国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于Copula函數(shù)的列車減振器蛻化率估計(jì)*

2016-03-18 05:41:25顏云華呂乾勇
電子技術(shù)應(yīng)用 2016年6期
關(guān)鍵詞:蛇行概率密度函數(shù)減振器

顏云華,呂乾勇,秦 娜

(1.常州機(jī)電職業(yè)技術(shù)學(xué)院,江蘇 常州 213164;2.西南交通大學(xué) 電氣工程學(xué)院,四川 成都 610031)

基于Copula函數(shù)的列車減振器蛻化率估計(jì)*

顏云華1,呂乾勇2,秦 娜2

(1.常州機(jī)電職業(yè)技術(shù)學(xué)院,江蘇 常州 213164;2.西南交通大學(xué) 電氣工程學(xué)院,四川 成都 610031)

為了準(zhǔn)確估計(jì)高速列車轉(zhuǎn)向架關(guān)鍵部件的機(jī)械磨損程度,提出了一種基于 Copula函數(shù)的抗蛇行減振器阻尼參數(shù)蛻化率估計(jì)方法。該方法以高速列車抗蛇行減振器阻尼系數(shù)在不同蛻化率下的振動(dòng)信號為研究對象,經(jīng)過小波包濾波后,通過泛化高斯分布對各信號的邊緣分布進(jìn)行擬合,并使用 Gaussian Copula函數(shù)構(gòu)建不同蛻化率下的信號與車輛正常時(shí)信號的聯(lián)合概率密度函數(shù)。提取聯(lián)合概率密度函數(shù)的均值作為特征,并對目標(biāo)信號的蛻化率進(jìn)行估計(jì)。對某型高速列車轉(zhuǎn)向架抗蛇行減振器不同參數(shù)蛻化率的振動(dòng)信號進(jìn)行實(shí)驗(yàn),并與真實(shí)值進(jìn)行比較。實(shí)驗(yàn)結(jié)果表明,在 200km/h速度下,實(shí)驗(yàn)誤差均在范圍內(nèi),表明了該方法的有效性。

高速列車;Copula函數(shù);蛻化率估計(jì);聯(lián)合概率密度函數(shù)

0 引言

隨著列車運(yùn)行里程的增加,彈性部件的機(jī)械磨損會加劇,使得其剛度系數(shù)降低,導(dǎo)致部件性能的蛻化,從而嚴(yán)重影響列車的舒適性和安全性[1]。傳統(tǒng)的列車故障狀態(tài)分析方法主要針對彈性部件完全故障時(shí)對其進(jìn)行診斷,即只將彈性部件的工作狀態(tài)分為正常和失效兩種。文獻(xiàn)[2]通過對列車關(guān)鍵部件的故障信號進(jìn)行聚合經(jīng)驗(yàn)?zāi)B(tài)分解,得到各種工況下的本征模態(tài)函數(shù)同時(shí)提取熵值作為該種工況的特征并進(jìn)行分類識別。然而實(shí)際運(yùn)行中,列車彈性部件出現(xiàn)完全損壞情況較少,而是隨著列車運(yùn)行里程的增加,部件性能產(chǎn)生蛻化。為了保證列車的安全運(yùn)行,當(dāng)彈性部件的參數(shù)蛻化達(dá)到一定程度時(shí),必須對該部件進(jìn)行更換。因此,只將列車彈性部件的狀態(tài)分為正常和失效兩種沒有太大實(shí)際意義,更多的需求是對其參數(shù)蛻化程度進(jìn)行估計(jì)[3],從而計(jì)算出該部件的安全運(yùn)行裕量,并作為更換和維修部件的依據(jù)??股咝袦p振器作為高速列車的關(guān)鍵部件,為列車提供穩(wěn)定的回轉(zhuǎn)阻尼力,具有同時(shí)滿足有效抑制蛇形失穩(wěn)和利于通過曲線的要求[4],對于保障列車的安全性和舒適性有重要作用,本文選取列車抗蛇行減振器進(jìn)行參數(shù)蛻化程度估計(jì)具有實(shí)際意義。

