yīng)時(shí)間會(huì)顯著影響SAs的降解效果[25]。不同SRT和反應(yīng)時(shí)間對(duì)磺胺甲嘧啶(SMZ)降解效果影響的研究結(jié)果顯示,隨著SRT由5 d延長(zhǎng)到25 d,SMZ的去除率可以由45%提高到80%;SMZ在活性污泥處理0.5~4.5 h內(nèi)降解效果有顯著差異[23]。Yang等[25]還發(fā)現(xiàn)在ASP中SAs的降解呈S型曲線,前期(2 d或3 d內(nèi))SAs降解緩慢,直到12 d降解比較穩(wěn)定,降解率可達(dá)到95%,14 d后降解基本完成。這可能是由于微生物的適應(yīng)過程,也可能是由于存在其他容易降解的異型生物質(zhì)與SAs的降解發(fā)生競(jìng)爭(zhēng)作用所致。溫度也是影響SAs降解的主要因素。研究發(fā)現(xiàn)在20℃時(shí)SAs的降解遲滯期短,降解率高;而6℃時(shí)遲滯期會(huì)延長(zhǎng)4倍左右,降解率低[24]。除此之外,由于SAs可以作為活性污泥中微生物的碳源或者氮源,活性污泥中碳源和氮源的含量會(huì)影響其降解效果。Müller等[27]通過設(shè)置不同的共代謝基質(zhì),發(fā)現(xiàn)在ASP系統(tǒng)中,增加碳源和減少氮源均可以提高SMX的降解效果。通過以下方式可以提高ASP對(duì)SAs的降解效率:(1)針對(duì)不同的SAs篩選不同的高效降解菌;(2)通過加入胞外聚合物提高微生物對(duì)抗生素的獲得能力來促進(jìn)抗生素降解[25];(3)優(yōu)化并選擇適合ASP中微生物團(tuán)體生長(zhǎng)和SAs降解的溫度;(4)在加入到ASP系統(tǒng)前,將活性污泥中的微生物團(tuán)體在相似的環(huán)境下進(jìn)行適應(yīng)性生長(zhǎng)訓(xùn)練;(5)控制SRT,當(dāng)SRT達(dá)到SAs的降解瓶頸時(shí)更新污泥;(6)針對(duì)不同的SAs和微生物團(tuán)體優(yōu)化ASP系統(tǒng)中的營(yíng)養(yǎng)基質(zhì)。

氟喹諾酮類抗生素在ASP中的微生物降解是其去除的次要途徑,氧化還原條件、抗生素種類和污泥的含鹽量等都會(huì)影響其降解效果。研究發(fā)現(xiàn),在厭氧條件下氟喹諾酮的降解微不足道,在好養(yǎng)條件下降解率為14.9%~43.8%,在硝化條件下降解率為36.2%~60.0%,加入硝化抑制劑會(huì)顯著減少氟喹諾酮的降解[29],并且淡水中氟喹諾酮不存在微生物降解,而在含鹽污水中降解率可達(dá)到40.8%[21]。所以可以通過篩選高效降解菌株、提高通氣量、加入硝化試劑或提高含鹽量的方法來提高氟喹諾酮類抗生素在ASP中的降解率。

β-內(nèi)酰胺類抗生素在ASP中的降解不夠完全,尤其是在高濃度條件下降解率更低。Guo等[30]比較了Fenton、ASP和Fenton-ASP對(duì)阿莫西林的降解效果。研究結(jié)果顯示,高濃度條件下單獨(dú)采用ASP處理阿莫西林去除效果較差,而采用Fenton氧化去除率可達(dá)80%。將二者聯(lián)合起來,即先用Fenton法處理,再用ASP處理,則最終可將阿莫西林完全降解[25]。

ASP尤其是ASP好氧處理法存在動(dòng)力消耗大、處理成本高和易出現(xiàn)污泥膨脹現(xiàn)象等缺點(diǎn)[16,31],其應(yīng)用受到一定的限制。

1.2膜生物反應(yīng)器法

膜生物反應(yīng)器(Membrane bioreactor,MBR)是一種將薄膜對(duì)污染物的高效分離與微生物對(duì)污染物降解能力相結(jié)合的新型污水處理系統(tǒng)。這種方法采用超濾膜組件代替?zhèn)鹘y(tǒng)活性污泥工藝中的二沉池,可以進(jìn)行高效的固液分離,克服了傳統(tǒng)活性污泥工藝中出水水質(zhì)不穩(wěn)定、污泥容易膨脹等問題。此外,MBR還具有工藝參數(shù)容易控制、設(shè)備容積負(fù)荷高、占地少、性能穩(wěn)定、易于自動(dòng)控制管理等優(yōu)點(diǎn)[32-33]。較傳統(tǒng)活性污泥工藝而言,MBR明顯提高了污水中抗生素的去除效果。Sahar等[34]研究表明,MBR比傳統(tǒng)活性污泥對(duì)大環(huán)內(nèi)酯類抗生素、SAs和甲氧芐氨嘧啶類抗生素的去除率提高了15%~42%;Shen等[35]研究表明MBR對(duì)氨芐青霉素去除率比活性污泥法去除率高23%??赡苁怯捎谏锉∧ぬ岣吡藢?duì)抗生素和生物量的保留作用,增加了微生物與抗生素的接觸時(shí)間。

影響MBR對(duì)抗生素降解效果的因素主要包括抗生素種類、抗生素濃度、固體懸浮物含量(MLSS)、溫度、化學(xué)需氧量(COD)、水力停留時(shí)間(HRT)和SRT 等[36]。在MBR中即使是同一類別不同種類的抗生素去除效果也存在較大差異,有的去除率可達(dá)100%,有的去除率甚至為零[37]。這可能是由于流入MBR的污水中含有抗生素代謝物的離子,這些離子最終又會(huì)合成該種抗生素母體的緣故。當(dāng)濃度不同時(shí),抗生素的降解率也有所不同。研究發(fā)現(xiàn),當(dāng)濃度為50 ng·mL-1時(shí),SAs在5 d降解率就達(dá)到90%以上,而濃度為1000 ng·mL-1時(shí)SAs的降解率很低。但是,不同濃度處理的SAs降解量相近,表明參加抗生素降解的酶具有類特異性[37]。一般較高含量的MLSS、較高的溫度和較低的初始COD值均有利于抗生素的降解[38]。HRT 和SRT會(huì)影響MBR對(duì)抗生素的降解,一般隨著HRT 和SRT的增加,抗生素的降解率會(huì)有相應(yīng)的提高[32]。另有報(bào)道,β-變型桿菌和γ-變形菌是污水處理過程中對(duì)抗生素去除起主要作用的菌,且隨著SRT的增加,抗生素抗性基因呈現(xiàn)增加趨勢(shì),并且抗生素去除率有所提高。這可能是由于較長(zhǎng)的HRT和SRT能夠?yàn)槲⑸铮ㄈ缦趸涂股亟到饩龋┨峁└喔患瘯r(shí)間和空間的緣故[39-41]。

為了提高M(jìn)BR工藝的降解效率,可以從以下幾方面改進(jìn):(1)針對(duì)不同的抗生素篩選出具有高效降解能力的菌株;(2)在一定范圍內(nèi)提高M(jìn)LSS的含量;(3)在一定范圍內(nèi)提高處理溫度;(4)對(duì)要處理的廢水首先進(jìn)行降低COD的前處理;(5)相對(duì)增加HRT 和SRT;(6)將MBR和其他方法聯(lián)用[42-43];(7)優(yōu)化濾膜性能,根據(jù)不同凈水要求選擇不同類型膜組件。

