楊蕾,羅翔,王雅,張亞南,陳景文
工業(yè)生態(tài)與環(huán)境工程教育部重點實驗室,大連理工大學環(huán)境學院,大連 116024
有機污染物的被動采樣材料-水分配系數(shù)的QSAR研究
楊蕾,羅翔,王雅,張亞南,陳景文*
工業(yè)生態(tài)與環(huán)境工程教育部重點實驗室,大連理工大學環(huán)境學院,大連 116024
被動采樣材料-水分配系數(shù);聚乙烯;聚丙烯酸酯;硅橡膠;定量構效關系
Received 15 April 2016 accepted 26 May 2016
近年來,被動采樣技術在水中痕量有機污染物的監(jiān)測領域得到了廣泛應用。半透膜采樣裝置(SPMDs)[1]、聚乙烯被動采樣器(PE)[2]和梯度擴散薄膜技術(DGT)[3]等被動采樣技術被用于測定污染物的自由溶解態(tài)的濃度,對于生物有效性評價具有重要意義。在被動采樣過程中,被動采樣器通過吸附作用將水中的污染物富集到采樣材料上,從而得到污染物的時間加權平均濃度[4]。有機污染物的被動采樣材料-水分配系數(shù)(KPW),是衡量被動采樣器性能和進行優(yōu)化的一個重要指標[5]。目前,大部分污染物的KPW值都是通過實驗測定獲得,但實驗方法費時費力[6],難以滿足數(shù)量龐大且與日俱增的有機污染物的監(jiān)測需求,需要發(fā)展預測方法來獲得有機污染物的KPW值。
定量構效關系(QSAR)是一種可以有效預測有機污染物理化性質、環(huán)境行為和毒理學效應參數(shù)的方法[7]。許多研究曾采用有機化合物的正辛醇-水分配系數(shù)(logKOW)、正十六烷-水分配系數(shù)(logKHW)或水溶解度(logSW)對其KPW進行預測[8-16]。Lohmann[8]分別用logKHW和logSW預測了100種化合物的聚乙烯-水分配系數(shù),相關系數(shù)(R2)分別為0.86和0.92;用logKOW預測79種化合物的聚乙烯-水分配系數(shù),R2達到0.91。Hale等[9]分別用logKHW和logKOW預測了34種化合物的聚乙烯-水分配系數(shù),R2分別為0.85和0.53。另外,有些研究基于線性溶解能關系(LSER)預測KPW。Endo等[5]構建了79種化合物的聚丙烯酸酯-水分配系數(shù)的LSER模型,R2達到0.97。然而這些模型所采用的預測變量通常也是需要實驗測定的經(jīng)驗性參數(shù),導致模型的適用范圍有限。本研究針對3類常用的被動采樣材料,即聚乙烯(PE)、聚丙烯酸酯(PA)和硅橡膠(SR),遵循經(jīng)濟合作與發(fā)展組織(OECD)發(fā)布的QSAR構建與驗證導則[17],構建KPW的QSAR預測模型,并對模型進行表征和機理解釋。
1.1 數(shù)據(jù)來源
考慮7種被動采樣材料(聚乙烯、聚丙烯和5種不同的硅橡膠),有機污染物在19 ~ 26 ℃下的KPW實測數(shù)據(jù)均來自文獻報道[2,5-6,8-9,18-27],包括:215種有機物的聚乙烯-水分配系數(shù)(此處為區(qū)分不同采樣材料記為logKPE),數(shù)值范圍為2.3 ~ 7.8;107種有機物的聚丙烯酸酯-水分配系數(shù)(logKPA),數(shù)值范圍為0.0 ~ 6.0;67種有機物的Silastic A型硅橡膠-水分配系數(shù)(logKSR1),數(shù)值范圍為3.0 ~ 7.6;67種有機物的SR batch 0型硅橡膠-水分配系數(shù)(logKSR2),數(shù)值范圍為2.8 ~ 7.4;93種有機物的AlteSil型硅橡膠-水分配系數(shù)(logKSR3),數(shù)值范圍為3.0 ~ 7.8;67種有機物的SR-RED型硅橡膠-水分配系數(shù)(logKSR4),數(shù)值范圍為3.0 ~ 7.6;67種有機物的SR-TF型硅橡膠-水分配系數(shù)(logKSR5),數(shù)值范圍為2.9 ~ 7.4。有機物涵蓋烷烴、烯烴、芳香類、醇類、酮類、酯類、醚類等多種類別。
將各個數(shù)據(jù)集以4∶1的比例隨機拆分為訓練集和驗證集,其中,訓練集中的化合物用于構建模型,驗證集中的化合物用于模型驗證。
1.2 分子結構描述符的計算
采用ChemBio3D Ultra (Version 12.0)軟件中MOPAC 2012模塊的PM7算法[28],對化合物結構進行優(yōu)化并獲得穩(wěn)定構型。同時,基于化合物優(yōu)化后的穩(wěn)定結構,由Dragon (Version 6.0)軟件計算得到分子結構描述符。
1.3 模型的建立
(1)
(2)
(3)
1.4 應用域表征
采用基于標準殘差(δ)對leverage值(hi)的Williams圖對模型的應用域進行表征[30]。δ和hi及其預警值(h*)的計算公式如下:
(4)
hi= xiT(XTX)-1xi
(5)
h*= 3(k + 1)/n
(6)
式中,k為自變量的個數(shù),xi是第i個化合物的描述符矢量,X是描述符矩陣。將|δ| > 3的化合物視為離群點。
2.1 最優(yōu)QSAR模型
得到7種被動采樣材料的最優(yōu)QSAR模型如下:
(1) 聚乙烯-水分配系數(shù)(logKPE)
logKPE= 0.015Vx- 0.034TPSA(NO) + 0.110nBM + 0.137nCl - 0.841
(2) 聚丙烯酸酯-水分配系數(shù)(logKPA)
logKPA= 0.010Vx+ 0.154nCl + 0.078nBM - 0.026TPSA(NO)+ 0.940NddsN - 0.778nROH + 0.701
(3) Silastic A型硅橡膠-水分配系數(shù)(logKSR1)
logKSR1= 0.024Vx- 0.117Rperim - 0.088
(4) SR batch 0型硅橡膠-水分配系數(shù)(logKSR2)
