国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高分辨質(zhì)譜數(shù)據(jù)MDF技術(shù)的進展*

2016-03-13 09:03侯艷婷王曉明張家偉潘桂湘
天津中醫(yī)藥 2016年12期
關(guān)鍵詞:谷胱甘肽母體代謝物

侯艷婷,王曉明,張家偉,2,潘桂湘

(1.天津中醫(yī)藥大學(xué),天津市現(xiàn)代中藥重點實驗室(培育),天津 300193;2.天津國際生物醫(yī)藥聯(lián)合研究院,天津 300457)

·綜 述·

高分辨質(zhì)譜數(shù)據(jù)MDF技術(shù)的進展*

侯艷婷1,2,王曉明1,張家偉1,2,潘桂湘1

(1.天津中醫(yī)藥大學(xué),天津市現(xiàn)代中藥重點實驗室(培育),天津 300193;2.天津國際生物醫(yī)藥聯(lián)合研究院,天津 300457)

近年來,質(zhì)譜在藥物鑒定中的應(yīng)用日益廣泛,許多質(zhì)譜采集及數(shù)據(jù)挖掘技術(shù),如全信息串聯(lián)質(zhì)譜(MSE)掃描、提取離子流技術(shù)、中性丟失過濾技術(shù)、產(chǎn)物離子過濾技術(shù)等,也相應(yīng)得到較大程度的開發(fā)和發(fā)展。其中一種基于高分辨質(zhì)譜數(shù)據(jù)的過濾技術(shù)——質(zhì)量虧損過濾技術(shù)(MDF),根據(jù)代謝物與原形藥物具有相近的質(zhì)量虧損這一規(guī)律,對采集的高分辨質(zhì)譜數(shù)據(jù)進行處理和識別,通過一次或有限幾次進樣可從復(fù)雜背景中發(fā)現(xiàn)和鑒定藥物及其代謝產(chǎn)物,顯現(xiàn)出獨特的優(yōu)勢。

質(zhì)量虧損過濾;代謝物鑒定;中藥成分鑒定

三重四極桿(QQQ)、線性離子阱(LTQ),四極桿-線性離子阱(Q-trap)、四極桿-飛行時間(Q-TOF)等液質(zhì)聯(lián)用儀,在代謝物鑒定中有較多的應(yīng)用[1-3]。對于可預(yù)測或已知生物轉(zhuǎn)化反應(yīng)的代謝產(chǎn)物,可采用中性丟失、前體離子和多反應(yīng)監(jiān)測(MRM)等掃描方式,或利用提取離子流(EIC)方法等,靶向分析代謝產(chǎn)物;但對于非常規(guī)或多步生物轉(zhuǎn)化反應(yīng)形成的代謝產(chǎn)物,尤其當(dāng)存在大量內(nèi)源性化合物干擾時,上述鑒定策略存在較大的局限[4-5]。

質(zhì)量虧損是指某一元素(或化合物)的精確質(zhì)量數(shù)與它最接近的整數(shù)值之間的差異[6]。2003年Zhang等[7]發(fā)現(xiàn)代謝物與原型藥物小數(shù)部分的精確質(zhì)量數(shù)變化范圍不大,質(zhì)量虧損通常在幾十個毫道爾頓之內(nèi),例如羥基化的質(zhì)量虧損是-5 mu,脫氫是-16 mu,脫甲基化是-23 mu,葡萄糖醛酸結(jié)合是+ 32mu,硫酸化是-43mu,谷胱甘肽結(jié)合(GSH)是68mu,代謝產(chǎn)物質(zhì)量虧損均在可預(yù)測范圍內(nèi)[8],據(jù)此提出了基于高分辨質(zhì)譜數(shù)據(jù)的質(zhì)量虧損過濾技術(shù)(MDF)。與代謝物類似,中藥具有母核結(jié)構(gòu)相同而取代基稍有不同的類似物,它們經(jīng)羥基化、甲基化、甲氧基化、糖基取代或結(jié)合反應(yīng)而成,與母體化合物的質(zhì)量虧損差異不大。因此,在代謝物和中藥結(jié)構(gòu)類似物鑒定過程中,可以通過設(shè)定質(zhì)量虧損范圍,利用MDF技術(shù)對采集的高分辨質(zhì)譜數(shù)據(jù)進行處理和識別,從復(fù)雜背景中篩選已知或未知的代謝產(chǎn)物/中藥結(jié)構(gòu)類似物,發(fā)揮其獨特的技術(shù)優(yōu)勢。