1.3超聲生物法

超聲法是近幾年來發(fā)展起來的一種新型的污水處理方法,正日益受到人們的關(guān)注。該法主要是通過超聲波使液體中的微小泡核激化產(chǎn)生高溫和高壓,破壞抗生素的分子結(jié)構(gòu),從而達(dá)到降解目的。并且水分子在高溫高壓下產(chǎn)生諸如H2O2和·OH等活性氧物質(zhì)(Reactive oxygen species,ROS),氧化抗生素從而達(dá)到降解抗生素的目的。這可能是由于H2O2和·OH等的鏈?zhǔn)椒磻?yīng)能夠氧化抗生素所致,因此在污水中加入諸如Fenton試劑、H2O2、CH3Cl、臭氧等可以產(chǎn)生ROS的助劑以促進(jìn)反應(yīng)的進(jìn)行[44-51]。但是Lastre-Acosta 等[46]卻證明H2O2會(huì)抑制超聲法對(duì)磺胺嘧啶的降解作用,這可能與抗生素的種類有一定關(guān)系。此外,在一定范圍內(nèi)超聲功率越大、溶液pH值越高(6~11)、氣水比越大、抗生素濃度越低則超聲法對(duì)抗生素的降解率越高[48-52]。但是也有研究表明,在中性或酸性條件下,超聲法也能夠獲得較高的抗生素降解速率[47]。例如,Wei等[50]通過試驗(yàn)證明,在pH為7.2時(shí)利用超聲法對(duì)左氧氟沙星的降解率最高,Lastre-Acosta等[46]也通過研究發(fā)現(xiàn),在酸性環(huán)境下(pH5.5)利用超聲法對(duì)磺胺嘧啶的降解率較高。

超聲法條件溫和,對(duì)抗生素的降解速度快,無污染,操作方便。但是超聲法在抗生素含量較高條件下對(duì)抗生素的降解率相對(duì)較低[31,39,44,48-50]??紤]到微生物對(duì)抗生素的降解作用,可將超聲法與生物法聯(lián)合應(yīng)用處理污染廢水[53],該聯(lián)合工藝高效簡(jiǎn)單清潔,容易操作,應(yīng)用前景比較好[54]。

1.4堆肥法

由于獸用抗生素的大量使用,使得畜禽糞便里含有大量的抗生素殘留,因而未經(jīng)處理的畜禽糞便直接用于農(nóng)田,容易造成土壤、作物和地下水的抗生素污染。微生物發(fā)酵生產(chǎn)抗生素所產(chǎn)生的藥渣因其較高的抗生素殘留而被列為工業(yè)三廢,不僅不能作為農(nóng)業(yè)肥料或工業(yè)原料,還會(huì)污染環(huán)境,影響人體健康,而填埋和焚燒的處理方法費(fèi)用較高,并且也會(huì)造成一定的污染。但是以上所提到的活性污泥法、膜生物反應(yīng)器法和超聲微生物法都是針對(duì)含有抗生素的污水處理方法,不適用于含有抗生素的畜禽糞便和藥渣等固體廢物中抗生素殘留的處理,因此堆肥法顯示出了自身的優(yōu)勢(shì):既保護(hù)了環(huán)境,又實(shí)現(xiàn)了廢棄物的二次利用[55-56]。堆肥法主要是利用多種微生物的作用,將生物殘?bào)w、糞便和藥渣等進(jìn)行礦質(zhì)化、腐殖化和無害化,使各種復(fù)雜的有機(jī)態(tài)養(yǎng)分轉(zhuǎn)化為可溶性養(yǎng)分和腐殖質(zhì),同時(shí)利用堆積時(shí)所產(chǎn)生的高溫(60~70℃)來殺死原材料中所帶的病菌、蟲卵和雜草種子等以達(dá)到無害化目的。

在堆肥過程中影響抗生素降解率的因素很多,包括堆肥底物、抗生素種類、溫度、通氣量或通氣方式、抗生素濃度和微生物等。不同的底物可能會(huì)對(duì)抗生素的降解產(chǎn)生不同的影響[57-58]。Kim等[58]通過實(shí)驗(yàn)室堆肥裝置試驗(yàn)發(fā)現(xiàn)TCs和SAs的降解主要依賴于堆肥底物中添加的木屑;Wu等[59]通過中試規(guī)模的豬糞堆肥化使得TCN的降解率為70%;Hu等[60]利用雞糞、豬糞和水稻秸稈堆肥,使得TCN的降解率達(dá)到93%。這可能是不同底物堆肥過程中微生物的生物多樣性不同所導(dǎo)致的。為了實(shí)現(xiàn)藥渣中抗生素的降解,張紅娟等[55]設(shè)計(jì)了林可霉素藥渣和牛糞聯(lián)合堆肥試驗(yàn),結(jié)果顯示林可霉素降解率達(dá)到99%以上,浸提液種子發(fā)芽率從0上升到70%以上。另外,研究發(fā)現(xiàn)藥渣堆肥對(duì)土壤中微生物增殖的促進(jìn)作用比一般的牛糞堆肥好,并且藥渣堆肥對(duì)土壤中微生物的生物多樣性沒有顯著的破壞作用,表明林可霉素菌渣與牛糞的聯(lián)合堆肥產(chǎn)品已達(dá)到無害化和穩(wěn)定化[56]。

不同的抗生素降解效果在相同的堆肥化條件下會(huì)有一定的差異。例如,在同一堆肥條件下,磺胺嘧啶3 d就已全部降解,而TCN 42 d降解率僅為92%;此外,豬糞和木屑按1:1(V:V)混合條件下堆肥,磺胺嘧啶3 d完全降解,CTC 21 d完全降解,而環(huán)丙沙星56 d仍有17%~31%的殘留[61-62]。

溫度會(huì)顯著影響堆肥對(duì)抗生素的降解效果。研究發(fā)現(xiàn),將含有CTC的混合物分別在55℃(堆肥溫度)和25℃溫育后堆肥,前者的降解率能達(dá)到99%,比后者的降解率高一倍以上。這表明55℃比較適合抗生素降解微生物的生存,能夠較好地發(fā)揮抗生素降解作用[63]。

不同的通氣量或通氣方式也會(huì)影響堆肥法對(duì)抗生素的降解效果。Pan等[64]研究了堆肥過程中四種不同的曝氣方式(自然通風(fēng)、翻堆、機(jī)械通氣和翻堆與機(jī)械通氣)對(duì)抗生素降解的影響。結(jié)果表明,翻堆與機(jī)械通氣并用與其他方式相比能夠提高堆肥溫度(63℃)和延長(zhǎng)最高溫度的持續(xù)時(shí)間(4 d,60℃)。這可能是由于抗生素的降解主要發(fā)生在升溫階段和高溫持續(xù)階段的緣故。

在堆肥過程中引入外來有益菌種可以加速抗生素降解。Zhang等[65]發(fā)現(xiàn)在堆肥過程中加入BM菌有利于TCN、CTC和OTC的降解;秦莉等[66]通過在堆肥過程中加入具有降解纖維素和CTC雙重功能的復(fù)合菌系研究其對(duì)CTC的降解作用,結(jié)果表明該復(fù)合菌系能夠在50℃快速繁殖,適用于高溫好氧堆肥環(huán)境,使得CTC的降解率達(dá)到82%,與不接復(fù)合菌系的處理相比提高60%。

此外,不同的抗生素濃度也會(huì)影響堆肥化效果,一般高濃度的抗生素會(huì)推遲腐熟時(shí)間,因?yàn)榭股貪舛仍礁?,?duì)初始的微生物菌群影響越大[60]。