Copula函數(shù)作為一種分析隨機(jī)變量間相關(guān)性的方法,在近年的研究中得到了廣泛應(yīng)用。文獻(xiàn)[5]使用Copula函數(shù)分析紋理圖像經(jīng)過小波變換后所得分量間的關(guān)聯(lián)性,并進(jìn)行特征提取和識別,得到較好的識別效果。文獻(xiàn)[6]使用混合Copula函數(shù)刻畫風(fēng)電功率間的相關(guān)結(jié)構(gòu)并提取特征,對于包含風(fēng)電場的電力系統(tǒng)風(fēng)險(xiǎn)分析和調(diào)度運(yùn)行有重要意義。文獻(xiàn)[7]使用 Gaussian Copula函數(shù)對高速列車轉(zhuǎn)向架關(guān)鍵器件進(jìn)行故障特征提取并進(jìn)行識別,取得了較好的識別效果。

本文通過 Copula函數(shù)研究彈性部件在參數(shù)蛻化過程中車體轉(zhuǎn)向架的振動(dòng)信號與車輛正常時(shí)信號之間的關(guān)聯(lián)性,得到參數(shù)過蛻化程中的演變規(guī)律,并對目標(biāo)信號的參數(shù)蛻化率進(jìn)行估計(jì),對列車的安全運(yùn)行具有實(shí)際指導(dǎo)意義。

1 Copula函數(shù)

Copula函數(shù)又名連接函數(shù),通過構(gòu)建多個(gè)隨機(jī)變量的聯(lián)合分布函數(shù),反映他們之間的相關(guān)性。

1.1 Sklar定理

令 F(·,…,·)為具有邊緣分布 F1(·),F(xiàn)2(·),…,F(xiàn)n(·)的聯(lián)合分布函數(shù),那么存在一個(gè)Copula函數(shù) C(·,…,·),滿足[8]:

若 F1(·),F(xiàn)2(·),…,F(xiàn)n(·)連續(xù),則 C(·,…,·)唯一確定。這就是 Sklar定理,C(·,…,·)稱為Copula函數(shù)。

1.2 常用Copula函數(shù)介紹

Copula函數(shù)的常見類型有:橢圓型(Gaussian Copula和t-Copula)、Archimedean型。

二維 Gaussian Copula分布函數(shù)定義如下:

式中 ρ∈[-1,1]為相關(guān)系數(shù),Φ為標(biāo)準(zhǔn)正態(tài)分布函數(shù),Φ-1為其反函數(shù)。

Gaussian Copula函數(shù)被廣泛應(yīng)用于聯(lián)合分布模型的構(gòu)建,并取得了較好的效果[9]。

2 Copula函數(shù)的參數(shù)蛻化率估計(jì)

2.1 Copula函數(shù)的邊緣分布函數(shù)構(gòu)建

由文獻(xiàn)[7]可知,傳統(tǒng)的高斯分布模型不能對列車信號的分布進(jìn)行較好的擬合。文獻(xiàn)[7]使用泛化高斯模型(Generalized Gaussian Distribution,GGD)對高速列車信號進(jìn)行擬合時(shí),得到了較好的擬合效果。驗(yàn)驗(yàn)證結(jié)果表明,GGD能對高速列車信號分布進(jìn)行很好的擬合。故本文采用GGD擬合列車信號的分布,GGD的密度函數(shù)的形式為:

