国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

新疆哈爾里克早石炭世A型花崗巖的巖石成因及構(gòu)造意義

2016-03-07 08:20:45王良玉廖群安劉鴻飛王國(guó)燦
關(guān)鍵詞:石炭世哈爾鋯石

王良玉,廖群安,肖 典,3,羅 婷,趙 浩,劉鴻飛,王國(guó)燦

(1.中國(guó)地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢 430074;2.核工業(yè)二四三大隊(duì),內(nèi)蒙古 赤峰 024006;3.四川省地調(diào)院,成都 610081)

新疆哈爾里克早石炭世A型花崗巖的巖石成因及構(gòu)造意義

王良玉1,2,廖群安1,肖 典1,3,羅 婷1,趙 浩1,劉鴻飛1,王國(guó)燦1

(1.中國(guó)地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢 430074;2.核工業(yè)二四三大隊(duì),內(nèi)蒙古 赤峰 024006;3.四川省地調(diào)院,成都 610081)

對(duì)出露在哈爾里克山西段小白楊溝—南山口一帶的早石炭世花崗巖進(jìn)行了鋯石LA-ICP-MS U-Pb定年,結(jié)果為331.3±1.9 Ma,屬早石炭世晚期。其巖石組合為堿長(zhǎng)花崗巖、堿性花崗巖,暗色礦物以黑云母為主,見(jiàn)鈉質(zhì)角閃石,具富堿、貧鈣鎂和低鋁鐵的特征,微量元素明顯富集Rb、Th、K等大離子親石元素和Zr、Hf等高場(chǎng)強(qiáng)元素而強(qiáng)烈虧損Ba、Sr、Eu等元素,10000 Ga/Al值變化于2.93~3.80之間,表明該堿性花崗巖屬于典型的A型花崗巖,具板內(nèi)花崗巖特征,并非前人認(rèn)為的島弧花崗巖,其正εNd(t)值(+5.66~+6.12)和年輕的Nd模式年齡(TDM2=0.60~0.62 Ga)顯示巖漿來(lái)源于新生年輕地殼。從本次1∶50000區(qū)調(diào)研究成果看,博格達(dá)自早石炭世開(kāi)始伸展,早石炭世晚期進(jìn)入閉合階段,哈兒里克山早石炭世晚期巖體應(yīng)處于博格達(dá)裂谷晚期階段,并非前人所說(shuō)的后碰撞和島弧環(huán)境。

A型花崗巖;早石炭世晚期;裂谷;哈爾里克

0 引言

位于吐哈盆地東北緣的哈爾里克構(gòu)造帶是天山造山帶的重要組成部分,該帶分布在東天山北支哈爾里克山一帶,是研究新疆北部構(gòu)造演化的重要窗口。該帶內(nèi)出露廣泛的石炭紀(jì)巖漿巖,大面積分布的花崗巖體成為研究花崗巖的巖石成因及巖漿構(gòu)造演化的理想載體。前人已對(duì)哈爾里克山花崗巖帶做了大量研究,但是,對(duì)于這些花崗巖體的成因和構(gòu)造背景上的認(rèn)識(shí)存在較大爭(zhēng)議。在花崗巖的成因方面,有幔源巖漿演化[1]、花崗巖同期底侵體部分熔融[2]、底侵體之上的年輕地殼部分熔融[2~4]等不同認(rèn)識(shí);在構(gòu)造背景認(rèn)識(shí)方面,有形成于島弧[5~6]、弧后盆地[7~9]、后碰撞[1,10]及裂谷[11~15]等環(huán)境的爭(zhēng)議,并且關(guān)于其構(gòu)造背景與博格達(dá)造山帶是否相關(guān)也存在較大爭(zhēng)議[5~15]。