logKSR2= 0.024Vx- 0.139Rperim - 0.088
(5) AlteSil型硅橡膠-水分配系數(shù)(logKSR3)
logKSR3= 0.021Vx- 0.824
(6) SR-RED型硅橡膠-水分配系數(shù)(logKSR4)
logKSR4= 0.017Vx+ 0.140nCl
(7) SR-TF型硅橡膠-水分配系數(shù)(logKSR5)
logKSR5= 0.023Vx- 0.144Rperim + 0.327
2.2 模型的應用域表征
7個模型的應用域表征結果如圖2所示。訓練集和驗證集所有化合物的|δ| < 3,模型無離群點,表明訓練集化合物具有很好的代表性。logKPE模型中訓練集的4種化合物和logKPA模型中訓練集的1種化合物,hi> h*但|δ| < 3,說明這些化合物增加了模型的穩(wěn)定性和準確性。logKPE模型中驗證集的1種化合物,hi> h*但|δ| < 3,落在描述符域外,但其預測效果較好,說明模型適用于遠離描述符中心的化合物,進一步推論出模型具有一定的延展能力和外推性。因此,建立的模型可用于預測應用域內其他化合物的logKPW值。
圖1 logKPW的實測值與預測值擬合關系圖Fig. 1 Plot of the predicted versus experimental logKPW values
圖2 logKPW模型的Williams應用域表征圖Fig. 2 Williams plot of logKPW models
表1 本研究構建的預測模型中分子結構描述符的含義Table 1 Definitions of the molecular structural descriptors involved in the developed models
3.1 機理解釋
7個模型中,共包含7個描述符(如表1所示),其中,Vx, nBM, nCl和NddsN與logKPW呈正相關;TPSA(NO), nROH和Rperim與logKPW呈負相關。在所有模型中,Vx的貢獻最大,是影響KPW的最主要因素。Vx是分子McGowan體積,表征空穴形成作用。由于水分子排列高度有序且凝聚性強[31],在水中形成空穴所需能量遠大于其在被動采樣材料中所需能量,因此化合物分子更容易通過空穴形成作用分配到被動采樣材料相中。具有較大Vx值的化合物,其logKPW值越大。nCl是氯原子的個數(shù)。有研究表明,logKOW與鹵素原子個數(shù)有關[32],可用化合物的鹵素原子數(shù)表征其疏水作用,nCl值越大的化合物疏水作用越強,因而越容易分配到采樣材料中。TPSA(NO)是由N, O極性貢獻的拓撲極性表面積,nROH是羥基的個數(shù)。這些親水結構中的氮和氧原子具有孤對電子,易形成氫鍵,增加了與水的氫鍵相互作用[33],使化合物更不易被采樣材料吸附,從而具有更小的logKPW值。Rperim是環(huán)的周長,化合物的環(huán)周長越大,空間位阻越大,越難進入到被動采樣材料相中,從而具有更小的logKPW值。此外,nBM和NddsN表明logKPW還與化合物多重鍵和[-N(=)=] (硝基氮)原子的個數(shù)有關。
表2 本研究模型和前人相關模型的比較Table 2 Comparison of KPW prediction models from the current study and previous studies
注:N表示無應用域表征,Y表示有應用域表征;— 表示未報道。
Note: N, applicability domain was not characterized; Y, applicability domain was characterized; —, unreported.
3.2 模型比較
將本研究構建的模型與前人的一些代表性模型進行比較,見表2。本研究logKPE, logKPA和logKSR模型與前人模型相比,化合物種類更豐富且數(shù)量更多,而且所采用的分子結構參數(shù)均可通過計算獲得,不依賴于實驗測定。此外,本研究將數(shù)據(jù)集劃分為訓練集和驗證集,利用MLR方法建立模型,所有模型均進行了外部驗證和應用域的表征,并進行了機理解釋。
綜上,本研究遵循OECD關于QSAR模型構建和驗證的導則,構建了3類共7種被動采樣材料的KPW的QSAR預測模型。模型具有良好的擬合優(yōu)度、穩(wěn)健性和預測能力,能夠用于預測含有>C=C<, -OH, -O-, >C=O, -C=O(O), -C6H5, -NO2, -NH2, -NH-, -X(F, Cl, Br, I)等多種結構官能團的有機污染物的logKPW值,可為快速獲取有機污染物的KPW值以及為被動采樣器的應用提供基礎數(shù)據(jù)。
輔助信息:化合物logKPW實測值、預測值以及模型中包含的分子結構描述符值,需要者請和通訊作者聯(lián)系。
[1] Booij K, van Bommel R, van Aken H M, et al. Passive sampling of nonpolar contaminants at three deep-ocean sites [J]. Environmental Pollution, 2014, 195: 101-108
[2] Sacks V P, Lohmann R. Development and use of polyethylene passive samplers to detect triclosans and alkylphenols in an urban estuary [J]. Environmental Science & Technology, 2011, 45(6): 2270-2277
[3] Chen C E, Zhang H, Ying G G, et al. Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters [J]. Environmental Science & Technology, 2013, 47(23): 13587-13593