從以下幾方面改進(jìn)堆肥條件可以提高堆肥法對(duì)抗生素的降解效果:(1)優(yōu)化堆肥底物成分配比;(2)針對(duì)不同的抗生素設(shè)定不同長(zhǎng)度的堆肥時(shí)間;(3)將堆肥底物先經(jīng)過高溫溫育,再進(jìn)行堆肥;(4)優(yōu)化通氣條件;(5)篩選能夠降解抗生素的菌株,尤其是耐高溫的菌株,以適應(yīng)高溫堆肥條件。

2 抗生素的微生物降解

2.1降解條件和效果

抗生素特異性降解菌的篩選是利用微生物法降解抗生素最重要的部分。研究發(fā)現(xiàn),真菌和細(xì)菌均有可能參與抗生素的降解,目前對(duì)抗生素降解菌的篩選鑒定以及降解條件優(yōu)化情況如表1所示。

2.2降解機(jī)制

微生物作用下抗生素的降解比較復(fù)雜,是微生物在特定環(huán)境下通過新陳代謝產(chǎn)生酶等物質(zhì),直接或者間接修飾改變抗生素的結(jié)構(gòu)從而使其失活的過程。微生物降解抗生素機(jī)制的研究主要包括兩個(gè)方面:一方面是測(cè)定降解過程中微生物的代謝產(chǎn)物,通過對(duì)微生物代謝組學(xué)、基因組學(xué)和蛋白質(zhì)組學(xué)的研究來確定微生物對(duì)抗生素的降解機(jī)理;另一方面是通過對(duì)抗生素降解過程中相關(guān)降解產(chǎn)物的連續(xù)測(cè)定,從而推斷抗生素結(jié)構(gòu)的連續(xù)性變化規(guī)律,即降解途徑的研究。

表1 抗生素特異性降解菌的降解條件和降解效果Table 1 Degradation conditions and efficiencies of special microorganisms degrading antibiotics

2.2.1降解酶

對(duì)于抗生素的微生物降解,其中具有降解功能的主要是抗生素的耐藥菌,究其原因是因?yàn)檫@些耐藥菌能夠產(chǎn)生相應(yīng)的降解酶,這些酶類進(jìn)一步通過修飾或水解作用破壞抗生素的分子結(jié)構(gòu)而導(dǎo)致抗生素降解[85]。研究發(fā)現(xiàn)抗生素降解酶主要包括以下四大類:β-內(nèi)酰胺酶、氨基糖苷類修飾酶、大環(huán)內(nèi)酯類鈍化酶和氯霉素滅活酶(表2)。但是以上主要是針對(duì)細(xì)菌抗生素耐藥性的研究,并沒有對(duì)這些降解酶的抗生素降解條件及其降解效果進(jìn)行進(jìn)一步試驗(yàn)。相關(guān)報(bào)道雖然也有以降解為目的而篩選了一些具有降解抗生素能力的細(xì)菌,但是并沒有對(duì)其降解酶的降解條件進(jìn)行下一步研究[70-82]。相對(duì)于細(xì)菌而言,近年來對(duì)于具有抗生素降解能力的真菌,包括真菌菌種篩選及其相應(yīng)降解酶的降解特性和條件等均有一定的研究報(bào)道(表3)。

表2 細(xì)菌中常見的抗生素降解酶及基因名稱Table 2 Common enzymes and genes in bacteria related to degradation of antibiotics

表3 真菌抗生素降解酶、降解條件和降解效果Table 3 Degradation conditions and efficiencies of enzymes in fungi related to antibiotic degradation

2.2.2降解途徑

降解途徑作為降解機(jī)制研究的重要組成部分,對(duì)降解產(chǎn)物的無害化處理起著非常重要的作用。

氨基糖苷類修飾酶主要通過修飾氨基糖苷類抗生素的氨基和羥基等官能團(tuán)來使抗生素失活。目前發(fā)現(xiàn)的氨基糖苷類修飾酶比較多[91],對(duì)酶的作用點(diǎn)了解的比較透徹,但是對(duì)具體的降解產(chǎn)物了解較少。圖1所示為氨基糖苷類修飾酶對(duì)慶大霉素和卡那霉素主要的作用位點(diǎn)[91]。

Prieto等[83]在研究影響白腐真菌降解環(huán)丙沙星(CIP)和諾氟沙星(NOR)的酶類以及這兩種氟喹諾酮類抗生素的降解途徑的過程中發(fā)現(xiàn),氟喹諾酮類抗生素在微生物降解酶作用下主要存在三種降解途徑:(Ⅰ)哌嗪取代基的氧化;(Ⅱ)單羥基化;(Ⅲ)形成二聚體。如圖2a所示,CIP哌嗪取代基上去掉了C2H2而形成了Cip-1;Cip-1哌嗪取代基中的C2H4N被CH4N取代,形成Cip-2;Cip-3在接種白腐真菌3 d后出現(xiàn),并且很快被代謝掉,這可能是發(fā)生了開哌嗪環(huán)而形成Cip-4;第3 d還檢測(cè)出了Cip-5和Cip-6,這兩種產(chǎn)物都是CIP通過C-C共價(jià)作用形成,之后又會(huì)發(fā)生哌嗪基團(tuán)的斷裂、環(huán)丙基的去除和羥基化等代謝作用。在最終的培養(yǎng)基中只檢測(cè)到了Cip-2、Cip-4和Cip-5,所以白腐真菌對(duì)CIP礦化可能還存在其他途徑。如圖2b所示,接種白腐真菌1 d后NOR開哌嗪環(huán),在氨基部位添加了羧酸而形成Nor-3,經(jīng)2~3 d Nor-3哌嗪取代基上去掉了C2H2而轉(zhuǎn)化成Nor-1,之后Nor-1哌嗪取代基中的C2H4N被NH2取代形成Nor-2。

圖1 氨基糖苷類修飾酶對(duì)氨基糖苷類抗生素作用位點(diǎn)[91]Figure 1 Sites of aminoglycosides modifying enzymes acting on aminoglycoside antibiotics

圖2 氟喹諾酮類抗生素中CIP和NOR的主要降解途徑[85]Figure 2 Primary degradation pathways of fluoroquinolone antibiotics-CIP and NOR

對(duì)于頭孢類抗生素的微生物降解機(jī)理研究表明,在頭孢類的β-內(nèi)酰胺類抗生素的微生物降解中糠酸基團(tuán)側(cè)鏈的斷裂,即雜環(huán)硫醇側(cè)鏈C3位置的消除是其降解開始時(shí)的一個(gè)主要步驟,β-內(nèi)酰胺環(huán)的開環(huán)是其再降解的一個(gè)主要步驟(圖3)[67-68]。例如,在分析蠟樣芽胞桿菌P41對(duì)頭孢噻呋、頭孢曲松鈉和頭孢泊肟降解途徑過程中,發(fā)現(xiàn)這三種抗生素最主要的代謝產(chǎn)物都是硫代糠酸基團(tuán),該基團(tuán)是β-內(nèi)酰胺酶水解后從C3位置被消除所得[63]。

圖3 頭孢類抗生素微生物降解途徑[67-68]Figure 3 Microbial degradation pathways of cephalosporin antibiotics

Migliore等[78]利用糙皮側(cè)耳菌在實(shí)驗(yàn)室條件下實(shí)現(xiàn)了四環(huán)素類抗生素OTC的降解,并通過質(zhì)譜分析發(fā)現(xiàn)該菌通過菌絲吸收OTC后再進(jìn)行降解,推測(cè)OTC中的酰胺基轉(zhuǎn)化為乙?;蔀?-乙酰基-2-去酰胺土霉素(ADOTC),該種產(chǎn)物比OTC的抗菌性低,具有較高的親油性,毒性相對(duì)較低(圖4)。

