肖 典,廖群安,王良玉,3,趙 浩,查雁鴻,趙紅偉,尹庭旺,田錦明,劉鴻飛
(1.中國地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢 430074;2.四川省地質(zhì)調(diào)查院,成都 610081;3.核工業(yè)二四三大隊(duì),內(nèi)蒙古 赤峰 024006)
準(zhǔn)噶爾東部早志留世兩類花崗巖的巖石成因及構(gòu)造意義
肖 典1,2,廖群安1,王良玉1,3,趙 浩1,查雁鴻1,趙紅偉1,尹庭旺1,田錦明1,劉鴻飛1
(1.中國地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢 430074;2.四川省地質(zhì)調(diào)查院,成都 610081;3.核工業(yè)二四三大隊(duì),內(nèi)蒙古 赤峰 024006)
哈爾里克山西段早志留世二長花崗巖和正長花崗巖呈北西西向帶狀展布,侵入奧陶系塔水組(O1-2t),LA-ICP-MS鋯石U-Pb年齡為438.8±2.3~435.8±3.1 Ma。巖石高硅(SiO2含量73.0%~77.8%)、富鉀(K2O含量3.31%~4.26%)、低鎂(MgO含量0.03%~0.59%),鋁飽和指數(shù)A/CNK值1.02~1.08,屬高鉀鈣堿性弱過鋁質(zhì)巖石。二長花崗巖輕重稀土分餾顯著,Eu異常中等,虧損Nb、Ta、Ti、P,富集Rb、Ba、K,表現(xiàn)為分異的I型花崗巖特征,源區(qū)為基性下地殼;正長花崗巖強(qiáng)烈虧損Eu、P、Ti、Sr,不同程度富集Rb、K、Zr、Hf,表現(xiàn)為A型花崗巖特征,其源區(qū)為缺水的淺部長英質(zhì)地殼。結(jié)合區(qū)域地層不整合資料,認(rèn)為東準(zhǔn)噶爾地區(qū)早志留世為后碰撞環(huán)境而非島弧帶,后碰撞軟流圈上涌帶來的熱熔融準(zhǔn)噶爾年輕地殼形成了巖性豐富的東準(zhǔn)噶爾志留紀(jì)后碰撞巖漿巖組合。
哈爾里克;志留紀(jì);A型花崗巖;后碰撞
中亞造山帶是世界上最大的造山帶,記錄了古亞洲洋從新元古代持續(xù)至晚古生代的俯沖增生事件。Badarch[1]認(rèn)為中亞造山帶是由多個微陸塊歷經(jīng)5次大規(guī)模俯沖拼貼而成;Windley[2]認(rèn)為中亞造山帶的演化類似環(huán)太平洋,是埃迪卡拉紀(jì)以來西伯利亞板塊持續(xù)向南增生的產(chǎn)物。Xiao[3]在Windley[2]基礎(chǔ)上提出以增生楔、陸內(nèi)造山和塊體拼貼相結(jié)合的復(fù)雜模式。此外Xu[4]則提出中亞造山帶的演化可以用類似地中?!皻堄嘌笈琛钡哪P徒忉尅D壳岸鄶?shù)學(xué)者基本認(rèn)同碰撞增生是中亞造山帶演化的主要方式,但對于增生拼貼的具體方式及時間等問題依然存在諸多爭議。
哈爾里克構(gòu)造帶橫貫在吐哈盆地和準(zhǔn)噶爾盆地之間,是探討中亞造山帶南緣構(gòu)造演化的重要窗口。前人對哈爾里克的構(gòu)造屬性主要存在3種不同觀點(diǎn):泥盆紀(jì)島弧、泥盆—石炭紀(jì)弧后盆地和奧陶—志留紀(jì)島弧[3,5~9]。近年來,在哈密地區(qū)開展的一批1∶50000區(qū)域地質(zhì)調(diào)查工作,從大南湖組(D1d)中肢解出奧陶紀(jì)地層,并通過鋯石U-Pb定年分析,識別出少量早古生代侵入巖[10~12],并將構(gòu)造環(huán)境置于島弧。本文以哈爾里克山口門子地區(qū)的早志留世酸性侵入巖帶為研究對象,首次在該區(qū)發(fā)現(xiàn)早古生代I型和A型花崗巖巖石組合,并詳細(xì)研究其巖石學(xué)、年代學(xué)及地球化學(xué)特征,同時結(jié)合項(xiàng)目成果探討構(gòu)造環(huán)境,為中亞造山帶古亞洲洋盆演化提供新的認(rèn)識。
新疆北部為中亞造山帶的重要組成部分,自北向南包括阿爾泰造山帶、準(zhǔn)噶爾造山帶和天山造山帶等主要構(gòu)造單元[13]。哈爾里克構(gòu)造帶地處天山造山帶北部、準(zhǔn)噶爾微板塊東緣,出露了自奧陶紀(jì)以來的地層(見圖1)。