[4] Alvarez D A, Cranor W L, Perkins S D, et al. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers [J]. Journal of Environmental Quality, 2008, 37(3): 1024-1033
[5] Endo S, Droge S T J, Goss K U. Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction [J]. Analytical Chemistry, 2011, 83(4): 1394-1400
[6] Choi Y, Cho Y M, Luthy R G. Polyethylene-water partitioning coefficients for parent-and alkylated-polycyclic aromatic hydrocarbons and polychlorinated biphenyls [J]. Environmental Science & Technology, 2013, 47(13): 6943-6950
[7] 陳景文, 全燮. 環(huán)境化學[M]. 大連: 大連理工大學出版社, 2009: 260
Chen J W, Quan X. Environmental Chemistry [M]. Dalian: Dalian University of Technology Press, 2009: 260 (in Chinese)
[8] Lohmann R. Critical review of low-density polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler [J]. Environmental Science & Technology, 2011, 46(2): 606-618
[9] Hale S E, Martin T J, Goss K U, et al. Partitioning of organochlorine pesticides from water to polyethylene passive samplers [J]. Environmental Pollution, 2010, 158(7): 2511-2517
[10] Josefsson S, Arp H P H, Kleja D B, et al. Determination of polyoxymethylene (POM)-water partition coefficients for oxy-PAHs and PAHs [J]. Chemosphere, 2015, 119: 1268-1274
[11] Perron M M, Burgess R M, Suuberg E M, et al. Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern [J]. Environmental Toxicology and Chemistry, 2013, 32(10): 2182-2189
[12] Reitsma P J, Adelman D, Lohmann R. Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions [J]. Environmental Science & Technology, 2013, 47(18): 10429-10437
[13] Sacks V P, Lohmann R. Freely dissolved PBDEs in water and porewater of an urban estuary [J]. Environmental Pollution, 2012, 162: 287-293
[14] Kwon J H, Wuethrich T, Mayer P, et al. Dynamic permeation method to determine partition coefficients of highly hydrophobic chemicals between poly (dimethylsiloxane) and water [J]. Analytical Chemistry, 2007, 79(17): 6816-6822
[15] Booij K, Smedes F, van Weerlee E M, et al. Environmental monitoring of hydrophobic organic contaminants: The case of mussels versus semipermeable membrane devices [J]. Environmental Science & Technology, 2006, 40(12): 3893-3900
[16] Hawthorne S B, Miller D J, Grabanski C B. Measuring low picogram per liter concentrations of freely dissolved polychlorinated biphenyls in sediment pore water using passive sampling with polyoxymethylene [J]. Analytical Chemistry, 2009, 81(22): 9472-9480
[17] OECD. Guidance document on the validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] models [R]. Paris: OECD, 2007
