周 達(dá),范建高
上海交通大學(xué)醫(yī)學(xué)院附屬新華醫(yī)院消化內(nèi)科,上海 200092
綜述
腸道菌群-SCFAs在代謝性疾病中的作用研究
周 達(dá),范建高
上海交通大學(xué)醫(yī)學(xué)院附屬新華醫(yī)院消化內(nèi)科,上海 200092
腸道菌群被認(rèn)為是人類體內(nèi)不可或缺的“器官”,其代謝產(chǎn)物如短鏈脂肪酸(short-chain fatty acids,SCFAs)也被證實(shí)生物學(xué)作用顯著,尤其在機(jī)體代謝方面。本文就腸道菌群-SCFAs與代謝性疾病研究進(jìn)展作一闡述。
腸道菌群;短鏈脂肪酸;代謝
人類從出生腸道內(nèi)逐漸定植各種細(xì)菌,受飲食、環(huán)境等因素影響,直至兒童期趨于穩(wěn)定;菌群在腸道內(nèi)數(shù)量巨大(總數(shù)約1014),種類豐富多達(dá)2 000余種,其基因總量更是人類的100~400倍;但是腸道菌群主要由厚壁菌門、擬桿菌門、放線菌門、變形菌門等組成,前兩者即達(dá)到總量90%以上[1]。腸道菌群與人類生長發(fā)育(尤其免疫與代謝)和疾病的發(fā)生、發(fā)展密切相關(guān)。
近年,腸道菌群與代謝及其機(jī)制被研究的越來越多,如腸道菌群失調(diào)可以促進(jìn)食物能量吸收,引起肥胖;可以調(diào)節(jié)腸道通透性,促進(jìn)脂多糖(lipopolysaccharide,LPS)甚至菌群移位入血,從而引發(fā)機(jī)體炎癥、免疫失衡;可以調(diào)節(jié)機(jī)體膽堿、膽汁酸代謝等[2];甚至增加機(jī)體內(nèi)生性乙醇的產(chǎn)生,后者仍存在爭議[3]。這些機(jī)制與肥胖、2型糖尿病、非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)等慢性代謝性疾病發(fā)生、發(fā)展密切相關(guān)[4]。隨著研究的深入,焦點(diǎn)不光局限于腸道菌群本身,菌群代謝產(chǎn)物也被認(rèn)為是參與調(diào)節(jié)機(jī)體生命活動與代謝的重要物質(zhì),如短鏈脂肪酸(short-chain fatty acids,SCFAs)[5]。
SCFAs是腸道菌群在體內(nèi)發(fā)酵纖維素產(chǎn)生,含不多于6個(gè)碳原子且溶于水的游離脂肪酸,主要包括甲、乙、丙、丁、戊酸(formic acid,acetic acid,propionic acid,butyric acid and valeric acid),近端及遠(yuǎn)端結(jié)腸內(nèi)SCFAs濃度分別約120 mol/L和90 mol/L,其中最重要且相對較多(占總量95%)的是乙、丙、丁酸,三者比例大致為3∶1∶1[6]。它們與細(xì)胞的作用方式可以是彌散或者配體受體結(jié)合作用,如G蛋白偶聯(lián)受體(G protein coupled receptor,GPCR)[7]。
慢性代謝性疾病發(fā)生、發(fā)展機(jī)制中,如肥胖、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)等,炎癥反應(yīng)尤為重要。SCFAs可通過抑制核轉(zhuǎn)錄因子κB(NF-κB)通路抑制炎癥細(xì)胞分泌白細(xì)胞介素2(IL-2)、白細(xì)胞介素6(IL-6)、腫瘤壞死因子α(TNF-α)等炎性因子[8-9],后者與NASH的發(fā)生、發(fā)展密切相關(guān);有研究發(fā)現(xiàn)在仔豬飼料中添加丁酸鈉,顯著降低了血清TNF-α和IL-6的水平,降低了腸道NF-κB的核內(nèi)功能,同時(shí)也改善了腸道菌群,抑制了有害細(xì)菌的生長[10]。此外,SCFAs可以通過調(diào)節(jié)機(jī)體免疫細(xì)胞間接控制炎癥反應(yīng),丁酸鹽可以調(diào)節(jié)免疫細(xì)胞的活性,如中性粒細(xì)胞(neutrophils)、巨噬細(xì)胞(macrophages)、樹突狀細(xì)胞(dendritic cells,DCs),可能通過細(xì)胞表面受體GPCR發(fā)揮作用[11-13]。淋巴細(xì)胞的免疫功能與代謝性疾病密不可分[2,14],大量研究證實(shí)SCFAs可以體內(nèi)調(diào)節(jié)T淋巴細(xì)胞分化(Th1/Th2、Th17/Treg)、凋亡、分泌細(xì)胞因子如IL-2、IL-4、IL-5、IL-6、IL-10,進(jìn)入細(xì)胞后抑制組蛋白去乙?;?histone deacetylase,HDAC)發(fā)揮基因表達(dá)調(diào)控,由于T細(xì)胞低表達(dá)GPCR,因此是否通過表面受體仍存在爭議,可能僅是彌散作用導(dǎo)致[7,15]。