a—新疆北部主要蛇綠巖帶分布圖[14];b—哈爾里克山天山廟地質(zhì)簡圖圖1 哈爾里克山西段早志留世酸性侵入巖帶地質(zhì)簡圖Fig.1 Simplified geological map of the early Silurian acid intrusive rock belt in western Harlik
位于哈爾里克山北麓口門子附近的早志留世酸性侵入巖帶呈北西西向帶狀展布,由西段紅溝二長花崗巖體和東段推車子溝正長花崗巖體組成(見圖1)。紅溝巖體出露面積約16 km2,與塔水組(O1-2t)呈侵入接觸或斷層接觸;口門子韌性剪切帶穿巖體而過,大部分經(jīng)動力變質(zhì)形成二長花崗質(zhì)糜棱巖,主期糜棱面理約220°(見圖2a)。推車子溝巖體出露面積約9.5 km2,侵入塔水組(O1-2t)和石英閃長巖(oδS1),并被柳樹溝組(C2l)角度不整合覆蓋;巖體受韌性剪切帶糜棱作用稍弱,基本保留正長花崗巖原貌(見圖2b)。研究區(qū)出露地層有奧陶系、志留系和石炭系。塔水組(O1-2t)為一套中—細(xì)粒穩(wěn)定陸緣碎屑組合,葫蘆溝組(S1h)火山巖、火山碎屑巖及柳樹溝組(C2l)碎屑巖夾火山巖均角度不整合覆于奧陶系之上。
Q—石英;Pl—斜長石;Kf—鉀長石;Pth—條紋長石;Or—正長石圖2 二長花崗質(zhì)糜棱巖和正長花崗巖野外及正交鏡下照片F(xiàn)ig.2 Field photos and micrographs of monzogranitic mylonite and syenogranite
二長花崗質(zhì)糜棱巖具糜棱結(jié)構(gòu),流狀構(gòu)造;碎斑多為斜長石,占20%~70%,少數(shù)雙晶紋彎曲或扭折(見圖2c);碎基占30%~80%,主要由長英質(zhì)條帶和少量絹云母+綠簾石條帶組成。正長花崗巖呈細(xì)中粒花崗結(jié)構(gòu),略具定向構(gòu)造;主要礦物為正條紋長石(50%~60%)、石英(30%~35%)、斜長石(5%~20%),次為黑云母(2%~3%),石英多與條紋長石呈顯微文象結(jié)構(gòu)(見圖2d);黑云母為片狀,析鐵退變質(zhì)為白云母。
本文鋯石微量元素含量和U-Pb同位素年代學(xué)在中國地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點(diǎn)實(shí)驗(yàn)室完成,使用儀器為LA-ICP-MS。激光剝蝕系統(tǒng)為GeoLas2005,等離子體質(zhì)譜儀為Agilent7500a,激光束斑直徑32 μm,剝蝕采用氦氣作載氣。實(shí)驗(yàn)過程采用Nist610、GJ-1作為外標(biāo),以91500作為內(nèi)標(biāo)控制。分析數(shù)據(jù)的離線處理采用軟件ICPMSDataCal完成,并以29Si作為內(nèi)標(biāo)校正鋯石微量元素。鋯石U-Pb諧和圖及加權(quán)平均年齡圖采用ISOPLOT程序(Ver4.15)繪制。
全巖主量、微量和稀土元素分析測試由廣州澳實(shí)分析檢測集團(tuán)礦物實(shí)驗(yàn)室完成。主量元素采用偏硼酸鋰熔融消解,X熒光光譜分析測定(ME-XRF26d),亞鐵分析采用酸消解,重鉻酸鉀滴定測量;微量元素采用四酸消解,質(zhì)譜/光譜儀綜合分析測定(ME-MS61);稀土元素采用硼酸鋰熔融消解,等離子質(zhì)譜儀定量分析測定(ME-MS81),測試儀器為Elan 9000,分析精度優(yōu)于5%。
3.1 鋯石U-Pb同位素年齡
本文選取西段二長花崗巖(PM72-6-1)和東段正長花崗巖(1458-1)2件樣品進(jìn)行鋯石定年,采樣位置見圖1。共測試41顆鋯石點(diǎn),鋯石粒徑50~120 μm,呈自形柱狀或碎裂粒狀,發(fā)育巖漿振蕩生長環(huán)帶(見圖3)。232Th/238U介于0.54~1.46,與巖漿鋯石特征[15]一致。
圖3 二長花崗巖(a)、正長花崗巖(b)典型鋯石陰極發(fā)光圖像及其U-Pb年齡諧和圖Fig.3 Representative zircon CL images and U-Pb concordia diagrams for monzogranite and syenogranite