本次研究在哈爾里克造山帶西段南山口地區(qū)新發(fā)現(xiàn)了一期早石炭晚期的堿性花崗巖,綜合巖石學(xué)、地球化學(xué)、同位素年代學(xué)研究以及區(qū)域地質(zhì)背景認(rèn)為,該期花崗巖為典型的A型花崗巖,具板內(nèi)花崗巖特征,結(jié)合新近完成的《新疆1∶50000板房溝(K46E002015)、小柳溝(K46E003015)、伊吾軍馬場(chǎng)(K46E004015)、口門(mén)子(K46E005015)幅填圖試點(diǎn)》項(xiàng)目成果分析,認(rèn)為其是造山后板內(nèi)裂谷階段的產(chǎn)物,與博格達(dá)裂谷(裂陷槽)發(fā)育有關(guān)。

1 地質(zhì)背景及巖石學(xué)特征

研究區(qū)在大地構(gòu)造位置上處于中亞造山帶南緣(見(jiàn)圖1a),北側(cè)為西伯利亞南緣顯生宙陸緣增生造山帶,南側(cè)為塔里木古陸。區(qū)域構(gòu)造位置(見(jiàn)圖1b)上,研究區(qū)北側(cè)自北向南依次為阿爾泰島弧、阿爾泰造山系、野馬泉島弧和東準(zhǔn)噶爾造山系;南側(cè)依次為吐哈地塊、托克遜—大南湖島弧、康古爾塔格碰撞帶、卡拉塔格-星星峽島弧、紅柳河—白云山—小黃山碰撞帶、南天山造山系、北山造山系和塔里木古陸;東西側(cè)為裂谷[14,16],也有人認(rèn)為是弧后盆地[8~9,17]。區(qū)內(nèi)出露的地層以?shī)W陶紀(jì)的中—細(xì)粒穩(wěn)定陸緣碎屑組合和石炭紀(jì)的火山碎屑巖為主,在哈爾里克山南部零星分布少量泥盆紀(jì)地層,花崗巖類巖漿活動(dòng)在該區(qū)大規(guī)模發(fā)育。

圖1 新疆地質(zhì)構(gòu)造單元簡(jiǎn)圖[18~19]Fig.1 The geological tectonic sketch of Xinjiang

早石炭世晚期小白楊溝—南山口一帶堿性花崗巖出露在哈爾里克山南坡,巖體中心地理坐標(biāo)約為東經(jīng)93°36′、北緯43°13′,出露面積30~35 km2,平面圖(見(jiàn)圖2)上為狹長(zhǎng)條帶,呈北西—南東向展布。巖性以堿性花崗巖為主體,呈帶狀展布,走向約145°,出露長(zhǎng)度約17 km,寬約2 km。北側(cè)邊界受斷層控制,部分地區(qū)被晚石炭二長(zhǎng)花崗巖侵入(見(jiàn)圖3a)。二長(zhǎng)花崗巖粒度較粗,接觸界線為波狀界線,外帶可見(jiàn)明顯的烘烤現(xiàn)象,呈暗灰色,內(nèi)帶二長(zhǎng)花崗巖粒度較細(xì),見(jiàn)有捕獲的堿性花崗巖捕擄體。南側(cè)邊界以盆山為界,南部為吐哈盆地第四系沉積。東側(cè)邊界與早石炭世早期堿性花崗巖侵入接觸(見(jiàn)圖3b),界線為波狀界線,外帶巖石粒度較細(xì),烘烤邊并不明顯,內(nèi)帶巖石為細(xì)粒結(jié)構(gòu),見(jiàn)有早石炭堿性花崗巖捕擄體。巖體相帶明顯,邊緣相較寬,多為細(xì)粒結(jié)構(gòu)、隱晶質(zhì)結(jié)構(gòu),中心相較窄,巖石粒度為中粒結(jié)構(gòu),暗示巖體為淺層侵入巖。巖體內(nèi)部未見(jiàn)包體,但巖體內(nèi)部較復(fù)雜,發(fā)育大量早二疊紀(jì)輝綠巖脈、正長(zhǎng)巖脈。值得注意的是,在巖體內(nèi)部見(jiàn)有以斷塊形式出現(xiàn)的石英閃長(zhǎng)巖(356 Ma[20])和巖體邊部的堿性花崗巖(350~351 Ma[20])。巖體實(shí)測(cè)剖面詳見(jiàn)圖4。