圖4  OTC的微生物降解途徑[78]Figure 4 Microbial degradation pathway of OTC

磺胺類抗生素SMX在常溫好氧避光條件下可以作為唯一碳源和氮源或者共代謝基質(zhì)而被活性污泥中兩種微生物群落降解[27]。當(dāng)SMX作為共代謝基質(zhì)而被異養(yǎng)微生物降解時(shí),其主要產(chǎn)物是3-氨基-5-甲基-異口惡唑(SMX-1)和磺化4-苯胺(SMX-2),其中前者比較穩(wěn)定,而后者會(huì)繼續(xù)礦化(圖5a)。當(dāng)SMX作為唯一的碳源和氮源時(shí),除了以上兩種產(chǎn)物外還因氨基被羥基取代而生成羥基-N-(5-甲基-1,2-唑-2-yl)苯-1-磺胺(SMX-3)(圖b)。

在研究大環(huán)內(nèi)酯類抗生素泰樂菌素的微生物降解機(jī)制過程中,發(fā)現(xiàn)泰樂菌素降解酶的作用位點(diǎn)不是泰樂菌素的糖苷鍵和共軛體系,且起降解作用的酶是胞內(nèi)酶[113]。

總之,微生物對(duì)抗生素的降解比較復(fù)雜,尤其是不同種類抗生素由于結(jié)構(gòu)不同,微生物降解途徑會(huì)差異很大,概括起來微生物對(duì)抗生素的降解途徑主要包括羥基化/去羥基化作用、取代基的氧化作用、裂合作用、取代作用、水解作用和基團(tuán)轉(zhuǎn)移作用等。

圖5  SMX的微生物代謝途徑[27]Figure 5 Microbial degradation pathways of SMX

3 展望

(1)優(yōu)化微生物降解抗生素組合工藝,有效利用污泥中的微生物種群資源,提高堆肥效率。

(2)研究開發(fā)新型高效的污水和廢渣處理設(shè)備。

(3)針對(duì)不同的抗生素篩選降解能力強(qiáng)的特異性菌株,或者通過誘導(dǎo)馴化,再篩選出能夠降解多種抗生素的菌株。

(4)對(duì)微生物降解抗生素的機(jī)理進(jìn)行深入研究,從而促進(jìn)降解菌的無害化。

(5)由于降解菌的篩選可能在一定程度上導(dǎo)致耐藥基因的擴(kuò)散,降解菌的試驗(yàn)要盡量在實(shí)驗(yàn)室條件下進(jìn)行,并且加速對(duì)降解酶制劑的研制和生產(chǎn)應(yīng)用。

(6)在抗生素降解的基礎(chǔ)上,進(jìn)一步加強(qiáng)對(duì)降解產(chǎn)物毒性和再降解的后續(xù)研究,最終達(dá)到抗生素及其降解產(chǎn)物整體的無害化處理。

參考文獻(xiàn):

[1] Cheng D M, Liu X H, Wang L, et al. Seasonal variation and sedimentwater exchange of antibiotics in a shallower large lake in North China[J]. Science of the Total Environment, 2014, 476:266-275.

[2] Zhou L J, Ying G G, Liu S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China[J]. Science of the Total Environment, 2013, 452:365-376.

[3] Kumar K, Gupta S C, Chander Y, et al. Antibiotic use in agriculture and itsimpact on the terrestrial environment[J]. Advances in Agronomy, 2005, 87:1-54.

[4] Zhao H, Zhou J L, Zhang J. Tidal impact on the dynamic behavior of dissolved pharmaceuticals in the Yangtze Estuary, China[J]. Science of the Total Environment, 2015, 536:946-954.

[5] Ahmed M, Rajapaksha A, Lim J, et al. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce[J]. Journal of Agricultural and Food Chemistry, 2015, 63(2):398-405.

[6] Matongo S, Birungi G, Moodley B, et al. Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa[J]. Chemosphere, 2015, 134:133-140.

[7] Pennacchio A, Varriale A, Esposito G, et al. A rapid and sensitive assay for the detection of benzylpenicillin(PenG)in milk[J]. Plos One, 2015, 10(7). doi:10.1371/journal.pone.0132396.

[8] Sun L R, Yu W T, Ma Q, et al. Quantitative analysis of amoxicillin, its major metabolites and ampicillin in eggs by liquid chromatography combined with electrospray ionization tandem mass spectrometry[J]. Food Chemistry, 2016, 192:313-318.

[9] Crane M, Watts C, Boudard T. Chronic aquatic environmental risks from exposure to human pharmaceuticals[J]. Science of the Total Environment, 2006, 367(1):23-41.

[10]張浩,羅義,周啟星.四環(huán)素類抗生素生態(tài)毒性研究進(jìn)展[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2008, 27(2):407-413. ZHANG Hao, LUO Yi, ZHOU Qi-xing. Research advancement of ecotoxicity of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2008, 27(2):407-413.

[11] Xu Y G, Yu W T, Ma Q, et al. Occurrence of(fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years[J]. Science of the Total Environment, 2015, 530:191-197.

[12] Fraqueza, Maria J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages[J]. International Journal of Food Microbiology, 2015, 212:76-88.

[13]世界衛(wèi)生組織. 2014年全球抗生素耐藥性評(píng)估報(bào)告[R].世界衛(wèi)生組織. 2015:103-108. World Health Organization. Antimicrobial resistance: global report on surveillance 2014[R]. World Health Organism, 2015: 103-108.

[14]范衛(wèi)紅.納濾處理水中抗生素的研究[D].北京:北京化工大學(xué),2012. FAN Wei -hong. The research of antibiotics disposal in water by nanofiltration process[D]. Beijing:Beijing University of Chemical technology, 2012.

[15]陳建發(fā),劉福權(quán).微電解-生物濾池等耦合處理抗生素類混合工業(yè)廢水[J].現(xiàn)代化工, 2014, 34(2):120-125. CHEN Jian-fa, LIU Fu-quan. Treatment of antibiotics-based mixed industrial wastewater by microelectrolysis coupled biofilter[J]. Modern Chemical Industry, 2014, 34(2):120-125.

[16]羅玉,黃斌,金玉,等.污水中抗生素的處理方法研究進(jìn)展[J].化工進(jìn)展, 2014, 33(9):2471-2477. LUO Yu, HUANG Bin, JIN Yu, et al. Research progress in the degradation of antibiotics wastewater treatment[J]. Chemical Industry and Engineering Progress, 2014, 33(9):2471-2477.

[17] Teruya M, Hiroshi H, Hiroyuki K, et al. Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences[J]. Fisheries Science, 2006, 72(4):811-820.

[18] Prado N, Ochoa J, Amrane A, et al. Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system[J]. Process Biochemistry, 2009, 44(11):1302-1306.

[19] Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater:Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science & Technology, 2005, 39(15):5816-5823.

[20]李慧.四環(huán)素類抗生素(TCs)在活性污泥系統(tǒng)中的去除特性研究[D].泰安:山東農(nóng)業(yè)大學(xué), 2013. LI Hui. The study of removal of tetracycline antibiotics(TCs)on activated sludge[D]. Taian:Shandong Agricultural University, 2013.

[21] Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activatedsludgeprocess [J].Environmental Science &Technology, 2010,44 (9):3468-3473.

[22] Anke G, Christa S M, Adriano J, et al. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Science of the Total Environment, 2007, 372(2-3):361-371.

[23] Huang M H, Tian S X, Chen D H, et al. Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3[J]. Journal of Environmental Sciences, 2012, 24(9):1594-1599.

[24] Ingerslev F, Sorensen B H. Biodegradability properties of sulfonamides in activated sludge[J]. Environmental Toxicology and Chemistry, 2000, 19(10):2467-2473.