1 常規(guī)MDF技術(shù)

常規(guī)MDF技術(shù),根據(jù)母體藥物與核心亞結(jié)構(gòu)的質(zhì)量虧損,估計代謝產(chǎn)物的質(zhì)量虧損落在什么區(qū)間,預(yù)先設(shè)定過濾標準,在全掃描質(zhì)譜數(shù)據(jù)集中提取代謝產(chǎn)物離子,排除所有落在期望范圍之外的離子,從而在復(fù)雜生物基質(zhì)中快速挖掘出可能的代謝產(chǎn)物[9]。它無需考慮代謝產(chǎn)物不同的裂解類型,而主要考慮代謝產(chǎn)物與過濾模板之間質(zhì)量虧損的相似性。

MDF的篩選模板主要分為4類[10]:1)適用于質(zhì)量、結(jié)構(gòu)與母體相似的代謝物,例如發(fā)生氧化、還原、脫烷基(<50 mu)等反應(yīng),使母體化合物加上或減去一個或幾個C/H/O/N等。2)適用于母體裂分產(chǎn)生的小分子化合物,如水解反應(yīng)。3)適用于母體化合物加合產(chǎn)生的大分子化合物,如結(jié)合型代謝物;4)適用于脫鹵代謝物,即母體化合物脫去一個或多個鹵素。其中模板1)、2)、4)涉及母體產(chǎn)生的氧化、還原、水解反應(yīng),3)主要為母體的結(jié)合反應(yīng)。

MDF技術(shù)早期應(yīng)用于體內(nèi)血液、尿液、膽汁、糞便[11-14]中代謝物的檢測。為了印證MDF技術(shù)在代謝物檢測方面的有效應(yīng)性,有學(xué)者開展了代謝輪廓譜分析,結(jié)果顯示MDF技術(shù)確實能夠在復(fù)雜基質(zhì)中篩選出目標化合物,但其在尿液中的檢測結(jié)果較血液、膽汁、糞便稍差[12]。隨著時間的推移,該技術(shù)拓展應(yīng)用到組織樣品如肝微粒體、腸菌和中藥結(jié)構(gòu)類似物的鑒定[15-19]。Morales-Gutierrez[20]利用MDF技術(shù),檢測沙氟沙星、恩諾沙星、環(huán)丙沙星、雙福沙星在pH改變、反復(fù)凍融等處理條件下的物質(zhì)轉(zhuǎn)化,及其在雞肉肌肉組織中代謝物。最終鑒定了恩諾沙星21個轉(zhuǎn)化物,環(huán)丙沙星6個轉(zhuǎn)化物,雙福沙星14個轉(zhuǎn)化物,沙氟沙星12個轉(zhuǎn)化物,以及它們在肌肉組織的14個代謝產(chǎn)物。王廣基等[21]利用MDF技術(shù),選取麥冬皂苷和麥冬高異黃酮為模板,對麥冬提取物進行數(shù)據(jù)挖掘,鑒定了50個麥冬皂苷類和27個麥冬高異黃酮類化合物。

但常規(guī)MDF技術(shù)由于只選擇單一的母體化合物為模板,其質(zhì)量虧損范圍設(shè)置較寬,常導(dǎo)致篩選結(jié)果偏差大,干擾性化合物多。隨著數(shù)據(jù)挖掘技術(shù)的發(fā)展,學(xué)者們在常規(guī)MDF技術(shù)基礎(chǔ)上開發(fā)了一些新型的MDF技術(shù)。

2 多重MDF技術(shù)(MMDF)