圖2 研究區(qū)哈爾里克山巖體地質(zhì)圖(據(jù)1∶50000地質(zhì)圖改編)Fig.2 Geological map of the Harlik pluton

圖3 早石炭晚期堿性花崗巖的野外接觸關(guān)系Fig.3 Field contact relationship of the alkaline granites in late Early Carboniferous

圖4 早石炭晚期堿性花崗巖與晚石炭二長(zhǎng)花崗巖實(shí)測(cè)剖面(PM44)Fig.4 Section of late Early Carboniferous alkaline granite and Late Carboniferous monzonitic granite

堿性花崗巖(χγπC12)顏色為灰紅色,風(fēng)化為灰黃色,主要為花崗結(jié)構(gòu),巖體邊部為隱晶質(zhì)結(jié)構(gòu),常見(jiàn)石英與鉀長(zhǎng)石交生形成顯微文象結(jié)構(gòu)(見(jiàn)圖5d),塊狀構(gòu)造。主要礦物為石英(25%~30%)、堿性長(zhǎng)石(55%~60%)、堿性暗色礦物(5%左右),斜長(zhǎng)石含量很少(3%~5%)。

a—堿長(zhǎng)花崗巖中顯微文象結(jié)構(gòu)(+);b—花崗巖中鈉鐵閃石,邊部見(jiàn)棕閃石,堿性長(zhǎng)石為條紋長(zhǎng)石,中見(jiàn)析離條紋,鉀長(zhǎng)石黏土化為褐色(-);c—花崗巖中棕閃石(-);d—花崗巖中鈉鐵閃石,蝕變析離出不透明礦物,但仍可見(jiàn)部分光性特征(-);Rie—鈉質(zhì)角閃石;Bar—棕閃石;Af—堿性長(zhǎng)石;Q—石英圖5 早石炭世晚期堿性花崗巖及堿長(zhǎng)花崗巖結(jié)構(gòu)特征Fig.5 Petrological characteristics of late Early Carboniferous granite

堿性長(zhǎng)石多為半自形—它形,主要由條紋長(zhǎng)石和正長(zhǎng)石組成,以條紋長(zhǎng)石為主,可見(jiàn)析離條紋,部分蝕變較強(qiáng),多發(fā)生高嶺石化(見(jiàn)圖5b)。石英無(wú)色透明,呈它形粒狀填隙狀產(chǎn)出或成顯微文象結(jié)構(gòu)(圖5a)與堿性長(zhǎng)石交生。斜長(zhǎng)石自形程度相對(duì)較高,蝕變較弱,An含量較低,多為更長(zhǎng)石,牌號(hào)An=8~13。堿性暗色礦物常見(jiàn)鈉鐵閃石、棕閃石(見(jiàn)圖5 b、5c)以及黑云母等,往往呈它形填隙狀產(chǎn)出,部分含淺色礦物裹體,暗示堿性花崗巖中鈉鐵閃石結(jié)晶較晚,這與堿性花崗質(zhì)巖漿結(jié)晶實(shí)驗(yàn)巖石學(xué)資料[21]基本一致。此外,在鈉鐵閃石中常常析離出磁鐵礦等不透明礦物(見(jiàn)圖5d),這是由于鈉鐵閃石為富Na、Fe的礦物,Na為易活動(dòng)元素,F(xiàn)e為不易活動(dòng)的元素,因此在后期蝕變過(guò)程中,鈉鐵閃石殘存的Fe形成磁鐵礦等不透明礦物。副礦物為鋯石、榍石、磁鐵礦等。

2 樣品采集和分析方法

本文所采集的樣品主要來(lái)源于剖面PM44和PM45,巖性為堿長(zhǎng)花崗巖,鋯石樣1件(樣號(hào)PM44-4-2,坐標(biāo)為E93°39′32″、N43°10′52″),化學(xué)分析樣13件,同位素樣2件。

主量元素、微量元素和稀土元素測(cè)試由澳實(shí)分析檢測(cè)(廣州)有限公司完成,其中主量元素采用偏硼酸鋰熔融,X熒光光譜(ME-XRF26d)分析;微量、稀土元素采用硼酸鋰熔融消解,等離子質(zhì)譜儀(ME-MS81)定量分析,分析結(jié)果見(jiàn)表1。