測試數(shù)據(jù)見表1。二長花崗巖測試20顆鋯石點(diǎn),被測鋯石諧和度大于86%,206Pb/238U年齡變化于397±3.9~444±5.6 Ma。點(diǎn)6-1-3受韌性剪切作用影響發(fā)生204Pb丟失,其余鋯石整體位于207Pb/235U-206Pb/238U諧和曲線附近,加權(quán)平均年齡438.8±2.3 Ma(n=19,MSWD=0.70)可代表二長花崗巖結(jié)晶年齡(見圖3a)。正長花崗巖測試21顆鋯石點(diǎn),其中16個測點(diǎn)位于諧和曲線附近,206Pb/238U年齡介于428±3.6~449±8.1 Ma,加權(quán)平均年齡435.8±3.1 Ma(n=16,MSWD=1.20)代表正長花崗巖結(jié)晶年齡(見圖3b)。上述二者加權(quán)平均年齡在誤差范圍內(nèi)一致,表明哈爾里克山口門子一帶酸性侵入巖均形成于早志留世晚期。
表1 二長花崗巖及正長花崗巖LA-ICP-MS鋯石U-Pb同位素測定結(jié)果
3.2 主量及微量元素特征
二長花崗巖和正長花崗巖均具有高SiO2(73.0%~77.8%)和富K2O(3.31%~4.26%)的特征,全堿Alk為7.30%~8.57%,屬高鉀鈣堿性系列(見圖4a)。巖石TiO2(0.08%~0.29%)、MgO(0.03%~0.59%)、Fe2O3(1.38%~2.11%)含量較低,與鏡下少見暗色礦物現(xiàn)象相符。鋁飽和指數(shù)(A/CNK)介于1.02~1.08,為弱過鋁質(zhì)巖石(見圖4b)。此外,二長花崗巖和正長花崗巖還存在較明顯的差異,表現(xiàn)為:①正長花崗巖發(fā)育顯微文象結(jié)構(gòu),具有更高的Alk含量(平均8.38%,高于二長花崗巖的7.65%);②二長花崗巖P2O5(0.08%~0.02%)含量高于正長花崗巖(0.02%~不足0.01%);③二長花崗巖TiO2(平均0.21%)、CaO(平均1.09%)、Mg#(平均32.2)豐度明顯高于正長花崗巖(依次為0.09%、0.07%、5.1)。
圖4 哈爾里克山西段早志留世酸性侵入巖SiO2-K2O及A/CNK-A/NK圖解[16~17]Fig.4 SiO2-K2O and A/CNK-A/NK diagrams from the early Silurian acid intrusive rock in western Harlik
稀土元素特征顯示,二長花崗巖具有較低的REE,輕重稀土分餾顯著((La/Yb)N=11.8~15.2),Eu異常中等(δEu=0.60~0.87),呈現(xiàn)出輕稀土富集((La/Sm)N=5.8~7.5)、中稀土虧損、重稀土平坦((Gd/Yb)N=1.19~1.26)的右傾型配分模式,類似高分異I型花崗巖[18];正長花崗巖輕重稀土分餾程度較弱((La/Yb)N=2.62~3.41),以強(qiáng)烈虧損Eu為特征(δEu=0.24~0.26),稀土配分模呈“雁列式”,類似A型花崗巖。二長花崗巖虧損Nb、Ta、Ti等高場強(qiáng)元素和P,富集Rb、Ba、Th、U、K等大離子親石元素;正長花崗巖不同程度地富集Rb、Th、U、K、Zr、Hf,虧損P、Ti、Sr、Ba(見圖5)。
圖5 哈爾里克山西段早志留世酸性侵入巖球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖[19]及微量元素蛛網(wǎng)圖[20]Fig.5 REE and trace element spider diagrams of the early Silurian acid intrusive rock in western Harlik
4.1 成因分類
花崗巖成因最常用ISMA型分類方法。M型花崗巖以與蛇綠巖共存、由地?;蚋_上洋殼熔融而成的斜長花崗巖為代表,極為少見;I型花崗巖源區(qū)為變質(zhì)火成巖,以角閃石為標(biāo)志礦物,A/CNK<1.1;S型花崗巖以含堇青石為標(biāo)志,源區(qū)多為泥質(zhì)巖,A/CNK>1;A型花崗巖形成于造山后或非造山環(huán)境,以堿性暗色礦物為標(biāo)志[21]。哈爾里克構(gòu)造帶未出露蛇綠混雜巖,早志留世酸性侵入巖未見原生富鋁礦物,A/CNK=1.02~1.08屬弱過鋁質(zhì),CIPW標(biāo)準(zhǔn)礦物剛玉分子<1%,這些特征基本可以排除M型和S型花崗巖的成因。