MMDF技術(shù),選取多個化合物為模板,分別對各類型的化合物進行篩選。相較于常規(guī)MDF,它可以在有限的進樣次數(shù)中,篩選出更多的代謝物或同系物。屠鵬飛等[22]利用MMDF技術(shù),選取去氧五味子素的原型及其4個代謝物為模板,對大鼠尿液和糞便中的代謝物進行檢測,共鑒定了51個代謝產(chǎn)物,其中49個為I相代謝產(chǎn)物,2個為II相代謝產(chǎn)物。Qian Ruan等[23]采用MMDF技術(shù),選取噻氯匹定-谷胱甘肽加合物、脫氯噻氯匹定-谷胱甘肽加合物、氯苯甲醛-谷胱甘肽加合物、四氫化噻吩并吡啶-谷胱甘肽加合物為模板,對噻氯匹定經(jīng)大鼠肝微粒體孵育后與谷胱甘肽結(jié)合的產(chǎn)物進行檢測,共篩選出17個與谷胱甘肽結(jié)合的代謝產(chǎn)物,確定了噻氯匹定體外的代謝途徑。

3 逐級MDF技術(shù)(stepwise MDF)

逐級MDF技術(shù),通過確定不同取代基化合物的母體結(jié)構(gòu),以及取代基的數(shù)量,選取多個質(zhì)量虧損過濾窗口或多個質(zhì)量范圍,可以篩選出更多的化合物。張加余[24]總結(jié)了黃酮類化合物結(jié)構(gòu)規(guī)律,確定黃酮分子量范圍為282~436 Da,取代基最高為5個甲基,最低為5個羥基,從而設(shè)置質(zhì)量虧損范圍為70 mu至166 mu,利用逐級MDF技術(shù),分五段對柑橘中的多甲氧基黃酮進行篩選,共鑒定出81個成分,較常規(guī)MDF技術(shù)(鑒定30多個成分)檢出了更多的化合物。德國學(xué)者Macherius[25],利用逐級MDF技術(shù)對辣根醬中三氯生代謝物進行檢測,成功篩選出了33個化合物。

4 線性梯度MDF技術(shù)(linear gradient MDF)

線性梯度MDF技術(shù),以多個化合物為模板,用曲線連接各模板化合物的質(zhì)量數(shù),形成一個動態(tài)質(zhì)量過濾曲線,將曲線兩端平行延長50 Da,質(zhì)量虧損值設(shè)為一定的區(qū)間范圍,則認為分子量落在這一區(qū)域內(nèi)的化合物可能是代謝物或結(jié)構(gòu)類似物(見圖1)。該技術(shù)利用Waters公司UPLC/Q-TOF-MS的MSE掃描模式進行數(shù)據(jù)采集,然后采用Metabolynx XS軟件中的MDF工具對數(shù)據(jù)進行處理。王喜軍等[26]利用線性梯度MDF技術(shù),對茵陳四逆湯中的烏頭類生物堿進行檢測,以Songorine、Senbusine A、Hypaconitine 3個化合物為模板,將質(zhì)量虧損范圍設(shè)定在-38mu到23 mu之間,共篩選識別145個化合物,通過假陽性篩選剔除55個化合物,通過元素分析和質(zhì)譜裂解規(guī)律剔除27個化合物,最終鑒定了62個烏頭類生物堿;而采用傳統(tǒng)的氣質(zhì)或液質(zhì)方法,只能鑒定出15個烏頭類生物堿。

圖1 線性梯度MDF概圖Fig.1 Schematic of linear gradient MDF

5 五點篩查MDF技術(shù)(five-pointscreeningMDF)

五點篩查MDF技術(shù),將MDF與數(shù)學(xué)中的邊界理論[27]相結(jié)合,以5個化合物(a、b、c、d、e)為模板,連接五個點,確定篩選范圍(見圖2),它使篩選結(jié)果不再是一個開放的空間,理論上能夠?qū)⑵渌蓴_類型的化合物排除在外。五點的選擇原則如下:a點為分子量最低的化合物;b、c點為小的取代基連接小的糖配基的化合物,b、c兩點相連確定質(zhì)量虧損的下界限;d、e點為大的取代基連接大的糖配基的化合物,d、e兩點相連確定質(zhì)量虧損的上界限;上下界限斜率與取代基的數(shù)量和種類相關(guān)。李萍等[28]采用五點篩查MDF技術(shù),選取最小質(zhì)量數(shù)的B7型人參皂苷為a點,3個氧(負貢獻最?。┤〈凝R墩果酸型皂苷為b點,5個木糖(正貢獻第二大)3個二甲?;ㄕ暙I最?。┤〈凝R墩果酸型皂苷為c點,7個鼠李糖取代(正貢獻最大)的去氫A1型人參皂苷為d點,1個鼠李糖取代的去氫A1型人參皂苷為e點,五點順次連接確定皂苷類化合物的篩選范圍及邊界斜率,結(jié)合診斷離子分析和視覺同位素技術(shù),共鑒定了三七中234個皂苷類成分,其中67個為潛在的新化合物。