[25] Yang S F, Lin C F, Lin Y C, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge:Experimental assessment using batch data obtained under aerobic conditions[J]. Water Research, 2011, 45(11):3389-3397.

[26] Yang S F, Lin C F, Lin Y C, et al. Fate of sulfonamide antibiotics in contact with activated sludge: Sorption and biodegradation[J]. Water Research, 2012, 46(4):1301-1308.

[27] Müller E, Schussler W, Horn H, et al. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source[J]. Chemosphere, 2013, 92(8):969-978.

[28] Xu J, Sheng G P, Ma Y, et al. Roles of extracellular polymeric substances(EPS)in the migration and removal of sulfamethazine in activated sludge system[J]. Water Research, 2013, 47(14):5298-5306.

[29] García N D, Gómez A Z, Navalón A, et al. Removal and degradation characteristics of quinolone antibiotics inlaboratory -scale activated sludge reactors under aerobic, nitrifying and anoxic conditions[J]. Journal of Environmental Management, 2013, 120:75-83.

[30] Guo R X, Xie X D, Chen J Q. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system[J]. Environmental Technology, 2015, 36(7):844-851.

[31]杜兆林,鄭彤,劉麗艷,等.污水處理廠中抗生素去除情況研究[C] //持久性有機(jī)污染物論壇:暨第六屆持久性有機(jī)污染物全國(guó)學(xué)術(shù)研討會(huì)論文集. 2011: 244-246. DU Zhao-lin, ZHENG Tong, LIU Li-yan, et al. Analysis of antibiotics removal in sewage treatment plants[C]. 2011: 244-246.

[32]周靜博.膜生物反應(yīng)器(MBR)對(duì)青霉素廢水處理的實(shí)驗(yàn)研究[D].天津:天津工業(yè)大學(xué), 2008. ZHOU Jing-bo. Experiment research about penicillin waste water disposal by MBR[D]. Tianjin:Tianjin Polytechnic University, 2008.

[33] Qiu G L, Song Y H, Zeng P, et al. Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket(UASB)-membrane bioreactor(MBR)process for berberine antibiotic wastewater treatment[J]. Bioresource Technology, 2013, 142:52-62.

[34] Sahar E, Messalem R, Cikurel H, et al. Fate of antibiotics in activated sludge followed by ultrafiltration(CAS-UF)and in a membrane bioreactor(MBR)[J]. Water Research, 2011, 45(16):4827-4836.

[35] Shen L, Yuan X, Shen W H, et al. Positive impact of biofilm on reducing the permeation of ampicillin through membrane for membrane bioreactor[J]. Chemosphere, 2014, 97:34-39.

[36]蔣嵐嵐,張萬里,楊薇蘭,等. MBR工藝處理污水效果及影響因素分析[J].中國(guó)給排水, 2012, 28(24):49-52. JIANG Lan-lan, ZHANG Wan-li, YANG Wei-lan, et al. Analysis on treeatment effect and influence factors of MBR process[J]. China Water and Wastewater, 2012, 28(24):49-52.

[37] Garcia Galan M J, Diaz-Cruz M S, Barcelo D. Removal of sulfonamide antibiotics upon conventional activated sludge and advanced membrane bioreactor treatment[J]. Analytical and Bioanalytical Chemistry, 2012, 404(5):1505-1515.

[38] Garcia N D, Gomez A Z, Navalon A, et al. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors[J]. Science of the Total Environment,2013, 442:317-328.

[39]靖丹楓,賈仁勇,白新征,等.固定化膜生物反應(yīng)器處理含抗生素污水[J].環(huán)境工程學(xué)報(bào), 2012, 6(5):1495-1499. JING Dan-feng, JIA Ren-yong, BAI Xin-zheng, et al. Treatment of sewage containing antibiotics by immobilized membrane bioreactor [J]. Techniques and Equipment for Environmental Pollution Control, 2012, 6(5):1495-1499.

[40] Xia S Q, Ren Y, Feng F, et al. Effect of solids retention time on antibiotics removal performance and microbia communities in an A/O-MBR process[J]. Bioresource Techology, 2012, 106:36-43.

[41]揚(yáng)程,郭勁松, Belinda S M,等.污泥齡對(duì)活性污泥處理微量磺胺類藥物的影響[J].重慶大學(xué)學(xué)報(bào), 2012, 35(6):63-71. YANG Cheng, GUO Jin-song, Belinda S M, et al. Impact of sludge residence time on the relative biodegradation and biosorption of sulfonamide antibiotics in activated sludge[J]. Journal of Chongqing University, 2012, 35(6):63-71.

[42] Wang J X, Li Kun, Wei Y S, et al. Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate[J]. Chemosphere, 2015, 121:92-100.

[43] Dolar D, Gros M, Rodriguez M S, et al. Removal of emerging contaminants from municipal wastewater with an integrated membrane system MBR-RO[J]. Journal of Hazardous Materials, 2012, 239:64-69.

[44]郭照冰,周飛,張超智,等.超聲降解水中的磺胺嘧啶[J].環(huán)境工程學(xué)報(bào), 2012, 6(9):2143-2147. GUO Zhao-bing, ZHOU Fei, ZHANG Chao-zhi, et al. Degradation of sulfadiazine by ultrasonic[J]. Techniques and Equipment for Environmental Pollution Control, 2012, 6(9):2143-2147.

[45]李再興,劇盼盼,左劍惡,等.微波強(qiáng)化Fenton氧化法深度處理抗生素廢水研究[J].工業(yè)水處理, 2012, 32(6):52-56. LI Zai-xing, JU Pan-pan, ZUO Jian-e, et al. Study on the advanced treatment of antibiotic wastewater by microwave-assisted Fenton oxidation[J]. Industrial Water Treatment, 2012, 32(6):52-56.

[46] Lastre-Acosta A M, Cruz-Gonzalez G, Nuevas-Paz L, et al. Ultrasonic degradation ofsulfadiazineinaqueoussolutions[J].Environment Science Pollution Resource, 2015, 22(2):918-925.

[47] Wei H, Li J, Li K B, et al. Degradation of levofloxacin by sonolysis-assisted H2O2in aqueous solution[J]. China Environmental Science, 2013, 33(2):257-262.

[48] Hoseinia M, Safaria G H, Kamani H, et al. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis[J]. Toxicological and Environmental Chemistry, 2013, 95(10):1680-1689.

[49] Wang X K, Wang Y N, Li D L, et al. Degradation of tetracycline in water by ultrasonic irradiation[J]. Water Science and Techology, 2013, 67 (4):715-721.

[50] Wei H, Li J, Gao Y, et al. Enhancement of chloromethane on ultrasonic degradation of levofloxacin[J]. Journal of Northwest A&F University-Natural Science, 2013, 41(3):147-152.

[51] Wang Y, Zhang H, Chen L. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor[J]. Catalysis Today, 2011, 175(1):283-292.

[52]郭喜豐,肖廣全,馬麗莉,等.超聲波降解四環(huán)素類抗生素廢水[J].環(huán)境工程學(xué)報(bào), 2014, 8(4):1503-1509. GUO Xi-feng, XIAO Guang-quan, MA Li-li, et al. Ultrasonic degradation of tetracyclines in aqueous solution[J]. Chinese Journal of Environmental Engineering, 2014, 8(4):1503-1509.

[53]馬麗莉.超聲波-SBR處理含抗生素、激素豬場(chǎng)廢水研究[D].重慶:西南大學(xué), 2012. MA Li-li. Study on piggery wastewater contained antibiotics and hormone treated by Ultrasonication-SBR[D]. Chongqing:Southwest University, 2012.