GGD參數(shù)計(jì)算有最大似然估計(jì)和牛頓-拉夫遜法兩種,本文使用最大似然估計(jì)法計(jì)算GGD參數(shù)。

2.2 Copula函數(shù)構(gòu)建聯(lián)合分布及特征提取

得到信號的邊緣分布后,本文采用 Gaussian Copula構(gòu)建信號間的聯(lián)合分布。

對 Copula函數(shù)的參數(shù)進(jìn)行估計(jì)時(shí)有完全最大似然估計(jì)法以及兩階段最大似然估計(jì)法兩種常用方法。第一種方法通過對邊緣分布和 Copula函數(shù)的參數(shù)進(jìn)行一次性估計(jì),得到全部參數(shù);第二種方法則先估計(jì)出邊緣分布的參數(shù),然后再求出 Copula函數(shù)的參數(shù)。由于本文已經(jīng)對信號的邊緣分布進(jìn)行了擬合,故本文采用兩階段最大似然估計(jì)法:先求得式(3)中的邊緣分布參數(shù),再求出Gaussian Copula函數(shù)的參數(shù)。

2.3 參數(shù)蛻化率估計(jì)

在實(shí)際參數(shù)蛻化率的估計(jì)中,分析特征值隨蛻化率的演變規(guī)律,根據(jù)規(guī)律對目標(biāo)信號的蛻化率進(jìn)行估計(jì)。計(jì)算目標(biāo)信號的特征值,確定與其最接近的值,該值對應(yīng)的蛻化率作為目標(biāo)信號的蛻化率。

本文蛻化率估計(jì)方法的流程圖如圖1所示。

圖1 本文結(jié)構(gòu)框圖

3 實(shí)驗(yàn)結(jié)果及分析

3.1 數(shù)據(jù)來源

采用動(dòng)力學(xué)仿真分析的多剛體動(dòng)力學(xué)分析軟件包,針對某型號動(dòng)車組動(dòng)車轉(zhuǎn)向架的抗蛇行減振器阻尼在不同參數(shù)蛻化率下進(jìn)行了仿真實(shí)驗(yàn)。根據(jù)文獻(xiàn)[10],分別設(shè)置抗蛇行減振器阻尼剛度系數(shù)為正常剛度系數(shù)值的90%~10%,以10%進(jìn)行遞減,代表列車彈性部件磨損的加劇,用該百分比代表蛻化率。仿真得到車體后部橫向加速度通道、車體中部橫向加速度通道、車體前部橫向加速度通道在抗蛇行減振器參數(shù)蛻化率在 90%~10%時(shí)的信號。速度設(shè)定為200km/h,仿真時(shí)間為3.6 min,采樣頻率為243 Hz。

3.2 實(shí)驗(yàn)結(jié)果及分析

(1)小波包閾值降噪

數(shù)據(jù)采集系統(tǒng)的傳感器在測量過程中會引入隨機(jī)噪聲的干擾。小波分析具有良好的時(shí)頻局部特性,通過小波包變換將原始信號分解成不同頻域下的成分,進(jìn)而實(shí)現(xiàn)信號濾波以及強(qiáng)噪聲背景下對微弱信號特征的提取。高速列車轉(zhuǎn)向架故障振動(dòng)信號集中在15 Hz以下,選用 db2進(jìn)行 4層小波包分解,采用自適應(yīng)閾值法對樣本信號進(jìn)行消噪預(yù)處理。

(2)GGD擬合邊緣分布

當(dāng)參數(shù)蛻化率分別為90%~10%時(shí),使用GGD分別對車體前部橫向加速度通道信號進(jìn)行擬合,車輛正常時(shí)車體前部橫向加速度通道信號的分布圖以及使用 GGD擬合的結(jié)果如圖2所示。

圖2 車輛正常時(shí)振動(dòng)信號分布直方圖和 GGD擬合結(jié)果

由圖2可知,使用 GGD對信號邊緣分布進(jìn)行擬合時(shí),擬合效果較好。

(3)Copula函數(shù)構(gòu)建聯(lián)合分布

使用Gaussian Copula函數(shù)分別計(jì)算得到9種蛻化信號與車輛正常時(shí)信號的聯(lián)合概率密度函數(shù)。提取聯(lián)合概率密度函數(shù)的均值作為特征進(jìn)行分析,得到不同蛻化率下的信號與車輛正常信號的聯(lián)合概率密度函數(shù)均值的箱形圖如圖3所示。