圖2 五點篩查MDF概圖Fig.2 Schematic of five-point screening MDF

6 MDF技術(shù)與其他數(shù)據(jù)挖掘技術(shù)的整合

將MDF技術(shù)與提取離子流(EIC)、子離子過濾(PIF)、中性丟失過濾(NLF)、同位素過濾(IPF)、診斷碎片離子(DFI)等數(shù)據(jù)挖掘技術(shù)整合,串聯(lián)或并聯(lián)使用,可增加復(fù)雜生物基質(zhì)樣品中微量代謝物檢測的靈敏度和選擇性。姚新生等[29]將MDF技術(shù)與EIC相結(jié)合,鑒定大鼠口服參松養(yǎng)心后的入血成分,成功檢測出92個外源性成分,其中45個為原型藥物,47個為代謝產(chǎn)物。RuanQ[8]將MDF技術(shù)和EIC/ NLF/PIF相結(jié)合,對大鼠肝S9孵育液中茚地那韋的代謝物進行鑒定,共檢測出15個代謝產(chǎn)物,其中2個為新發(fā)現(xiàn)的代謝產(chǎn)物。Tian[30]將MDF技術(shù)和DFI相結(jié)合,對馬錢子中二氫吲哚類生物堿進行鑒定,先采用MDF技術(shù)減少背景噪音,然后利用DFI確定化合物的結(jié)構(gòu),對于無法確證的同分異構(gòu)體5和11,輔以量子化學(xué)計算法,確定其分別為2-羥基-3-甲氧基士的寧和4-羥基-3-甲氧基士的寧。

7 展望

MDF技術(shù)可以通過設(shè)定質(zhì)量虧損范圍,從復(fù)雜背景中篩選出代謝物或中藥結(jié)構(gòu)類似物,操作簡便。隨著多種優(yōu)化技術(shù)[31]的出現(xiàn),以及與其他數(shù)據(jù)挖掘技術(shù)的結(jié)合,相信MDF的鑒定結(jié)果可靠性將不斷提高,得到更加廣泛的應(yīng)用。

[1] RouxA,Lison D,JunotC,etal.Applicationsofliquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology:A review[J].Clinical Biochemistry, 2011,44(1):119-135.

[2] Makarov A,Scigelova M.Coupling liquid chromatography to Orbitrap mass spectrometry[J].Journal of Chromatography A,2010, 1217(25):3938-3945.

[3] Suchanova B,Kostiainen R,Ketola RA.Characterization of the in vitro metabolic profile ofamlodipine in ratusing liquid chromatography-massspectrometry[J].EuropeanJournalofPharmaceutical Sciences,2008,33(1):91-99.

[4]Zhu MS,Zhang DL,Zhang HY,et al.Integrated Strategies for Assessment of Metabolite Exposure in Humans During Drug Development:Analytical Challenges and Clinical Development Considerations[J].Biopharmaceutics&drug disposition,2009,30(4): 163-184.

[5]Zhu M,Ma L,Zhang HY,et al.Detection and Structural Characterization of Glutathione-Trapped Reactive Metabolites Using Liquid Chromatography-High-Resolution Mass Spectrometry and Mass Defect Filtering[J].Analytical Chemistry,2007,79(21): 8333-8341.

[6]Lelie AD,Volmer u.Dealing with the masses:A tutorial on accurate masses,mass 32 uncertainties,and mass defects[J].Spectroscopy, 2007,22(6):32-39.

[7]Zhang H,Zhang.Ray DK.A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/ mass spectrometric analyses[J].Mass Spectrom,2003,38(10):1110-1112.

[8] Ruan QS.Peterman MA.Szewc,et al.Zhu An integrated method for metabolite detection and identification using a linear ion trap/ Orbitrap mass spectrometer and multiple uta processing techniques: application to indinavir metabolite detection[J].Mass Spectrom, 2008,43(2):251-261.

[9] Zhang HD.Zhang,Ray K,et al.Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry[J].Mass Spectrom,2009,44(7):999-1016.