SCFAs經(jīng)腸道菌群產(chǎn)生后首先被腸道上皮細(xì)胞利用,尤其是丁酸,作為腸上皮能量來源之一,調(diào)控腸上皮增殖、凋亡分化,促進(jìn)腸道分泌抗菌肽等提高腸道屏障保護(hù)性,同時(shí)也通過吸收入血,進(jìn)入肝臟、肌肉等調(diào)節(jié)整個(gè)機(jī)體能量代謝,如丙酸鹽就是一種很好的糖脂甚至蛋白合成前體,乙酸鹽則是膽固醇合成的一種基質(zhì),同時(shí)乙酸可直接入血腦屏障作用下丘腦抑制食欲[5,16]。
SCFAs從多方面調(diào)節(jié)腸道功能,如腸道菌群、腸道通透性、腸道pH、腸道激素分泌、腸道蠕動等,其中丁酸被研究最多。機(jī)體內(nèi),產(chǎn)丁酸菌主要存在于盲腸和結(jié)腸,主要屬于梭菌屬(Clostridium)、真桿菌屬(Eubacterium)和梭桿菌屬(Fusobacterium),梭菌是革蘭氏陽性厭氧芽孢菌,丁酸梭菌(C.butyricum)、酪丁酸梭菌(C. tyrobutyricum)、丙酮丁醇梭菌(C.acetobutylicum)、巴斯德梭菌(C.pasteurianum)、拜氏梭菌(C. beijerinckii)等是產(chǎn)丁酸的代表[17]。大量動物學(xué)實(shí)驗(yàn)[18]證實(shí)丁酸可以改善腸道菌群,丁酸進(jìn)入細(xì)菌細(xì)胞后會分解為丁酸根離子和氫離子,而高濃度的氫離子會使大腸桿菌、沙門氏菌等有害菌大量死亡,乳酸桿菌等有益菌則由于其耐酸性而大量增殖。
有研究提示2型糖尿病患者體內(nèi)產(chǎn)丁酸鹽細(xì)菌如羅氏菌屬(Roseburia)、柔嫩梭菌群(Faecalibacterium prauznitzii)等,較健康對照者顯著減少[19-20]。在一項(xiàng)人體檢測試驗(yàn)中發(fā)現(xiàn)肥胖患者糞便中SCFAs總體較體質(zhì)量正常者升高(主要為丙酸升高顯著)且各種SCFAs比例發(fā)生變化,體質(zhì)量指數(shù)(body mass index,BMI)低者乙酸鹽比例相對升高[21];在高脂誘導(dǎo)小鼠胰島素抵抗實(shí)驗(yàn)中,發(fā)現(xiàn)口服丁酸鈉可以提高胰島素敏感性,通過增強(qiáng)線粒體功能促進(jìn)能量消耗,促進(jìn)過氧化物酶體增殖物激活受體γ輔激活因子1α(PGC-1α)的表達(dá),促進(jìn)脂肪酸氧化[22]。De Vadder等[23]通過動物學(xué)實(shí)驗(yàn)證實(shí)SCFAs可以激活腸道糖質(zhì)新生(intestinal gluconeogenesis,IGN),而IGN在維持機(jī)體血糖正常水平及能量代謝平衡發(fā)揮至關(guān)重要的作用。這些作用可能與丁酸鹽顯著抑制組蛋白去乙?;?,提高組蛋白乙酰化水平有關(guān),參與基因調(diào)控、免疫調(diào)節(jié)、細(xì)胞分化、氧化應(yīng)激、腸屏障功能調(diào)節(jié)、內(nèi)臟敏感度和腸道蠕動機(jī)制變化等活動,這些功能使丁酸成為維持腸道健康、維持機(jī)體代謝平衡的重要因素。
另有研究發(fā)現(xiàn)SCFAs通過與腸細(xì)胞表面受體GPCR41或GPCR43作用,促進(jìn)腸道激素分泌,如5-羥色胺(5-hydroxytryptamine,5-HT)、胰高血糖素樣肽(Glucagon-like peptide-1,GLP-1)和酪酪肽(PYY)等,5-HT是參與調(diào)節(jié)胃腸道運(yùn)動和分泌功能的重要神經(jīng)遞質(zhì),可以調(diào)節(jié)腸道通透性,促進(jìn)腸蠕動,減少機(jī)體對食物能量的吸收;GLP-1可以促進(jìn)機(jī)體胰島素分泌調(diào)節(jié)代謝;PYY可以提升飽腹感,減少食物攝入,調(diào)節(jié)腸道運(yùn)動減慢胃排空從而改善機(jī)體代謝[24-26],同時(shí)GPR對機(jī)體能量脂質(zhì)代謝的調(diào)節(jié)依賴于腸道菌群,抑制腸道GPR激活可以減少食物能量吸收[26]。