圖3 聯(lián)合概率密度函數(shù)均值隨蛻化率變化箱形圖

由圖3可知,在不同的蛻化率下,列車信號與車輛正常時(shí)信號的聯(lián)合概率密度函數(shù)的均值分布區(qū)間不同,隨著蛻化率的改變呈現(xiàn)出規(guī)律性的變化。

對60個(gè)樣本的特征取均值,使用 3次樣條插值法擬合該曲線并對車輛正常時(shí)的特征值進(jìn)行估計(jì),得到聯(lián)合概率密度函數(shù)的均值隨蛻化率的變化曲線如圖4所示。

對應(yīng)蛻化率從90%~10%,只能得到9個(gè)原始數(shù)據(jù)點(diǎn),最后一個(gè)坐標(biāo)點(diǎn)的值只能通過估計(jì)得到。3次樣條插值因具有良好的平滑性和數(shù)學(xué)特征而得到廣泛應(yīng)用[11],本文采用 3次樣條插值法對曲線進(jìn)行擬合并對最后一點(diǎn)的值進(jìn)行估計(jì)。由圖4可知,使用 3次樣條插值法進(jìn)行擬合效果較好。

圖4 聯(lián)合概率密度函數(shù)均值隨蛻化率變化曲線

3.3 蛻化率估計(jì)結(jié)果

在實(shí)際應(yīng)用中,當(dāng)參數(shù)蛻化率低于 60%時(shí),很難保證該彈性部件安全可靠地工作,因此,對蛻化率低于60%的信號進(jìn)行蛻化率估計(jì)無實(shí)際意義[4],故本文選取參數(shù)蛻化率在90%~60%下的信號進(jìn)行蛻化率估計(jì)。

使用Gaussian Copula函數(shù)構(gòu)建蛻化率待估計(jì)信號與車輛正常信號間的聯(lián)合分布函數(shù),提取聯(lián)合概率密度函數(shù)均值作為特征,使用與其最接近的特征值對應(yīng)的蛻化率作為估計(jì)的結(jié)果。為減小樣本差異造成的影響,取5次實(shí)驗(yàn)得到的特征均值進(jìn)行參數(shù)蛻化率估計(jì),得到車體前部、中部以及車體后部橫向加速度通道的估計(jì)結(jié)果如表1所示。

表1 車體橫向加速度通道蛻化率估計(jì)結(jié)果

由表1可知,對彈性部件在實(shí)際蛻化率為90%~60%的信號,使用本文所提的參數(shù)蛻化率估計(jì)方法,在車體前部、中部、后部 3個(gè)橫向加速度通道上的蛻化率估計(jì)結(jié)果與實(shí)際蛻化率之間的誤差均在范圍內(nèi),說明了所提方法的有效性。

4 結(jié)束語

針對高速列車在運(yùn)行過程中機(jī)械磨損導(dǎo)致的轉(zhuǎn)向架抗蛇行減振器參數(shù)蛻化,提出了一種基于 Copula函數(shù)的抗蛇行減振器參數(shù)蛻化率估計(jì)方法。彌補(bǔ)了傳統(tǒng)分析中只將彈性部件分為正常和失效兩種工作狀態(tài)的不足。通過對不同參數(shù)蛻化率下的信號進(jìn)行小波包濾波,并使用GGD擬合信號的邊緣分布,最后通過Gaussian Copula函數(shù)構(gòu)建參數(shù)蛻化信號與車輛正常信號的聯(lián)合分布,提取聯(lián)合概率密度函數(shù)均值分析演變規(guī)律并進(jìn)行參數(shù)蛻化率估計(jì)。對車體前部、中部、后部橫向加速度通道信號的實(shí)驗(yàn)結(jié)果表明,實(shí)驗(yàn)誤差均在范圍內(nèi),說明了本文所提方法對高速列車轉(zhuǎn)向架抗蛇行減振器參數(shù)蛻化分析的有效性。

[1]王新銳,丁勇,李國順.鐵路火車可靠性實(shí)驗(yàn)方法及評價(jià)標(biāo)準(zhǔn)的研究[J].中國鐵道科學(xué),2010,31(1):116-122.