表1 南山口堿性花崗巖(44-4)LA-ICP-MS鋯石U-Pb同位素分析結(jié)果

注:TotPb表示鋯石總Pb含量,測(cè)點(diǎn)樣號(hào)省略“PM44-”

鋯石樣品粉碎加工、鋯石的挑選和分選在河北廊坊市誠(chéng)信地質(zhì)服務(wù)公司完成;鋯石制靶在武漢上譜分析科技有限責(zé)任公司完成;陰極發(fā)光顯微照相在中國(guó)地質(zhì)大學(xué)(武漢)采用掃描電鏡完成,加速電壓為15 kV;鋯石U-Pb定年在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室(GPMR)利用LA-ICP-MS完成。激光剝蝕系統(tǒng)為GeoLas 2005,等離子質(zhì)譜儀(ICP-MS)為Agilent 7500a,激光斑束直徑為32 μm,采用He為剝蝕物質(zhì)的載氣,氣流速度為270 mL/min,工作電壓為27.1 kV,激光能量密度為29 J/cm2。實(shí)驗(yàn)以NIST-610,GJ-1外標(biāo)和91500內(nèi)標(biāo)進(jìn)行分析,每分析5~6個(gè)樣品點(diǎn),分析2 次91500進(jìn)行校正。詳細(xì)的儀器操作條件和數(shù)據(jù)處理方法同Liu等[22~23]。U-Pb同位素分析處理采用軟件ICPMS DataCal分析完成,詳細(xì)處理流程和數(shù)據(jù)處理方法見(jiàn)相關(guān)文獻(xiàn)[22~23]。鋯石樣品的U-Pb年齡諧和圖繪制和年齡權(quán)重平均計(jì)算均采用Isoplot 3.71軟件[24]完成,普通鉛校正采用Andersen[25]方法進(jìn)行。

全巖Sr-Nd同位素分析在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室(GPMR)完成。實(shí)驗(yàn)室使用Finnigan的MAT-261熱電離同位素質(zhì)譜儀進(jìn)行測(cè)量,儀器的準(zhǔn)確度通過(guò)標(biāo)樣NBS987和La Jolla國(guó)際標(biāo)樣進(jìn)行監(jiān)測(cè),Sr同位素的質(zhì)量分餾用88Sr/86Sr=8.375209校正,Nd同位素質(zhì)量分餾用146Nd/144Nd=0.721900校正,詳細(xì)流程見(jiàn)相關(guān)文獻(xiàn)[26]。

3 分析結(jié)果

3.1 鋯石U-Pb定年

樣品44-4取自南山口西側(cè)PM44剖面,巖性為堿性花崗巖。用于測(cè)年的單顆粒鋯石均無(wú)色、透明,且鋯石顆粒較大,鋯石CL圖像中尖棱角狀、破碎狀鋯石可能是在制樣過(guò)程中研碎形成,未被破碎的鋯石自形程度良好,多為柱狀。長(zhǎng)寬比在1∶1—2∶1之間,陰極發(fā)光顯示清晰的震蕩環(huán)帶,鋯石繼承核極少(見(jiàn)圖6a)。鋯石Th/U比值均大于0.4,在0.42~0.71之間(見(jiàn)表1),Th含量206×10-6~998×10-6,U含量413×10-6~1628×10-6, Th與U之間具有良好的正相關(guān)關(guān)系,顯示出巖漿鋯石的特點(diǎn)[27~29]。20顆鋯石測(cè)點(diǎn)中有效測(cè)點(diǎn)共13個(gè),其中7個(gè)測(cè)點(diǎn)分析結(jié)果諧和度較低(諧和度8%~84%),不能使用,可能是Pb丟失造成的,其余測(cè)點(diǎn)206Pb/238U鋯石表征年齡在324~336 Ma,變化范圍較窄,年齡較為一致,處在諧和線上和諧和線附近(見(jiàn)圖6b),206Pb/238U加權(quán)平均年齡為331±1.9 Ma(MSWD=0.91),代表了花崗質(zhì)巖漿的結(jié)晶年齡,時(shí)代為早石炭世維憲階晚期。