表2 哈爾里克山西段早志留世酸性侵入巖主量元素(%)、微量元素(10-6)分析結(jié)果
注:FeO*=0.8998×Fe2O3;鎂值Mg#=molar 100×Mg/(Mg+FeO*);DI=標(biāo)準(zhǔn)礦物(Q+Af+Ab+Ne+Kp+Lc);δEu=2×EuN/(SmN+GdN);A/CNK=Al2O3/(CaO+ Na2O+K2O)分子比;(La/Yb)N代表La和Yb球粒隕石標(biāo)準(zhǔn)化比值
紅溝二長花崗巖體和推車子溝正長花崗巖體較高的SiO2和全堿含量,在Q-An-Or三角圖解中落入低溫槽內(nèi)(見圖6a),具有低共熔花崗巖性質(zhì),與較高分異指數(shù)(DI=86.7~97.2)特征一致,反映巖漿經(jīng)歷高分異演化。磷灰石在準(zhǔn)鋁質(zhì)—弱過鋁質(zhì)花崗質(zhì)巖漿中溶解度很低,在巖漿分異演化中優(yōu)先結(jié)晶,因此P2O5含量隨SiO2的增加而降低,并導(dǎo)致高分異I型和A型花崗巖中P2O5含量非常低[22]。二長花崗巖和正長花崗巖P2O5隨SiO2增加線性減少(見圖6b),最低含量不足0.01%,與高分異I型或A型花崗巖演化特征一致。
圖6 花崗巖Q-Ab-Or圖[23]、SiO2-P2O5圖及成因分類圖解(c—e據(jù)[24], f據(jù)[25])Fig.6 Q-Ab-Or, SiO2-P2O5 and genetic classification diagrams of granite
此外二長花崗巖稀土配分模式為右傾型,稀土含量較低;而正長花崗巖稀土配分模式呈“雁列式”,稀土含量高,在A/CNK-A/NK圖中投影更接近過堿質(zhì)區(qū)域。在一系列花崗巖成因判別圖解中,二長花崗巖投影在分異的I或S型花崗巖區(qū)域,正長花崗巖均投在A型花崗巖中(見圖6c—6f)。綜合上述判斷,二長花崗巖為高分異I型花崗巖,正長花崗巖為A型花崗巖。
高溫是形成A型花崗巖的重要條件,鋯石是花崗質(zhì)巖漿早期結(jié)晶的副礦物,其飽和度計(jì)算可以限定巖漿早期結(jié)晶溫度,進(jìn)而近似代表巖漿形成時的溫度[26](見表3)。
表3 哈爾里克山西段早志留世酸性侵入巖鋯石飽和溫度計(jì)算結(jié)果
二長花崗巖飽和溫度介于743~779 ℃,可見繼承鋯石,類似于冷花崗巖(TZr=766 ℃),其成因與源區(qū)角閃石或黑云母脫水作用有關(guān)[27]。正長花崗巖飽和溫度(842~865 ℃),明顯高于二長花崗巖,TZr>800 ℃屬熱花崗巖,接近熔融形成A型花崗質(zhì)巖漿的實(shí)驗(yàn)溫度[28]。
4.2 巖石成因
紅溝二長花崗巖為弱過鋁質(zhì)高鉀鈣堿性I型花崗巖,指示巖漿源區(qū)為中基性火成巖,不發(fā)育暗色微粒包體的特征暗示其為單一殼源成因。Sr常以類質(zhì)同象替換Ca賦存在斜長石中,而Yb在石榴石中強(qiáng)烈富集,因此Sr、Yb含量可以識別源區(qū)殘余礦物組合。二長花崗巖輕重稀土明顯分餾,Yb含量較低,Sr/Y比值最高25,反映源區(qū)有石榴石和角閃石殘留[29],源區(qū)對應(yīng)深度為麻粒巖相或榴輝巖相基性下地殼。
推車子溝正長花崗巖為弱過鋁質(zhì)A型花崗巖,硅含量極高且化學(xué)成分均一,較低的Al2O3含量、強(qiáng)烈的Sr、Eu負(fù)異常及“雁列式”的稀土配分模式特征反映源區(qū)為斜長石穩(wěn)定而不含石榴石的淺部地殼[30]。在水不飽和條件下,花崗質(zhì)熔體中的長石將朝富集Or分子的方向演化[31],巖石A/NK=1.03~1.05、A/CNK=1.02~1.04,接近堿性A型花崗巖,因此正長花崗巖是由缺水的淺部長英質(zhì)地殼熔融而成。