[10]Zhu M,Ma L,Zhang D,et al.Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data[J].Drug Metab Dispos,2006,34(10):1722-1733.

[11]Tiller PR,Yu S,Bateman KP,et al.Fractional mass filtering as a means to assess circulating metabolites in early human clinical studies[J].Rapid Communications in Mass Spectrometry,2008,22 (22):3510-3516.

[12]Zhang H,Zhu MK Ray L,et al.Mass defect profiles ofbiological matrices and the general applicability of mass defect filtering for metabolite detection[J].Rapid Communications in Mass Spectrometry, 2008,22(13):2082-2088.

[13]Geng JL,Dai Y,Yao ZH,et al.Metabolites profile of Xian-Ling-Gu-Bao capsule,a traditional Chinese medicine prescription,in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis[J].J Pharm Biomed Anal.2014,96(8):90~103.

[14]Cuyckens F,Hurkmans R,Castro-Perez JM,et al.Extracting metabolite ions out of a matrix background by combined mass defect, neutral loss and isotope filtration[J].Rapid Communications in MassSpectrometry,2009,23(2):327-332.

[15]Lim HK,Chen J,Cooks K,et al.Ageneric method to detect electrophilic intermediates using isotopic pattern triggered datadependent high-resolution accurate mass spectrometry[J].Rapid Communications in Mass Spectrometry,2008,22(8):1295-1311.

[16]Wohlfarth A,Gandhi AS,Pang S.Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog,5F-PB-22,by human hepatocyte incubation and high-resolution mass spectrometry[J]. Anal Bioanal Chem.2014,406(6):1763-1780.

[17]Xu J,ian DW,Jiang S,et al.Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to determine the metabolites of orientin produced by human intestinal bacteria[J].Journal of Chromatography B,2014, 944(1):123-127.

[18]Zhang W,J iang S,Qian DW,et al.Metabolism of naringin produced by intestinal bacteriaetal[J].Yao Xue Xue Bao.2013,48(12):1817-1822.

[19]Hernandez H,Niehauser S,Boltz SA,et al.Mass defect labeling of cysteine for improving peptide assignment in shotgun proteomic analyses[J].Analytical Chemistry 2006,78(10),3417-3423.

[20]Morales-Gutierrez FJ,Hermo MP,et al.High-resolution mass spectrometry applied to the identification of transformation products of quinolones from stability studies and new metabolites of enrofloxacin in chicken muscle tissues[J].Pharm Biomed Anal, 2014,92(4):165-176.

[21]Xie T,Liang Y,Hao H,et al.Rapid identification of ophiopogonins and ophiopogonones in Ophiopogon japonicus extract with a practical technique of mass defect filtering based on high resolution mass spectrometry[J].J Chromatogr A,2012,1227(3):234-244.

[22]Liu M,Zhao S,Wang Z,et al.Identification of metabolites of deoxyschizandrin in rats by UPLC-Q-TOF-MS/MS based on multiple mass defect filter data acquisition and multiple data processing techniques[J].J Chromatogr B Analyt Technol Biomed Life Sci,2014,949-950(2):115-126.

[23]Ruan Q,Zhu M.Investigation of bioactivation of ticlopidine using linear ion trap/orbitrap mass spectrometry and an improved mass defect filtering technique[J].Chem Res Toxicol,2010,23(5):909-917.

[24]Zhang JY,Wang F,Zhang H,et al.Rapid identification of polymethoxylated flavonoids in traditional Chinese medicines with a practical strategy of stepwise mass defect filtering coupled to diagnostic product ions analysis based on a hybrid LTQ-Orbitrap mass spectrometer[J].Phytochem Anal 2014,25(5):405-414.

[25]Macherius A,Seiwert B,Schroder P,et al.Identification of plant metabolites of environmental contaminants by UPLC-QToF-MS:the in vitro metabolism of triclosan in horseradish[J].Agric Food Chem, 2014,62(5):1001-1009.

[26]Morales-Gutierrez FJ.Hermo MP,et al.High-resolution mass spectrometry applied to the identification of transformation products of quinolones from stability studies and new metabolites of enrofloxacin in chicken muscle tissues[J].Pharm Biomed Anal,2014, 92(4):165-176.