圖6 南山口西側(cè)堿性花崗巖鋯石 U-Pb年齡諧和圖及CL圖像 Fig.6 U-Pb age concordia plots and CL image from the zircon of alkaline granite in western Nanshankou

3.2 地球化學(xué)分析結(jié)果

3.2.1 主量元素

樣品主量、微量及稀土元素分析結(jié)果見(jiàn)表2。早石炭世晚期巖體巖石類型主要為堿性花崗巖(見(jiàn)圖7a,據(jù)文獻(xiàn)[33])。樣品具有高SiO2(74.4%~79.6%),全堿含量較高(7.44%~8.92%),富鉀,K2O/Na2O在1.15~1.67。在SiO2-K2O圖解(見(jiàn)圖7b,據(jù)文獻(xiàn)[30])中,樣品均投到高鉀鈣堿性區(qū)域,在SiO2-[Na2O+K2O-CaO]圖解(見(jiàn)圖7d,據(jù)文獻(xiàn)[31])中,樣品位于堿鈣質(zhì)與堿性區(qū)域(除樣品44-4-2外)。巖石具有較高的堿性指數(shù)(AI=Na+K/Al,分子比)和Fe/Mg指數(shù)(FeOt/(FeOt+MgO)),低Al2O3(10.60%~12.65%),低MgO(0.05%~0.29%),低CaO(0.09%~0.73%);在A/CNK-A/NK圖解(見(jiàn)圖7c,據(jù)文獻(xiàn)[32])上,落在準(zhǔn)鋁-過(guò)鋁質(zhì)-過(guò)堿性附近,表明早石炭世晚期花崗巖屬于準(zhǔn)鋁質(zhì)至弱過(guò)堿性花崗巖類型。此外,巖石分異指數(shù)(DI)較高,在CIPW標(biāo)準(zhǔn)礦物中,部分樣品出現(xiàn)Ac和Ns,反映出巖石高度演化及富堿的特征,這與巖石中缺乏斜長(zhǎng)石、存在鈉質(zhì)鐵鎂礦物、黑云母富含鐵等礦物學(xué)特征一致。

圖7 哈爾里克山南山口早石炭晚期巖體主量元素特征Fig.7 Major element characteristics of late Early Carboniferous granite in Nanshankou, Harlik

表2 南山口早石炭世晚期侵入巖全巖主量元素(%)、微量元素和稀土元素(10-6)分析結(jié)果

Table 2 Whole-rock major elements and trace elements of late Early Carboniferous granite