二長花崗巖Yb、FeO*、MgO含量較低可能與鎂鐵質(zhì)礦物、富HREE(重稀土)副礦物的分離結(jié)晶有關(guān),這也與低共熔、高分異I型花崗巖特征相符。Ba含量減少暗示存在鉀長石分離,Sr虧損與斜長石分離結(jié)晶有關(guān),Eu的負(fù)異常則受鉀長石和斜長石分異共同控制。正長花崗巖CaO、Sr含量較低,說明巖漿演化過程中存在斜長石的分離結(jié)晶,極低的P2O5與磷灰石分離結(jié)晶有關(guān)。
4.3 構(gòu)造環(huán)境
正長花崗巖富集Rb、Th、U、K,強(qiáng)烈虧損Ba、Sr、P、Ti、U,較弱的Nb負(fù)異常特征與后碰撞鉀質(zhì)花崗巖類似[32]。Y/Nb比值為3.4~4.5,屬A2型花崗巖,形成于與俯沖有關(guān)的后碰撞、后造山環(huán)境[33]。在R1-R2圖解(見圖7a)中,二長花崗巖投影在同碰撞花崗巖與造山期后花崗巖范圍內(nèi),正長花崗巖均落入造山期后花崗巖區(qū)域;Pearce判別圖(見圖7b)中,早志留世酸性侵入巖由老至新逐漸從火山弧環(huán)境過渡到板內(nèi)環(huán)境,且均位于三聯(lián)點(diǎn)附近,代表它們形成于后碰撞環(huán)境,二長花崗巖的火山弧特征可能是變質(zhì)基性源巖島弧印跡的體現(xiàn)。
①—地幔斜長花崗巖;②—板塊碰撞前消減帶花崗巖;③—碰撞后隆起區(qū)花崗巖;④—造山晚期花崗巖;⑤—非造山花崗巖;⑥—同碰撞花崗巖;⑦—造山期后花崗巖圖7 哈爾里克山西段早志留世酸性侵入巖構(gòu)造判別圖[33~34]Fig.7 Tectonic discriminating diagrams of the early Silurian acid intrusive rock in western Harlik
后碰撞花崗巖以發(fā)育高鉀鈣堿性I型花崗巖和雙峰式巖漿巖為特征[35]。哈爾里克山早志留世不僅存在高鉀鈣堿性I型花崗巖,鄰區(qū)莫?dú)J烏拉山還發(fā)現(xiàn)一套鉀玄巖—粗安巖(434.4±2.2 Ma)。其SiO2介于46.4%~54.4%,為堿性—過堿性中基性火山巖(據(jù)趙浩,待刊),該堿性玄武巖與正長花崗巖組成典型的后碰撞雙峰式巖漿組合。
阿爾曼太蛇綠巖帶是東準(zhǔn)噶爾地區(qū)重要的早古生代蛇綠巖,其代表的洋盆主體形成年齡為晚寒武世—早奧陶世,后碰撞作用峰值年齡為中志留世—早泥盆世[36~38]。東準(zhǔn)噶爾卡拉麥里斷裂以南出露的紅柳溝組(S3D1h)為一套薄—中厚層細(xì)碎屑巖、凝灰?guī)r夾灰?guī)r,底部發(fā)育紫色間雜綠色底礫巖和厚約1 m的古風(fēng)化殼,角度不整合于廟兒溝組(O2-3m)之上[39~40]。下部O2-3m強(qiáng)烈變形達(dá)到綠片巖相,而S3D1h變形變質(zhì)極其輕微,這些差異表明東準(zhǔn)噶爾早古生代發(fā)生過造山作用,該造山作用的時間上限為中志留世[41]。
研究區(qū)哈爾里克山奧陶系(O1-2t、O2-3q)為一套含濁積巖的淺海—斜坡相陸緣碎屑組合,為相對穩(wěn)定的被動陸緣淺海沉積環(huán)境;其上部呈角度不整合的葫蘆溝組(S1h)火山巖為本次研究的新發(fā)現(xiàn),表明哈爾里克山早志留世與晚奧陶世早期存在沉積間斷,對應(yīng)一次碰撞抬升事件。在這次構(gòu)造事件的后碰撞松弛階段,堿性玄武巖代表的軟流圈上涌依次熔融基性下地殼和缺水的長英質(zhì)上地殼,分別形成了紅溝I型二長花崗巖和推車子溝A型正長花崗巖,二者共同組成了哈爾里克山早志留世酸性侵入巖帶,其鋯石飽和溫度由743~779 ℃進(jìn)一步升高至842~865 ℃是后碰撞軟流圈上涌的響應(yīng)。
哈爾里克山口門子地區(qū)酸性侵入巖呈北西西向帶狀展布,由二長花崗巖和正長花崗巖組成,二者鋯石U-Pb年齡分別為438.8±2.3 Ma、435.8±3.1 Ma,均形成于早志留世晚期。
二長花崗巖為高鉀鈣堿性、高分異I型花崗巖,輕重稀土分餾顯著,其源區(qū)為基性下地殼;正長花崗巖為高鉀鈣堿性、A型花崗巖,稀土配分模式呈“雁列式”,其源區(qū)為淺部長英質(zhì)地殼。
哈爾里克山早志留世酸性侵入巖帶形成于軟流圈上涌的后碰撞環(huán)境,其成因與阿爾曼太洋盆關(guān)閉有關(guān)。
致謝 本文撰寫過程中得到成都理工大學(xué)熊富浩副教授的指導(dǎo),在此表示感謝!