一項(xiàng)對超重人群研究發(fā)現(xiàn)丙酸鹽可以促進(jìn)人體腸道激素PYY及GLP-1分泌,提高胰島素敏感性,同時(shí)減少食物攝入,長期服用丙酸鹽可以控制體質(zhì)量增長,減少腹部脂肪的堆積,同時(shí)還發(fā)現(xiàn)那些合并NAFLD的超重者服用丙酸鹽后肝內(nèi)脂質(zhì)沉積減少[27]。SCFAs可以與脂肪細(xì)胞上的GPR43結(jié)合抑制脂解,從而降低小鼠血清脂質(zhì)及游離脂肪酸,敲除小鼠GPR43后效應(yīng)消失;同時(shí)促進(jìn)脂肪細(xì)胞分泌瘦素(Leptin),瘦素是一典型代謝激素,促使機(jī)體減少攝食,增加能量釋放,抑制脂肪細(xì)胞的合成,進(jìn)而使體質(zhì)量減輕[28-29];也有研究發(fā)現(xiàn)給予GPR43敲除小鼠高脂飲食,其血糖及體脂含量、肝內(nèi)脂質(zhì)沉積水平與對照組相比明顯改善,可以看出GPR缺陷保護(hù)高脂飲食誘導(dǎo)的一系列代謝異常,反映GFR在不同組織細(xì)胞的作用,尤其SCFAs與GPR的配體受體作用值得深究[30]。
上已談及腸道通透性的改變與機(jī)體代謝性疾病同樣密不可分,在肝臟中丁酸可以代謝成谷氨酸、谷氨酰胺和乙酰乙酸鹽,而后者是腸細(xì)胞的重要燃料,丁酸本身作為腸黏膜營養(yǎng)物質(zhì)之一,可以促進(jìn)腸細(xì)胞再生從而修復(fù)腸黏膜,調(diào)節(jié)正常腸細(xì)胞的增殖分化和凋亡,刺激腸道黏液素糖蛋白的合成,加強(qiáng)對黏膜層的保護(hù)作用;丁酸可以促進(jìn)腸道分泌胰高血糖素樣肽2(GLP-2),GLP-2作為一種腸上皮特異性生長因子, 能促進(jìn)正常腸黏膜的生長及損傷腸上皮的修復(fù),保護(hù)腸黏膜屏障[31];丁酸鹽還能夠通過促進(jìn)細(xì)胞間緊密連接的裝配來發(fā)揮對腸道屏障功能的調(diào)節(jié)作用, 影響腸道通透性,減少有害物質(zhì)進(jìn)入血,如LPS等;上述作用機(jī)制與丁酸調(diào)節(jié)胞內(nèi)基因表達(dá)有關(guān)[18,32-33]。
隨著人類社會進(jìn)步,代謝性疾病的發(fā)病率呈現(xiàn)井噴,對人類健康構(gòu)成威脅。近年,對腸道菌群及其產(chǎn)物SCFAs的聚焦揭示其與機(jī)體生理病理狀態(tài)密切相關(guān),與機(jī)體代謝的相互作用尤其值得深究,為需要進(jìn)一步研究代謝性疾病,如2型糖尿病、NAFLD、肥胖等提供新的診斷或治療靶點(diǎn),進(jìn)一步闡明疾病發(fā)生、發(fā)展機(jī)制。
[1]Blaut M. Gut microbiota and energy balance: role in obesity [J]. Proc Nutr Soc, 2015, 74(3): 227-234.
[2]Tremaroli V, B?ckhed F. Functional interactions between the gut microbiota and host metabolism [J]. Nature, 2012, 489(7415): 242-249.
[3]Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH [J]. Hepatology, 2013, 57(2): 601-609.
[4]Nieuwdorp M, Gilijamse PW, Pai N, et al. Role of the microbiome in energy regulation and metabolism [J]. Gastroenterology, 2014, 146(6): 1525-1533.
[5]Hartstra AV, Bouter KE, B?ckhed F, et al. Insights into the role of the microbiome in obesity and type 2 diabetes [J]. Diabetes Care, 2014, 38(1): 159-165.
[6]Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? [J]. Proc Nutr Soc, 2015, 74(3): 328-336.