元素44-444-644-1344-1744-2044-2544-2844-3144-3445-12-245-12-345-17-345-17-6SiO279.5875.675.275.575.475.574.476.176.375.374.477.175.7TiO20.070.120.180.210.180.180.220.170.200.300.280.120.16Al2O310.6011.7012.2012.1512.2012.3512.6512.4512.3012.4512.5511.5512.15Fe2O3t1.521.752.042.011.941.671.861.611.701.912.061.761.86MnO0.030.030.040.040.030.030.030.020.020.060.050.040.04MgO0.080.090.120.160.150.170.290.170.210.260.230.050.12CaO0.090.610.330.530.550.410.750.370.480.390.310.270.32Na2O3.463.613.863.963.553.863.643.673.673.883.783.803.90K2O3.984.884.874.735.094.714.775.254.844.554.794.694.81P2O50.010.010.010.020.010.010.030.010.020.020.020.010.01LOI0.350.660.250.190.360.270.440.310.510.470.510.180.36FeOt1.371.571.841.811.751.501.671.451.531.721.851.581.67Mg#9.49.210.413.613.316.823.617.319.721.218.15.311.3A/CNK1.040.951.000.960.991.011.011.001.011.041.050.981.00A/NK1.061.041.051.041.071.081.131.061.091.101.101.021.05V102028212825115537202311Cr20101010101020201010101010Ga21.221.321.820.820.521.321.319.320.421.922.123.222.3Rb112.5134.0126.0111.0134.5145.0142.5171.0166.098.4110.5144.0136.0Sr13.920.437.535.253.250.088.541.944.442.551.514.124.8Y41.842.847.641.151.744.148.148.148.773.566.051.049.3Zr207328387388336260.0257235240384385339347Nb11.812.414.511.115.016.414.814.415.125.525.112.617.2Cs0.851.711.241.631.131.240.751.541.901.131.303.242.52Ba35.051.883.8127.0135.0138.5231.0178.5157.0231.0242.033.874.7Hf5.28.09.79.09.28.47.27.17.311.610.79.09.6Ta1.01.11.21.01.41.91.41.31.41.91.71.01.5Th14.8018.0518.9013.0520.5021.9020.2020.7021.5016.7517.4017.0019.20U3.094.314.333.155.545.014.613.063.311.942.263.215.04La42.661.257.143.849.142.650.552.253.252.556.353.144.1Ce89.9129.5125.096.3106.092.8104.5109.0107.5124.5128.5114.094.0Pr10.1514.3013.6510.6511.509.8711.2511.5012.1515.2015.3012.6010.85Nd35.548.447.337.338.833.737.339.441.254.354.745.138.2Sm7.569.289.597.788.157.297.628.288.2811.9011.859.217.82Eu0.170.250.370.520.340.330.540.350.380.850.880.200.33Gd6.447.838.657.177.986.407.117.207.7311.2510.108.497.86Tb0.991.201.321.181.351.121.231.271.252.001.771.411.39Dy6.087.598.507.418.667.257.637.808.0113.4511.859.029.13Ho1.311.601.741.511.831.531.651.731.632.782.331.851.79Er3.934.605.254.475.364.884.694.994.807.786.835.475.79Tm0.600.690.800.650.850.780.750.740.801.110.990.800.86Yb3.995.015.294.525.795.425.075.255.326.956.075.175.81Lu0.610.820.870.730.930.830.760.800.781.020.930.870.92REE209.8292.3285.4224.0246.6214.8240.6250.5253.0305.6308.4267.3228.9δEu0.070.090.120.210.130.150.220.140.150.220.250.070.13(La/Yb)N7.668.767.746.956.085.647.147.137.175.426.657.375.44TZr819847869864853832829821824872873855858

注:樣品號(hào)均省略“PM”;樣品巖性均為堿性花崗巖;Mg#=molar 100×MgO/(MgO+FeOt);A/CNK=Al2O3/(CaO+Na2O+K2O)分子比;A/NK=Al2O3/(Na2O+K2O)分子比;TZr代表使用Watson 和Harrison等公式計(jì)算的溫度,℃

3.2.2 微量及稀土元素

早石炭世晚期堿性花崗巖稀土總量(ΣREE)為209.83×10-6~308.40×10-6,在球粒隕石標(biāo)準(zhǔn)化稀土元素分配圖譜上,顯示輕稀土(LREE)富集的右傾分配特征(見(jiàn)圖8b)。樣品輕重稀土分異指數(shù)(La/Yb)N為5.42~8.76,部分樣品輕重稀土分異指數(shù)較低,可能與巖漿中富集輕稀土的礦物(如褐簾石、獨(dú)居石、磷灰石等)分離結(jié)晶有關(guān)[34]。樣品均呈現(xiàn)出Eu強(qiáng)烈負(fù)異常(0.07~0.24),說(shuō)明發(fā)生明顯的分離結(jié)晶作用或斜長(zhǎng)石殘留。

圖8 南山口早石炭世晚期花崗巖類稀土元素配分曲線[39]及微量元素蛛網(wǎng)圖Fig.8 REE distribution curve and Trace elements spider diagram from the alkaline granite from Nanshankou

微量元素組成上,所有樣品具有相同的分配模式,不同程度富集Rb、K等大離子親石元素(LILE)和U、Th等放射性元素,不同程度虧損Ba、Sr、P等大離子親石元素和強(qiáng)烈虧損Nb、Eu、Ti等元素(見(jiàn)表1、圖8a)。10000 Ga/Al平均值為3.21,明顯高于I型和S型花崗巖的平均值(分別為2.1和2.28,據(jù)Whalen[35])。整體上表現(xiàn)出A型花崗巖巖微量元素的典型特征[34]。