[1] Badarch G, Dickson Cunningham W, Windley B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002,21(1):87~110.
[2] Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007,164(1):31~47.
[3] Xiao W J, Han C, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008,32(2/4):102~117.
[4] Xu Q, Ji J, Zhao L, et al. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model[J]. Earth-Science Reviews, 2013,126:178~205.
[5] 顧連興, 胡受奚, 于春水, 等. 論博格達(dá)俯沖撕裂型裂谷的形成與演化[J]. 巖石學(xué)報(bào), 2001(04):585~597.
GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Initation and evolution of the Bogda subduction-torn-type rift[J]. Acia Petrologica Sinica, 2001(4):585~597.
[6] 馮益民, 朱寶清, 楊軍錄, 等. 東天山大地構(gòu)造及演化——1∶50萬東天山大地構(gòu)造圖簡要說明[J]. 新疆地質(zhì), 2002, (4): 309~314.
FENG Yi-min, ZHU Bao-qing, YANG Jun-lu, et al. Tectonics and evolution of the eastern Tianshan Mountains: A brief introduction to tectonic map (1∶500 000) of the eastern Tianshan Mountains of Xinjiang[J]. Xinjiang Geology, 2002, (4): 309~314.
[7] 李錦軼. 新疆東部新元古代晚期和古生代構(gòu)造格局及其演變[J]. 地質(zhì)論評, 2004, 50(3):304~322.
LI Jin-yi. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3):304~322.
[8] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia[J]. American Journal of Science, 2004,304(4):370~395.
[9] 李錦軼, 王克卓, 孫桂華, 等. 東天山吐哈盆地南緣古生代活動陸緣殘片:中亞地區(qū)古亞洲洋板塊俯沖的地質(zhì)記錄[J]. 巖石學(xué)報(bào), 2006, 22(5):1087~1102.
LI Jin-yi, WANG Ke-zhuo, SUN Gui-hua, et al. Paleozoic active margin slices in the southern Turfan-Hami basin: Geological records of subduction of the Paleo-Asian Ocean plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5):1087~1102.
[10] 曹福根, 涂其軍, 張曉梅, 等. 哈爾里克山早古生代巖漿弧的初步確定——來自塔水河一帶花崗質(zhì)巖體鋯石SHRIMP U-Pb測年的證據(jù)[J]. 地質(zhì)通報(bào), 2006, 25(8):923~927.
CAO Fu-gen, TU Qi-jun, ZHANG Xiao-mei, et al. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik Mountains, East Tianshan, Xinjiang, China: Evidence from zircon SHRIMP U-Pb dating of granite bodies in the Tashuihe area[J]. Geological Bulletin of China, 2006, 25(8):923~927.
[11] 郭華春, 鐘莉, 李麗群. 哈爾里克山口門子地區(qū)石英閃長巖鋯石SHRIMP U-Pb測年及其地質(zhì)意義[J]. 地質(zhì)通報(bào), 2006, 25(8): 928~931.
GUO Hua-chun, ZHONG Li, LI Li-Qun. Ziron SHRIMP U-Pb dating of quartz diorite in the Koumenzi area, Karlik Mountains, East Tianshan, Xinjiang, China, and its geological significance[J]. Geological Bulletin of China, 2006, 25(8):928~931.
[12] 馬星華, 陳斌, 王超, 等. 早古生代古亞洲洋俯沖作用:來自新疆哈爾里克侵入巖的鋯石U-Pb年代學(xué)、巖石地球化學(xué)和Sr-Nd同位素證據(jù)[J]. 巖石學(xué)報(bào), 2015,31(1):89~104.
MA Xing-hua, CHEN Bin, WANG Chao, et al. East Paleozoic subduction of the Paleo-Asian Ocan: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(1):89~104.