[2]秦娜,金煒東,黃進(jìn),等.基于EEMD樣本熵的高速列車轉(zhuǎn)向架故障特征提取[J].西南交通大學(xué)學(xué)報(bào),2014,49(1):27-32.

[3]丁健明.車輛動(dòng)力學(xué)性能參數(shù)估計(jì)方法研究[D].成都:西南交通大學(xué),2011.

[4]王文靜,金新燦,韓同樣.動(dòng)車組轉(zhuǎn)向架[M].北京:北京交通大學(xué)出版社,2012.

[5]Li Chaorong,Li Jianping,F(xiàn)u Bo.Magnitude-phase of quaternion wavelet transform for texture representation using multilevel copula[J].IEEE Signal Processing Letters,2013,20(8):799-802.

[6]季峰,蔡興國,王?。诨旌?Copula函數(shù)的風(fēng)電功率相關(guān)性分析[J].電力系統(tǒng)自動(dòng)化,2014,38(2):1-5.

[7]金煒東,呂乾勇,孫永奎.基于 Copula函數(shù)的高速列車轉(zhuǎn)向架故障特征提取[J].西南交通大學(xué)學(xué)報(bào),2015,50(4):676-682.

[8]NELSON R B.An introduction to Copulas[M].New York:Springer,2006.

[9]LASMAR N E,BERTHOUMIEU Y.Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms[J].IEEE Transactions on Image Processing,2014,23(5):2246-2261.

[10]張衛(wèi)華.機(jī)車車輛行動(dòng)動(dòng)態(tài)模擬研究[M].成都:西南交通大學(xué)出版社,2006.

[11]陳文略,王子羊.三次樣條插值在工程擬合中的應(yīng)用[J].華中師范大學(xué)學(xué)報(bào),2004,38(4):418-422.

圖4 監(jiān)控端顯示界面

表1 WiFi、4G、3G下系統(tǒng)測試結(jié)果

4 結(jié)論

移動(dòng)互聯(lián)網(wǎng)時(shí)代的到來為車載視頻智能監(jiān)控系統(tǒng)在智能交通領(lǐng)域的發(fā)展升級帶來了新的機(jī)遇。針對傳統(tǒng)車載監(jiān)控系統(tǒng)存在的高清實(shí)時(shí)性能較差、網(wǎng)絡(luò)資源利用率低的問題,本文提出一種基于 Android平臺的車載視頻智能監(jiān)控解決方案,采用 P2P和 C/S混合網(wǎng)絡(luò)架構(gòu),并利用多線程分別解決視頻的接收、解碼,通過緩沖機(jī)制解決視頻卡頓問題。經(jīng)過實(shí)驗(yàn)測試驗(yàn)證,本系統(tǒng)能適應(yīng)不同網(wǎng)絡(luò)條件,能實(shí)現(xiàn)以較滿意的網(wǎng)絡(luò)資源利用率和視頻監(jiān)控質(zhì)量對車輛進(jìn)行實(shí)時(shí)監(jiān)控。

參考文獻(xiàn)

[1]李佳毅,徐曉輝,蘇彥莽,等.基于 Android平臺的智能溫室視頻無線監(jiān)控系統(tǒng)[J].農(nóng)機(jī)化研究,2013,35(8):188-191.

[2]羅歡,謝云,李丕杉.基于 Android智能電視的視頻監(jiān)控的設(shè)計(jì)[J].電視技術(shù),2013(22):85-87.

[3]PERKINS C.Rtp:Audio and video for the internet[M]. Addison-Wesley Professional,2003.

[4]SRISURENSH P,NETWORKS J,EGEVANG K.Traditional IP network address translator(traditional NAT),RFC 3022[Z]. IETF,2001.