[7]Kim CH, Park J, Kim M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation [J]. Immune Netw, 2014, 14(6): 277-288.
[8]Park JS, Lee EJ, Lee JC, et al. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways [J]. Int Immunopharmacol, 2007, 7(1): 70-77.
[9]Zhang WH, Jiang Y, Zhu QF, et al. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens [J]. Br Poult Sci, 2011, 52(3): 292-301.
[10]Wen ZS, Lu JJ, Zou XT. Effects of sodium buty-rate on the intestinal morphology and DNA-binding activity of intestinal nuclear factor-kappa B in wean-ling pigs [J]. J Anim Vet Adv, 2012, 11(6): 814-21.
[11]Vinolo MA, Ferguson GJ, Kulkarni S, et al. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor [J]. PLoS One, 2011, 6(6): e21205.
[12]Carretta M, Conejeros I, Hidalgo MA, et al. Propionate induces the release of granules from bovine neutrophils [J]. J Dairy Sci, 2013, 96(4): 2507-2520.
[13]Millard AL, Mertes P, Ittelet D, et al. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages [J]. Clin Exp Immunol, 2002, 130(2): 245-255.
[14]Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system [J]. Science, 2012, 336(6086): 1268-1273.
[15]Park J, Kim M, Kang SG, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway [J]. Mucosal Immunol, 2015, 8(1): 80-93.
[16]Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism [J]. Nat Commun, 2014, 5: 3611.
[17]Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer [J]. Nat Rev Microbiol, 2014, 12(10): 661-672.
[18]Guilloteau P, Martin L, Eeckhaut V, et al. From the gut to the peripheral tissues: the multiple effects of butyrate [J]. Nutr Res Rev, 2010, 23(2): 366-384.
[19]Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control [J]. Nature, 2013, 498(7452): 99-103.
[20]Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes [J]. Nature, 2012, 490(7418): 55-60.
[21] Schwiertz A, Taras D, Sch?fer K, et al. Microbiota and SCFA in lean and overweight healthy subjects [J]. Obesity(Silver Spring), 2010, 18(1): 190-195.
[22]Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice [J]. Diabetes, 2009, 58(7): 1509-1517.
[23]De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits [J]. Cell, 2014, 156(1-2): 84-96.
[24]Tazoe H, Otomo Y, Kaji I, et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions [J]. J Physiol Pharmacol, 2008, 59 Suppl 2: 251-262.
[25]Lin HV, Frassetto A, Kowalik EJ Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms [J]. PLoS One, 2012, 7(4): e35240.
[26]Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 [J]. Proc Natl Acad Sci, 2008, 105(43): 16767-16772.
[27]Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults [J]. Gut, 2015, 64(11): 1744-1754.
[28]Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids [J]. Endocrinology, 2008, 149(9): 4519-4526.
[29]Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? [J]. Proc Nutr Soc, 2015,74(3): 328-336.
[30]Bjursell M, Admyre T, G?ransson M, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet [J]. Am J Physiol Endocrinol Metab, 2011, 300(1): E211-E220.
[31]Mangian HF, Tappenden KA. Butyrate increases GLUT2 mRNA abundance by initiating transcription in Caco2-BBe cells [J]. JPEN, 2009, 33(6): 607-617.
[32]Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 Cell monolayers [J]. J Nutr, 2009, 139(9): 1619-1625.
[33]Hatayama H, Iwashita J, Kuwajima A, et al. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T [J]. Biochem Biophy Res Commun, 2007, 356(3): 599-603.
(責(zé)任編輯:陳香宇)
Effects of intestinal microbiota-SCFAs in metabolic diseases
ZHOU Da, FAN Jian’gao
Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
Intestinal microbiota as a special “organ” plays a vital role in organisms, as well as its metabolic products, such as short-chain fatty acids (SCFAs), especially in metabolism. This paper reviewed the recent progress of intestinal microbiota-SCFAs in metabolic diseases.
Intestinal microbiota; Short-chain fatty acids; Metabolism
科技部973課題(2012CB517501);國家自然基金(81070322、81270491、81470840);上海市科委課題(0914090350、10411956300);中國肝炎防治基金(XJS20120501);上海市衛(wèi)生局百人計(jì)劃(XBR 2011007)
周達(dá),博士研究生,研究方向:脂肪性肝病發(fā)病機(jī)制。E-mail:mubing2007@foxmail.com
范建高,教授,主任醫(yī)師,研究方向:脂肪性肝病、脂肪肝的遺傳與表現(xiàn)遺傳、代謝綜合征與肝病。E-mail:fanjiangao@gmail.com
10.3969/j.issn.1006-5709.2016.03.026
R574
A
1006-5709(2016)03-0330-03
2015-05-04