[18] Booij K, Hofmans H E, Fischer C V, et al. Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes [J]. Environmental Science & Technology, 2003, 37(2): 361-366
[19] Adams R G, Lohmann R, Fernandez L A, et al. Polyethylene devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments [J]. Environmental Science & Technology, 2007, 41(4): 1317-1323
[20] Paschke A, Popp P. Solid-phase microextraction fibre-water distribution constants of more hydrophobic organic compounds and their correlations with octanol-water partition coefficients [J]. Journal of Chromatography A, 2003, 999(1): 35-42
[21] Yates K, Davies I, Webster L, et al. Passive sampling: Partition coefficients for a silicone rubber reference phase [J]. Journal of Environmental Monitoring, 2007, 9(10): 1116-1121
[22] Smedes F, Geertsma R W, Zande T, et al. Polymer-water partition coefficients of hydrophobic compounds for passive sampling: Application of cosolvent models for validation [J]. Environmental Science & Technology, 2009, 43(18): 7047-7054
[23] Thompson J M, Hsieh C H, Luthy R G. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers [J]. Environmental Science & Technology, 2015, 49(4): 2270-2277
[24] Hale S E, Tomaszewski J E, Luthy R G, et al. Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries [J]. Water Research, 2009, 43(17): 4336-4346
[25] Cornelissen G, Pettersen A, Broman D, et al. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations [J]. Environmental Toxicology and Chemistry, 2008, 27(3): 499-508
[26] Fernandez L A, MacFarlane J K, Tcaciuc A P, et al. Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low-density polyethylene strips [J]. Environmental Science & Technology, 2009, 43(5): 1430-1436
[27] Bao L J, You J, Zeng E Y. Sorption of PBDE in low-density polyethylene film: Implications for bioavailability of BDE-209 [J]. Environmental Toxicology and Chemistry, 2011, 30(8): 1731-1738
[28] Jhin C, Hwang K T. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors [J]. International Journal of Molecular Sciences, 2014, 15(8): 14715-14727
[29] Noru?is M J. SPSS Inc. SPSS 7.5 Guide to Data Analysis [M]. Upper Saddle River, New Jersey: Prentice Hall, 1997: 458
[30] Gramatica P. Principles of QSAR models validation: Internal and external [J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701
[31] Vitha M, Carr P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography [J]. Journal of Chromatography A, 2006, 1126(1): 143-194
[32] Li F, Xie Q, Li X H, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: In vitro and in silico investigations [J]. Environmental Health Perspectives, 2010, 118(5): 602-606