[13] 徐學(xué)義, 李榮社, 陳雋璐, 等. 新疆北部古生代構(gòu)造演化的幾點(diǎn)認(rèn)識[J]. 巖石學(xué)報(bào), 2014, 30(6):1521~1534.
XU Xue-yi, LI Rong-she, CHEN Jun-lu, et al. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica, 2014, 30(6):1521~1534.
[14] 董連慧, 朱志新, 屈迅, 等. 新疆蛇綠巖帶的分布、特征及研究新進(jìn)展[J]. 巖石學(xué)報(bào), 2010, 26(10):2894~2904.
DONG Lian-hui, Zhu Zhi-xin, QU Xun, et al. Spatial distribution geological features and latest progress of the main ophiolite zones in Xinjiang NW-China[J]. Acta Petrologica Sinica, 2010, 26(10):2894~2904.
[15] 吳元保, 鄭永飛. 鋯石成因礦物學(xué)研究及其對U-Pb年齡解釋的制約[J]. 科學(xué)通報(bào), 2004, 49(16):1589~1604.
WU Yuan-bao, ZHENG Yong-fei. Gensis of zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589~1604.
[16] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63~81.
[17] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989,101(5):635~643.
[18] 邱檢生, 肖娥, 胡建, 等. 福建北東沿海高分異Ⅰ型花崗巖的成因:鋯石U-Pb年代學(xué)、地球化學(xué)和Nd-Hf同位素制約[J]. 巖石學(xué)報(bào), 2008, 24(11):2468~2484.
QIU Jian-sheng, XIAO E, HU Jian, et al. Petrogenesis of fractionated I-type granites in the coastal area of northeastern Fujian Province: Constraints from zircon U-Pb geochronology, geochemistry, and Nd-Hf isotopes[J]. Acta Petrologica Sinica, 2008, 24(11): 2468~2484.
[19] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. London: Blackwell Scientific, 1986.
[20] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[M]. London: Geological Society, 1989.
[21] 吳福元, 李獻(xiàn)華, 楊進(jìn)輝, 等. 花崗巖成因研究的若干問題[J]. 巖石學(xué)報(bào), 2007, 23(6):1217~1238.
WU Fu-yuan, LI Xian-hua, YANG Jin-hui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217~1238.
[22] 李獻(xiàn)華, 李武顯, 李正祥. 再論南嶺燕山早期花崗巖的成因類型與構(gòu)造意義[J]. 科學(xué)通報(bào), 2007,52(9):981~991.
LI Xian-hua, LI Wu-xian, LI Zheng-xiang.[J]. Re-discussion on genesis type and tectonic significance of Early Yanshanian granite in Nanling[J]. Chinese Science Bulletin, 2007, 52(9):981~991.
[23] Holtz F, Pichavant M, Barbey P, et al. Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar[J]. American Mineralogist, 1992, 77(11/12): 1223~1241.
[24] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407~419.
[25] 邱檢生, 胡建, 王孝磊, 等. 廣東河源白石岡巖體:一個高分異的I型花崗巖[J]. 地質(zhì)學(xué)報(bào), 2005, 79(4):503~514.
QIU Jian-sheng, HU Jian, WANG Xiao-lei, et al. The Baishigang Pluton in Heyuan, Guangdong Province: A highly fractionated I-type granite[J]. Acta Geologica Sinica, 2005, 79(4):503~514.
[26] Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983,64(2):295~304.
[27] Miller C F, McDowell S M, Mapes R W. Hot and cold granites Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003,31(6):529~532.
[29] Castillo Paterno R. 埃達(dá)克巖成因回顧[J]. 科學(xué)通報(bào), 2006, 51(6):617~627.
Castillo Paterno R. Review of the genesis of adakites[J]. Chinese Science Bulletin, 2006, 51(6):617~627.
[30] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8~32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995,36(4):891~931.
[31] Conrad W K, NichollsI I A, Wall V J. Water-Saturated and -Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 kb: Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and Other Occurrences[J]. Journal of Petrology, 1988,29(4):765~803.
[32] Küster D, Harms U. Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review[J]. Lithos, 1998,45(1/4):177~195.
[33] Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992,20(7):641.
[34] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984,25(4):956~983.
[35] 韓寶福. 后碰撞花崗巖類的多樣性及其構(gòu)造環(huán)境判別的復(fù)雜性[J]. 地學(xué)前緣, 2007, 14(3):64~72.
HAN Bao-fu. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 2007, 14(3): 64~72.
[36] Xiao W J, Windley B F, Yuan C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3):221~270.
[37] 董連慧, 屈迅, 趙同陽, 等. 新疆北阿爾泰造山帶早古生代花崗巖類侵入序列及其構(gòu)造意義[J]. 巖石學(xué)報(bào), 2012,28(8):2307~2316.