[54]林海龍,宋鴿,司亮,等.抗生素廢水生物處理法的研究進(jìn)展[J].中國(guó)農(nóng)學(xué)通報(bào), 2012, 28(11):258-261. LIN Hai-long, SONG Ge, SI Liang, et al. Advances in study on the biological treatment of antibiotic wastewater[J]. Chinese Agricultural Science Bulletin, 2012, 28(11):258-261.

[55]張紅娟,郭夏麗,王巖.林可霉素菌渣與牛糞聯(lián)合堆肥實(shí)驗(yàn)研究[J].環(huán)境工程學(xué)報(bào), 2011, 5(1):231-235. ZHANG Hong-juan, GUO Xia-li, WANG Yan. Study on co-composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering, 2011, 5(1):231-235.

[56]張紅娟.抗生素菌渣堆肥化處理研究[D].鄭州:鄭州大學(xué), 2010. ZHANG Hong-juan. Research of the composting treatment of antibiotic mushroom dregs[D]. Zhengzhou:Zhengzhou University, 2010.

[57] Mitchell S M, Ullman J L, Bary A, et al. Antibiotic degradation during thermophilic composting[J]. Water Air Soil Pollution, 2015, 226(2): 13.

[58] Kim K R, Owens G, Ok Y S, et al. Decline in extractable antibiotics in manure-based composts during composting[J]. Waste Management, 2012, 32(1):110-116.

[59] Wu X F, Wei Y S, Zheng J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10):5924-5931.

[60] Hu Z H, Liu Y L, Chen G W, et al. Characterization of organic matter degradation during composting of manure-straw mixtures spiked with tetracyclines[J]. Bioresource Technology, 2011, 102(15):7329-7334.

[61] Selvam A, Zhao Z Y, Li Y C, et al. Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust[J]. Environmental Technology, 2013, 34(16):2433-2441.

[62] Selvam A, Zhao Z Y, Wong J W C. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin[J]. Bioresource Technology, 2012, 126:412-417.

[63] Arikan O A, Mulbry W, Rice C. Management of antibiotic residues from agricultural sources:Use of composting to reduce chlortetracycline residues in beef manure from treated animals[J]. Journal of Hazardous Materials, 2009, 164(2-3):483-489.

[64] Pan X, Qiang Z M, Ben W W. Effects of high-temperature composting on degradation of antibiotics in swine manure[J]. Journal of Ecology and Rural Environment, 2013, 29(1):64-69.

[65] Zhang S Q, Zhang F D, Liu X M, et al. Degradation of antibiotics and passivation of heavy metals during thermophilic composting process[J]. Scientia Agricultura Sinica, 2006, 39(2):337-343.

[66]秦莉,高茹英,李國(guó)學(xué),等.外源復(fù)合菌系對(duì)堆肥纖維素和金霉素降解效果的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2009, 28(4):820-823. QIN Li, GAO Ru-ying, LI Guo-xue, et al. Decomposition effect of additive of composite microbial system on cellulose and chlortetracycline in composting[J]. Journal of Agro-Environment Science, 2009, 28(4); 820-823.

[67] Erickson B D, Elkins C A, Mulli L B, et al. A metallo-beta-lactamase is responsible for the degradation of ceftiofur by the bovine intestinal bacterium Bacillus cereus P41[J]. Veterinary Microbiology, 2014, 172(3/4):499-504.

[68] Selvi A, Salam J A, Das N. Biodegradation of cefdinir by a novel yeast strain, Ustilago sp. SMN03 isolated from pharmaceutical wastewater[J]. World JMicrobiol Biotechnol, 2014, 30(11):2839-2850.

[69] Lin B K, Liu J L, Liu X J, et al. Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge[J]. Journal of Hazardous Materials, 2015, 282:158-164.

[70]胡秀虹,李景壯,葉勝藍(lán),等.一株阿維菌素降解菌AW1-18的篩選與分類鑒定[J].生物技術(shù)通報(bào), 2012, 10:223-228. HU Xiu-hong, LI Jing-zhuang, YE Sheng-lan, et al. Screening and identification of avermectin -degrading bacterium strain AW1 -18 [J]. Biotechnology Bulletin, 2012, 10:223-228.

[71]閆彩虹.三株阿維菌素高效降解菌的篩選、鑒定及降解特性研究[D].揚(yáng)州:揚(yáng)州大學(xué), 2011. YAN Cai-hong. Screening, Identification and degradation characteristic researchofthreeavermectin-degradingbacteriumstrains[D].Yangzhou:Yangzhou University, 2011.

[72]魏艷麗,李紀(jì)順,扈進(jìn)冬,等.降解阿維菌素耐高溫菌株AZ11的分離及降解特性[J].山東科學(xué), 2013, 26(4):16-19. WEI Yan-li, LI Ji-shun, HU Jin-dong, et al. Solation and degradation characteristics of an avermectin-degrading and thermophilic bacterial strain AZ11[J]. Shandong Science, 2013, 26(4):16-19.

[73]胡秀虹,黃劍.阿維菌素降解菌AW1-12的篩選與分類鑒定[J].西南農(nóng)業(yè)學(xué)報(bào), 2013, 26(2):583-586. HU Xiu -hong, HUANG Jian. Screening and identification of avermectin-degrading bacterium strain AW1-12[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(2):583-586.

[74]李榮,管曉進(jìn),陳榮宗,等.阿維菌素降解菌株AW70的分離鑒定及降解特性研究[J].土壤, 2009, 41(4):607-611. LI Rong, GUAN Xiao-jin, CHEN Rong-zong, et al. Isolation and identification of an avermectins-degrading strain AW70 and its degrading characteristics[J]. Soils, 2009, 41(4):607-611.

[75]許曉玲.紅霉素、四環(huán)素降解菌的篩選、鑒定及其降解性能研究[D].杭州:浙江大學(xué), 2008. XU Xiao-ling. Screening and identification of erythromycin-degrading strains and tetracycline-degrading strains and their degradation characteristics[D]. Hangzhou:Zhejiang University, 2008.

[76]毛菲菲,劉暢,何夢(mèng)琦,等.紅霉素降解菌的篩分及其降解特性的研究[J].環(huán)境科學(xué)與技術(shù), 2013, 36(7):9-12. MAOFei-fei,LIUChang,HEMeng-qi,etal.Isolation and identification of an erythromycin degradation bacterium and study on its biodegradation characteristics[J]. Environmental Science & Technology, 2013, 36 (7):9-12.

[77]劉力嘉,謝麗,張作義,等.泰樂菌素高效降解菌的篩選及降解特性研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(5):1027-1030. LIU Li-jia, XIE Li, ZHANG Zuo-yi, et al. Isolation and degradation characteristics of a tylosin-degrading strain[J]. Journal of Agro-Environment Science, 2011, 30(5):1027-1030.

[78] Migliorea L, Fiori M, Spadonia A, et al. Biodegradation of oxytetracycline by Pleurotus ostreatus mycelium:A mycoremediation technique[J]. Journal of Hazardous Materials, 2012, 215-216:227-232.

[79]王志強(qiáng),張長(zhǎng)青,王維新.土霉素降解菌的篩選及其降解特性研究[J].中國(guó)獸醫(yī)科學(xué), 2011, 41(5):536-540. WANG Zhi-qiang, ZHANG Chang-qing, WANG Wei-xin. Screening and characterization of an oxytetracycline degrading bacterium[J]. Chinese Veterinary Science, 2011, 41(5):536-540.

[80]許曉玲,李衛(wèi)芬,雷劍,等.四環(huán)素降解菌的選育、鑒定及其降解特性[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2011, 19(3):549-556. XU Xiao-ling, LI Wei-fen, LEI Jian, et al. Screening, identification and degradation characteristics of tetracycline -degrading strains [J]. Journal of Agricultural Biotechnology, 2011, 19(3):549-556.