[33] Schüürmann G, Ebert R U, Kühne R. Prediction of the sorption of organic compounds into soil organic matter from molecular structure [J]. Environmental Science & Technology, 2006, 40(22): 7005-7011
[34] Fernández A, Rallo R, Giralt F. Prioritization of in silico models and molecular descriptors for the assessment of ready biodegradability [J]. Environmental Research, 2015, 142: 161-168
[35] Abraham M H, McGowan J C. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography [J]. Chromatographia, 1987, 23(4): 243-246
[36] Wang Y, Chen J W, Yang X H, et al. In silico model for predicting soil organic carbon normalized sorption coefficient (KOC) of organic chemicals [J]. Chemosphere, 2015, 119: 438-444
[37] Tang W Z, Wang F. Quantitative structure activity relationship (QSAR) of chlorine effects on ELUMOof disinfection by-product: Chlorinated alkanes [J]. Chemosphere, 2010, 78(7): 914-921
[38] Edraki N, Hemmateenejad B, Miri R, et al. QSAR study of phenoxypyrimidine derivatives as potent inhibitors of p38 kinase using different chemometric tools [J]. Chemical Biology & Drug Design, 2007, 70(6): 530-539
[39] Butina D. Performance of Kier-hall E-state descriptors in quantitative structure activity relationship (QSAR) studies of multifunctional molecules [J]. Molecules, 2004, 9(12): 1004-1009
[40] Patel J R, Prajapati L M. Predictive QSAR modeling on tetrahydropyrimidine-2-one derivatives as HIV-1 protease enzyme inhibitors [J]. Medicinal Chemistry Research, 2013, 22(6): 2795-2801
◆
QSAR Models for Predicting Partition Coefficients of Organic Pollutants between Passive Sampling Materials and Water
Yang Lei, Luo Xiang, Wang Ya, Zhang Ya’nan, Chen Jingwen*
Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
passive sampling materials-water partition coefficients; polyethylene; polyacrylate; silicone rubber; quantitative structure-activity relationships
國家自然科學基金(21325729; 21661142001)
楊蕾(1990-),女,碩士,研究方向為污染生態(tài)化學,E-mail: yanglei_dlut@mail.dlut.edu.cn;
*通訊作者(Corresponding author), E-mail: jwchen@dlut.edu.cn
10.7524/AJE.1673-5897.20160415001
2016-04-15 錄用日期:2016-05-26
1673-5897(2016)6-053-08
X171.5
A
陳景文(1969-),男,博士,教授,研究方向為污染生態(tài)化學、污染控制化學和環(huán)境生態(tài)技術。
楊蕾, 羅翔, 王雅, 等. 有機污染物的被動采樣材料-水分配系數(shù)的QSAR研究[J]. 生態(tài)毒理學報,2016, 11(6): 53-60
Yang L, Luo X, Wang Y, et al. QSAR models for predicting partition coefficients of organic pollutants between passive sampling materials and water [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 53-60 (in Chinese)