3.2.3 Sr-Nd同位素組成

全巖Sr-Nd同位素分析結(jié)果見(jiàn)表3,同位素參數(shù)計(jì)算年齡采用巖體結(jié)晶年齡。對(duì)于同位素的2個(gè)重要指標(biāo)ISr和TDM,一些學(xué)者對(duì)其使用和解釋進(jìn)行了大量研究。吳福元[2,36]和韓寶福[37]等指出A型花崗巖一般Rb/Sr比值較大,導(dǎo)致計(jì)算的87Rb/86Sr偏大,對(duì)花崗巖ISr的影響也較大,巖石中可能出現(xiàn)ISr<0.7000的情況,因此這類實(shí)際應(yīng)用不大。李獻(xiàn)華等[38]指出,模式年齡一般表示巖石樣品從地幔中分離出來(lái)的時(shí)間,當(dāng)巖石樣品與大陸地殼分餾因子(fSm/Nd)值為-0.4左右時(shí)相差不大;fSm/Nd值處在-0.5到-0.3之間時(shí),使用單階段模式年齡是合適的;與地殼相差較大時(shí),則應(yīng)使用二階模式年齡。

從表3可知,巖石87Rb/86Sr比值為19.16~29.91,ISr值為0.6923~0.7033,其Rb/Sr比值較大,對(duì)初始同位素有較大影響,出現(xiàn)了ISr<0.7000的情況,但其中Rb/Sr較小的堿性花崗巖ISr在0.7033,仍可以視為巖石Sr同位素初始值。巖石Nd同位素特征顯示,εNd(t)值為+5.66~+6.12,一階段模式年齡TDM1=0.60~0.62 Ga,二階段模式年齡TDM2=0.59~0.63 Ga,由于巖石分餾因子fSm/Nd為-0.37~-0.41,處在-0.5~-0.3范圍內(nèi),應(yīng)使用一階段模式年齡,模式年齡TDM1=0.60~0.62 Ga。由于巖石具正的εNd(t)值(+5.66~+6.12)和較小的模式年齡,表明巖石可能來(lái)自年輕地殼。

表3 南山口堿性花崗巖Sr-Nd同位素分析結(jié)果

注:87Rb/86Sr、147Sm/144Nd通過(guò)全巖Rb、Sr、Sm、Nd含量計(jì)算;t采用巖體鋯石年齡;ISr代表87Sr/86Sr初始值,ISr=87Sr/86Sr-87Rb/86Sr×(e0.0142t-1);εNd(t)=[(143Nd/144Nd)(t)/(143Nd/144Nd)CHUR(t)-1]×104;fSm/Nd、TDM1、TDM2計(jì)算見(jiàn)文獻(xiàn)(Li, 2003),參與式中計(jì)算的(143Nd/144Nd)CHUR=0.51263,(147Sm/144Nd)CHUR=0.1967,(143Nd/144Nd)DM=0.51315,(147Sm/144Nd)DM=0.2136;Fx1=(εc1-εr)Ndc1/[εr(Ndm-Ndc1)-(εmNdm-εc1Ndc1)];Fx2=(εc2-εr)Ndc2/[εr(Ndm-Ndc2)-(εmNdm-εc2Ndc2)];Fx1代表幔源組分(以玄武巖為代表)與地殼混合所占的百分含量;Fx2代表幔源組分(以玄武巖為代表)與大洋沉積物混合所占的百分含量;εc1、εc2、εr、εm分別代表地殼、大洋沉積物、所測(cè)巖體、地幔同位素組分;Ndc1、Ndc2、Ndm分別代表地殼、大洋沉積物、地幔中Nd的含量,其中地殼端元(據(jù)文獻(xiàn)[39])εc1=-4,Ndc1=25×10-6;地幔端元以玄武巖為代表(據(jù)文獻(xiàn)[39]),εm=-4,Ndm=15;大洋沉積物擬用現(xiàn)今大西洋大洋沉積物(據(jù)White[40])