[5]EGEVANG K,F(xiàn)RANCIS P.The IP network address translator(NAT),RFC1631[Z].IETF,1996.

(收稿日期:2016-01-18)

作者簡介:

王浩(1990-),男,碩士研究生,主要研究方向:通信與信息處理。

韓敏(1959-),女,博士,教授,主要研究方向:智能技術(shù)及優(yōu)化算法等。

董杰(1981-),男,博士,副教授,主要研究方向:通信與信息處理。

Evaluating degeneration ratio of train damper using Copula function

Yan Yunhua1,Lv Qianyong2,Qin Na2
(1.Changzhou Institute of Mechatronic Technology,Changzhou 213164,China;2.School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,China)

To evaluate the mechanical wear degree of key component of high-speed train bogie,an approach using copula function to evaluate damping degeneration ratio of yaw damper is proposed in the paper.Vibration signals of a certain high-speed train are obtained under different degeneration ratios.The vibration signal is decomposed by wavelet packet filters first.The marginal distribution function of the signal is fitted by generalized Gaussian distribution.The joint probability distribution between degenerate signal and the normal signal is computed by Gaussian Copula function.The mean of joint probability density function is extracted as the feature and the degeneration ration of target signal is evaluated.The vibration signals of different parameter degeneration ratio of high-speed train bogie yaw damper are used to do experiments using the proposed method and compared with the real degeneration ratio.Experiment results shows the error is within negative 3 percentages to 3 percentages at the speed of 200km/h,which verifies the effectiveness of the proposed degeneration ratio evaluation method.

high-speed train;Copula function;degeneration ratio evaluation;joint probability density function

TP391

:ADOI:10.16157/j.issn.0258-7998.2016.06.034

顏云華,呂乾勇,秦娜.基于 Copula函數(shù)的列車減振器蛻化率估計(jì)[J].電子技術(shù)應(yīng)用,2016,42(6):124-127.

英文引用格式:Yan Yunhua,Lv Qianyong,Qin Na.Evaluating degeneration ratio of train damper using Copula function[J].Application of Electronic Technique,2016,42(6):124-127.

2015-10-26)

顏云華(1970-),男,副教授,主要研究方向:電子信息及信息處理。

呂乾勇(1992-),通信作者,男,碩士,主要研究方向:智能信息處理,E-mail:yake101@126.com。

秦娜(1978-),女,博士,主要研究方向:高速列車服役狀態(tài)、模式識別等。

國家自然科學(xué)基金重點(diǎn)資助項(xiàng)目(61134002)

猜你喜歡
蛇行概率密度函數(shù)減振器
基于HHT能量和最大Lyapunov指數(shù)的蛇行分類方法
冪分布的有效估計(jì)*
高速列車抗蛇行減振器故障分析
機(jī)車蛇行狀態(tài)橫向平穩(wěn)性仿真研究
高速列車可變阻尼抗蛇行減振器適應(yīng)性研究
已知f(x)如何求F(x)
汽車減振器與磁流變材料分析與運(yùn)算
基于概率密度函數(shù)的控制系統(tǒng)性能評價(jià)
饋能式磁流變減振器自供電特性研究
汽車科技(2014年6期)2014-03-11 17:45:36
非高斯隨機(jī)分布系統(tǒng)自適應(yīng)控制算法的研究
页游| 永川市| 峨眉山市| 高邮市| 股票| 偃师市| 教育| 桐城市| 华坪县| 金华市| 四会市| 富源县| 三都| 霍林郭勒市| 达日县| 安平县| 松溪县| 桦南县| 金山区| 浮梁县| 岱山县| 台南县| 贵南县| 云南省| 武宣县| 屏南县| 微博| 东源县| 铁岭县| 临沭县| 深州市| 宣威市| 大安市| 墨竹工卡县| 广宁县| 札达县| 山西省| 建宁县| 安福县| 房山区| 墨脱县|