[27]Mortishire-Smith RJ,Castro-Perez JM,Yu K,et al.Generic dealkylation:a tool for increasing the hit-rate of metabolite rationalization and automatic customization of mass defect filters[J]. Rapid Commun.Mass Spectrom.2009,23(7):939-948.

[28]Lai CJ,Tan T,Zeng SL,et al.An integrated high resolution mass spectrometric data acquisition method for rapid screening of saponins in Panax notoginseng(Sanqi)[J].Pharm Biomed Anal,2015, 109(2):184-191.

[29]Shi T,Yao Z,Qin Z,et al.Identification of absorbed constituents and metabolites in rat plasma after oral administration of Shen-Song-Yang-Xin using ultra-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry[J]. Biomed Chromatogr.2015,29(9):1440-1452.

[30]Tian JX,Tian Y,Xu L,et al.Characterisation and identification of dihydroindole-type alkaloids from processed semen strychni by high-performance liquid chromatography coupled with electrospray ionisation ion trap time-of-flight mass spectrometry[J].Phytochem Anal,2014,25(1):36-44.

[31]Zhu P,Ding W,Tong W,et al.A retention-time-shift-tolerant background subtraction and noise reduction algorithm BgS-NoRA for extraction of drug metabolites in liquid chromatography/mass spectrometry data from biological matrices[J].Rapid Communications in Mass Spectrometry 2009,23(11):1563-1572.

Advance of mass defect filter technique by high-resolution mass spectrometry

HOU Yan-ting1,2,WANG Xiao-ming1,ZHANG Jia-wei1,2,PAN Gui-xiang1
(1.Tianjin State Key Laboratory of Modern Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 300193, China;2.Tianjin International Joint Academy of Biotechnology and Medicine,Tianjin 300457,China)

In recent years,with the development of the high resolution mass spectrometry,its application in medical field has expanded, followed by the development and exploitation of the related data mining techniques of mass spectrometry,such as extract ion chromatography technology,neutral lost filtering technology,and product ion filtering technology.In all of those methods,a novel date filtering technology,the mass defect filter(MDF)which is produced by processing and identifying the collected dates according to the similarity mass defect between prototype drugs and its metabolites can select and identify drug and its metabolites from complex matrix via once or limited injection.And it had shown greatest advantage in this field.

mass defect filter;metabolites identification;traditional Chinese medicine ingredient identification

R284.1

A

1672-1519(2016)12-0765-04

2016-05-01)

(本文編輯:高 杉,馬 英)

10.11656/j.issn.1672-1519.2016.12.16

國家自然科學(xué)基金項目(81173523、81303182);國家重大新藥創(chuàng)制項目(2012ZX09101202);國家973計劃項目(2012CB723504)。

侯艷婷(1991-),女,碩士研究生,主要從事藥物分析工作。

潘桂湘,E-mail:guixiangp@163.com。

猜你喜歡
谷胱甘肽母體代謝物
阿爾茨海默病血清代謝物的核磁共振氫譜技術(shù)分析
蒲公英
谷胱甘肽:防治中風(fēng)改善帕金森癥狀
環(huán)孢素A代謝物的研究概況Δ
噻蟲嗪及其代謝物噻蟲胺在冬棗中的殘留動態(tài)研究
谷胱甘肽的研究進展
蚯蚓谷胱甘肽轉(zhuǎn)硫酶分離純化的初步研究
瑞替普酶聯(lián)合還原型谷胱甘肽治療急性ST段抬高型心肌梗死療效分析
HPLC-MS/MS法分析乙酰甲喹在海參中的主要代謝物
多胎妊娠發(fā)生的原因及母體并發(fā)癥處理分析
阿荣旗| 武乡县| 肇庆市| 海口市| 蚌埠市| 黔东| 班玛县| 宁德市| 南江县| 万荣县| 通城县| 鄯善县| 晋江市| 松潘县| 肃南| 南投县| 阿勒泰市| 苏尼特左旗| 渝中区| 安仁县| 龙海市| 平泉县| 五家渠市| 五原县| 永昌县| 贵港市| 宁晋县| 浪卡子县| 云霄县| 尼木县| 临漳县| 潜山县| 庆城县| 漳州市| 通许县| 玉门市| 元氏县| 清苑县| 海原县| 亚东县| 福贡县|