[81]馮福鑫,許旭萍,程群星,等.四環(huán)素高效降解酵母菌Trichosporon mycotoxinivorans XPY-10降解特性[J].環(huán)境工程學(xué)報(bào), 2013, 7(12):4779-4785. FENG Fu-xin, XU Xu-ping, CHENG Qun-xing, et al. Degradation characteristics of tetracycline hydrochloride by Trichosporon mycotoxinivorans XPY-10[J]. Chinese Journal of Environmental Engineering, 2013, 7(12):4779-4785.

[82]馬志強(qiáng),馬玉龍,謝麗,等.微生物法降解藥渣中殘留四環(huán)素的試驗(yàn)研究[J].環(huán)境科學(xué)與技術(shù), 2012, 35(1):46-49. MA Zhi-qiang, MA Yu-long, XIE Li, et al. Experimental study on microbial degradation of tetracycline residues in antibiotic waste[J]. Environmental Science & Technology, 2012, 35(1):46-49.

[83] Prieto A, Moder M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradationproducts[J].Bioresource Technology,2011,102(23):10987-10995.

[84] Herzog B, Lemmer H, Horn H, et al. Characterization of pure cultures isolated from sulfamethoxazole -acclimated activated sludge with respect to taxonomic identification and sulfamethoxazole biodegradation potential[J]. BMC Microbiology, 2013,12. doi: 10.1186/1471-2180-13-276.

[85]陳如登,吳波浪.抗生素耐藥性耐藥機(jī)制的探討[J].福建畜牧獸醫(yī), 2006, 28(1):59-60. CHEN Ru-deng, WU Bo-lang. Discussion about antibiotic resistance mechanisms[J]. Fujian Journal of Animal Husbandry and Veterinary, 2006, 28(1):59-60.

[86]糜祖煌,黃支密,秦玲.鮑氏不動(dòng)桿菌耐藥性和氨基糖苷類修飾酶、β-內(nèi)酰胺酶基因研究[J].中華醫(yī)院感染學(xué)雜志, 2004, 14(9):968-971. MI Zu-huang, HUANG Zhi-mi, QIN Ling. Resistance and genotyping of aminoglycosides modifying enzymes and β-Lactamases in acinetobacter baumannii[J]. Chinese Journal of Nosocomiology, 2004, 14(9):968-971.

[87] Liu Z R, Ling B D, Zhou Li M. Prevalence of 16S rRNA methylase, modifying enzyme, and extended-spectrum beta-lactamase genes among Acinetobacter baumannii isolates[J]. Journal of Chemotherapy, 2015, 27(4):207-212.

[88] Dias G V, Bohrer L F, Oliveira F B, et al. Detection and characterization of multidrug-resistant enterobacteria bearing aminoglycosidemodifying gene in a university hospital at Rio de Janeiro, Brazil, along three decades[J]. Biomedica, 2015, 35(1):117-124.

[89] Michalska A D, Anna D, Sacha P T, et al. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland[J]. Brazilian Journal of Microbiology, 2014, 45(4):1455-1458.

[90] Mohammadi S, Sekawi Z, Monjezi A, et al. Emergence of SCCmec type Ⅲwith variable antimicrobial resistance profiles and spa types among methicillin-resistant Staphylococcus aureus isolated from healthcareand community-acquired infections in the west of Iran[J]. InternationalJournal of Infectious Diseases, 2014, 25:152-158.

[91] Van de Klundert J A M, Vliegenthart J S. PCR detection of genes coding for aminoglycoside-modifying enzymes[M]//Persing D H, Smith T F, Tenover F C, et al. Diagnostic Molecular Microbiology, American Societyfor Microbiology. Washington DC,1993:547-552.

[92] YoonY K, Cheong H W, Pai H, et al. Molecular analysis of a prolonged spread of Klebsiella pneumoniae co-producing DHA-1 and SHV-12 β-lactamases[J]. Journal of Microbiology, 2011, 49(3):363-368.

[93]董方,徐樨巍,宋文琪.臨床分離大腸埃希菌和克雷伯菌質(zhì)粒介導(dǎo)AmpC β-內(nèi)酰胺酶的研究[J].中華醫(yī)學(xué)雜志, 2010, 90(38):2723-2725. DONG Fang, XU Xi-wei, SONG Wen-qi. Prevalence of plasmid-mediated AmpC beta-lactamases in Escherichia coli and Klebsieila spp. isolatedinchildren[J].National Medical Journalof China,2010,90(38):2723-2725.

[94] Yoo J S,Byeon J,Yang J, et al. High prevalence of extended-spectrum-beta-lactamases and plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae isolated from longterm care facilities in Korea[J]. Diagnostic Microbiology and Infectious Disease, 2010, 67(3):261-265.

[95] Rezaei F, Kalantar D, Delfani S, et al. Characterization co-existence of AmpC, MBLs, TEM and SHV type of beta -lactamases in clinical strains of Escherichia coli and Klebsiella pneumoniae isolated from hospitals of Khorramabad, Iran[J]. Tropical Medicine and International Health, 2015, 20(Suppl1):295-295.

[96] Liu Y R, Liu X Q. Detection of AmpC beta-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance[J]. Experimental and Therapeutic Medicine, 2015, 10(3):933-936.

[97]黃支密,諸葛青云,糜祖煌.陰溝腸桿菌I類整合酶基因及質(zhì)粒AmpC酶基因檢測(cè)[J].江西醫(yī)學(xué)檢驗(yàn), 2005, 23(1):21-24. HUANG Zhi-mi, ZHUGE Qing-yun, MI Zu-huang. Detection of the class 1 integrase gene and plasmid-AmpC enzyme genes in Enterobacter cloacae[J]. Jiangxi Journal of Medical Laboratory Sciences, 2005, 23 (1):21-24.

[98]黃義山,龍彥,方莉,等.多藥耐藥銅綠假單胞菌金屬β-內(nèi)酰胺酶及相關(guān)基因檢測(cè)[J].中國(guó)臨床醫(yī)師雜質(zhì), 2010, 4(9):1623-1627. HUANG Yi-shan, LONG Yan, FANG Li, et al. Study on the resistant genes of metal β-lactamase(MBLs)of the multidrug resistant mechanism of Pseudomonas aeruginosa[J]. Chinese Journal of Clinicians, 2010, 4(9):1623-1627.

[99]張傳領(lǐng),葛玉梅,沈麗芳,等.同時(shí)產(chǎn)ESBLS和AMPC酶志賀菌臨床菌株的分離及鑒定[J].中華微生物學(xué)和免疫學(xué)雜質(zhì),2014, 34(4):251-255. ZHANG Chuan-ling, GE Yu-mei, SHEN Li-fang, et al. Characteristics of clinical Shigella isolates producing the extended-spectrum and AmpC β-lactamases[J]. Chinese Journal of Microbiology Immunology, 2014, 34(4):251-255.

[100]羅卉麗,陳姍姍,楊宏偉,等. 35株多重耐藥嗜麥芽窄食單胞菌的β-內(nèi)酰胺酶耐藥基因分布研究[J].檢驗(yàn)醫(yī)學(xué)與臨床, 2015, 10(12):2839-2844. LUO Hui-li, CHEN Shan-shan, YANG Hong-wei, et al. Study of distribution of β-lactamase drug resistance gene in 35 strains of multidrug resistant Stenotrophomonas malto-philia[J]. Clinical Chemistry and Laboratory Medicine, 2015, 10(12):2839-2844.

[101] Bora A, Hazarika N K, Shukla Sanket K, et al. Prevalence of bla (TEM), bla(SHV)and bla(CTX-M)genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India[J]. Indian Journal of Pathology and Microbiology, 2014, 57(2):249-254.