DONG Lian-hui, QU Xun, ZHAO Tong-yang, et al. Magmatic sequence of Early Palaeozoic granitic intrusions and its tectonic implications in north Altay orogeny, Xinjiang[J]. 2012, 28(8):2307~2316.
[38] 簡平, 劉敦一, 張旗, 等. 蛇綠巖及蛇綠巖中淺色巖的SHRIMP U-Pb測年[J]. 地學(xué)前緣, 2003, 10(4):439~456.
JIAN Ping, LIU Dun-yi, ZHANG Qi, et al. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 2003, 10(4):439~456.
[39] 程裕淇. 中國地層典: 志留系[M]. 北京: 地質(zhì)出版社, 1998.
CHENG Yu-qi. Stratigraphic lexicon of China: Silurian[M]. Beijing: Geological Publishing House, 1998.
[40] 李亞萍, 李錦軼, 孫桂華, 等. 新疆東準(zhǔn)噶爾早泥盆世早期花崗巖的確定及其地質(zhì)意義[J]. 地質(zhì)通報(bào), 2009, 28(12): 1885~1893.
LI Ya-ping, LI Jin-yi, SUN Gui-hua, et al. Determination of the Early Devonian granite in East Junggar, Xinjiang, China and its geological implications[J]. Geological Bulletin of China, 2009, 28(12):1885~1893.
[41] 徐芹芹, 趙磊, 牛寶貴. 新疆東準(zhǔn)噶爾紙房地區(qū)早古生代花崗巖的確定及其地質(zhì)意義[J]. 地質(zhì)力學(xué)學(xué)報(bào), 2015, 21(4):502~516.
XU Qin-qin, ZHAO Lei, NIU Bao-gui. Determination of the early Paleozoic granite in Zhifang area, east Junggar, Xingjiang and its geological implications[J]. Journal of Geomechanics, 2015, 21(4):502~516.
PETROGENESIS AND TECTONIC IMPLICATIONS OF TWO TYPES EARLY SILURIAN GRANITES IN EAST JUNGGAR
XIAO Dian1,2, LIAO Qun-an1, WANG Liang-yu1,3, ZHAO Hao1, ZHA Yan-hong1,ZHAO Hong-wei1, YIN Ting-wang1, TIAN Jin-ming1, LIU Hong-fei1
(1.FacultyofEarthSciences,ChinaUniversityofGeosciences,Wuhan430074,China;2.SichuanGeologicalSurvey,Chengdu610081,China;3.No.243GeologicalPartyofNuclearIndustry,CNNC,Chifeng024006,InnerMongolia,China)
The early Silurian monzogranite and syenogranite are located in the western section of Harlik Mountain with a NWW-trending, which intrude into the Ordovician Tashui Formation (O1-2t). The LA-ICP-MS zircon U-Pb dating shows their emplacement ages are 438.8±2.3 Ma~435.8±3.1 Ma. The rocks have high contents of silicon (SiO2=73.0~77.8%)and potassium (K2O=3.31~4.26%), and low contents of magnesium (MgO=0.03~0.59%), with moderate aluminum saturation index (A/CNK=1.02~1.08), which show that the rocks are high-K calc-alkaline, weakly peraluminium series. Monzogranites exhibit strongly fractionated REE patterns with moderate negative Eu anomalies, and they are depleted in Nb, Ta, Ti, P, but enriched in Rb, Ba, K, showing notable fractionated I-type granitoids with mafic lower continental crust as a potential magma source. Syenogranites show remarkably depletion of Eu, P, Ti and Sr, and enrichment of Rb, K, Zr and Hf, showing A-type granites affinity, whose magma source maybe the dehydrated felsic upper continental crust. Combined with the stratigraphic unconformity in this region, we propose that the East Junggar is in a post-collisional setting rather than arc-related setting during the early Silurian. The upwelling asthenosphere provided enhanced heat flux and triggered the partial melting of the juvenile crust, and resulted in the generation of various Silurian post-collisional granites in East Jungga.
Harlik; Silurian; A-type granite; post-collision
1006-6616(2016)04-1049-13
2016-09-16
中國地質(zhì)調(diào)查局“特殊地質(zhì)地貌區(qū)填圖試點(diǎn)”項(xiàng)目(DD20160060;12120114042801)
肖典(1991-),男,碩士,從事1∶5萬區(qū)域地質(zhì)調(diào)查工作。E-mail:dianx244@gmail.com
廖群安(1959-),男,教授,從事區(qū)調(diào)工作和巖石學(xué)研究。E-mail:qanliao@cug.edu.cn
P588.1;P595
A