[102] Lob S H, Biedenbach D J, Badal R E, et al. Antimicrobial resistance and resistance mechanisms of Enterobacteriaceae in ICU and non-ICU wards in Europe and North America:SMART 2011—2013 [J]. Journal of Global Antimicrobial Resistance, 2015, 3(3):190-197.

[103] Alyamani E J, Khiyami M A, Booq R Y, et al. Molecular characterization of extended-spectrum beta-lactamases(ESBLs)produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia[J]. Annals of Clinical Microbiology and Antimicrobials, 2015, 14:38.

[104] Tseng S P, Wang S F, Cheng Y, et al. Characterization of fosfomycin resistant extended-spectrum beta-lactamase-producing Escherichia coli isolates from human and pig in Taiwan[J]. Plos One, 2015, 10(8). doi: 10.1371/journal.pone.0135864

[105] Oliver A, Mulet X, Lopez C C, et al. The increasing threat of Pseudomonas aeruginosahigh-risk clones[J]. Drug Resistance Updates, 2015, 21-22:41-59.

[106]黃烈,林廣城,張銀輝,等.葡萄球菌對(duì)大環(huán)內(nèi)酯類抗生素耐藥及誘導(dǎo)耐藥表型與基因型的相關(guān)性研究[J].國(guó)際檢驗(yàn)醫(yī)學(xué)雜志, 2009, 30(6):551-554. HUANG Lie, LIN Guang-cheng, ZHANG Yin-hui, et al. The correlation between phenotype and genotype of macrolides resistance in staphylococci[J]. International of Journal Laboratory Medicine, 2009, 30(6):551-554.

[107]潘麗萍.大環(huán)內(nèi)酯類抗生素耐藥的流行狀況和機(jī)制[J].現(xiàn)代醫(yī)學(xué), 2008, 36(5):370-372. PAN Li-ping. The popularity of macrolide antibiotics resistant condition and mechanism[J]. Modern Medical Journal, 2008, 36(5):370-372.

[108]曾焱華,吳移謀.細(xì)菌對(duì)大環(huán)內(nèi)酯類抗生素耐藥的機(jī)制及控制策略[J].國(guó)外醫(yī)學(xué), 2003, 26(4):18-22. ZENG Yan-hua, WU Yi-mou. Macrolide antibiotics resistant mechanism and the control strategy[J]. Foreign Medical Sciences, 2003, 26 (4):18-22.

[109] Howie R L, Folster J P, Bowen A, et al. Reduced azithromycin susceptibility in shigella sonnei, United States[J]. Microbial Drug Resistance, 2010, 16(4):245-248.

[110]杜向黨,閻若潛,沈建忠.氯霉素類藥物耐藥機(jī)制的研究進(jìn)展[J].動(dòng)物醫(yī)學(xué)進(jìn)展, 2004, 25(2):29-31. DU Xiang-dang, YAN Ruo-qian, SHEN Jian-zhong. The research progress on mechanism of resistance of phenicolss[J]. Progress in Veterinary Medicine, 2004, 25(2):29-31.

[111] Wen X H, Jia Y N, Li J X, et al. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phane -rochaete chrysosporium:A white rot fungus[J]. Chemosphere, 2009, 75 (8):1003-1007.

[112] Wen X H, Jia Y N, Li J X, et al. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium[J]. Journal of Hazardous Materials,2010, 177(1-3):924-928.

[113]王艷.藥渣中殘留泰樂菌素的微生物降解途徑及其降解產(chǎn)物研究[D].寧夏:寧夏大學(xué), 2013. WANG Yan. A study on microbial degradation pathway and products of tylosin residues in antibiotic waste[D]. Ningxia:Ningxia University, 2013.

LIU Yuan-wang, LI Zhao-jun, FENG Yao, et al. Research progress in microbial degradation of antibiotics[J]. Journal of Agro-Environment Science, 2016, 35 (2): 212-224.

Research progress in microbial degradation of antibiotics

LIU Yuan-wang1, LI Zhao-jun1*, FENG Yao1, CHENG Deng-miao1, HU Hai-yan1, ZHANG Wen-juan1,2
(1. Ministry of Agriculture Key Lab of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese A-cademy of Agricultural Sciences, Beijing 100081, China; 2. College of Urban and Environment Science, Shanxi Normal University, Linfen 041004, China)

Abstract:Antibiotics, a group of chemicals, are widely used in treating human diseases and animal diseases and promoting animal growth. It was estimated that approximately 2300 tons of antibiotics were consumed in veterinary medicine in European countries and about 52% of all antibiotics(approximately 162 000 tons)were used for veterinary medicine in China in 2013. However, antibiotics could not be completely absorbed by the animal body, and most is excreted along with urine or feces, either unaltered or as metabolites. Antibiotics entered the environmental compartments at high rates, which resulted in concerns over public health, resource utilization and environmental pollution. Therefore, more and more attention has been paid to their effective elimination in the environment. The degradation of antibiotics by special microorganisms has been considered to be an efficient method for getting rid of antibiotics from the environment because of its low cost, simple management, and high degradation rates compared to other methods such as advanced oxidation processes, active carbon adsorption, low-temperature plasma technology, and membrane processing. In the present paper, the progress in antibiotic degradation by microorganisms and its mechanisms were reviewed in aspects of screening of specific functional microorganisms responsible for antibiotic degradation, optimization of microbial degradation conditions, degradation efficiencies and mechanisms including molecular biological mechanisms and degradation pathways. In addition, future research directions on microbial degradation of antibiotics were also proposed.

Keywords:microorganism; antibiotic; degradation

*通信作者:李兆君E-mail:lizhaojun@caas.cn

作者簡(jiǎn)介:劉元望(1989—),男,山西運(yùn)城人,碩士研究生,主要研究方向?yàn)檗r(nóng)業(yè)環(huán)境污染。E-mail:buyhead@sina.com

基金項(xiàng)目:北京市科技專項(xiàng)(Z141105000614012);國(guó)家自然科學(xué)基金(31572209);河北省科技項(xiàng)目(15227504D)

收稿日期:2015-06-15

中圖分類號(hào):X132

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1672-2043(2016)02-0212-13

doi:10.11654/jaes.2016.02.002

猜你喜歡
降解微生物抗生素
皮膚受傷后不一定要用抗生素
中老年保健(2021年6期)2021-08-24 06:53:34
抗生素的故事
亞硝酸鹽降解進(jìn)展研究
土壤中多菌靈污染及修復(fù)技術(shù)研究現(xiàn)狀
紅外光譜結(jié)合元素分析法研究SRB對(duì)煤的降解
生物瀝浸污泥深度脫水處理技術(shù)的產(chǎn)業(yè)化應(yīng)用
淺談微生物對(duì)污水的生物處理
貓抓病一例及抗生素治療
紅樹林微生物來源生物堿的開發(fā)利用
科技視界(2016年9期)2016-04-26 12:23:48
微生物對(duì)垃圾滲濾液中胡敏酸降解和形成的影響
科技視界(2016年7期)2016-04-01 09:39:11
临潭县| 顺义区| 平顶山市| 玛曲县| 济南市| 贵德县| 金堂县| 新蔡县| 布尔津县| 凯里市| 黎城县| 巧家县| 泸水县| 绥德县| 霍城县| 梁山县| 南城县| 榆树市| 曲周县| 张家口市| 平陆县| 深泽县| 海原县| 南川市| 蕲春县| 林西县| 纳雍县| 星子县| 藁城市| 昆明市| 张家港市| 栾城县| 天全县| 镶黄旗| 雷州市| 绿春县| 阿城市| 雅江县| 沅陵县| 长顺县| 德保县|