4 討論

4.1 巖石成因

目前最常用的花崗巖成因分類方案是MISA分類,即Chappel等[42]在1974提出的I型和S型,加上目前經(jīng)常討論的A型[43]和較為少見(jiàn)的M型[30]。大多數(shù)巖石類型具有不同的礦物組成和地球化學(xué)特征,判別這些巖石的類型比較容易。然而在高分異的情況下,A型花崗巖與I和S型花崗巖具有相同的礦物學(xué)和地球化學(xué)特征[42,44~45],對(duì)這類巖石通常采用鋯石飽和溫度、繼承核、與高分異相關(guān)的偏鐵鎂質(zhì)巖石或者通過(guò)多種地球化學(xué)圖解進(jìn)行判別[35,42,44~47]。

早石炭世晚期堿性花崗巖中見(jiàn)堿性暗色礦物,主要為鈉鐵閃石和棕閃石,表現(xiàn)出明顯的A型花崗巖礦物學(xué)特征。在地球化學(xué)特征上,巖石A/CNK值小于1.1,標(biāo)準(zhǔn)礦物分子出現(xiàn)少量剛玉分子(<1%),P2O5-SiO2顯示出較好的負(fù)相關(guān)性,明顯不同于S型花崗巖[42, 44];微量元素上富集Rb、K、Th等大離子親石元素(LILE)和Zr、Hf等高場(chǎng)強(qiáng)元素而虧損Ba、Sr、Eu等元素,表現(xiàn)為典型的A型花崗巖[34, 43~44, 48]。在A型花崗巖判別圖解(見(jiàn)圖9a、9b)中,堿性花崗巖投點(diǎn)也均落在A型花崗巖區(qū)域,在分異類型花崗巖判別圖解(見(jiàn)圖9c—9f) 中,堿性花崗巖投點(diǎn)均落在A型花崗巖區(qū)域,并未落在高分異花崗巖區(qū)域,表明早石炭世晚期堿性花崗巖為典型的A型花崗巖,且并非高分異型花崗巖。

(a)—(e)底圖據(jù)Whalen等[35];I、S、M和A分別代表I型、S型、M型和A型花崗巖;OGT代表未分異的I、S和M型花崗巖區(qū);FG代表分異I型花崗巖區(qū);(f)底圖據(jù)Sylvester[50]圖9 早石炭晚期花崗巖成因類型判別圖Fig.9 Various chemical discrimination diagram of the late Early Carboniferous granites

同位素研究表明,具有正εNd(t)值的花崗巖主要由以下方式形成:①幔源巖漿演化[1];②花崗巖同期底侵體部分熔融[2];③底侵體之上的年輕地殼部分熔融[2~4]。本區(qū)堿性花崗巖εNd(t)值在+5.16~+6.12間變化,與北疆幔源基性巖漿εNd(t)值(+9)相比明顯偏低[1],暗示巖漿可能來(lái)自于年輕地殼部分熔融。主要依據(jù):①如果正εNd(t)值花崗巖由幔源基性巖漿高度分異,花崗巖周圍應(yīng)出露同期的大量中基性巖石,但本區(qū)很少發(fā)現(xiàn)這類巖石,當(dāng)然也不排除基性巖漿并未剝蝕出露的可能;②構(gòu)造判別圖(見(jiàn)圖10b)中,堿性花崗巖投點(diǎn)落在A2區(qū)域,來(lái)源于大陸地殼或板下地殼,且與陸-陸碰撞或島弧巖漿作用有關(guān)[49];③微量元素蛛網(wǎng)圖中Nb的明顯負(fù)異常無(wú)法使用幔源巖漿結(jié)晶分異過(guò)程得到解釋[37];④堿性花崗巖一階的模式年齡TDM1(0.60~0.62 Ga)接近但明顯低于巖漿侵位結(jié)晶年齡;⑤堿性花崗巖εNd(t)投點(diǎn)落在北疆地區(qū)年輕地殼演化趨勢(shì)[37]內(nèi)(見(jiàn)圖10a),表明巖漿為年輕地殼部分熔融形成;⑥研究區(qū)花崗巖εNd(t)值為+5.16~6.12,遠(yuǎn)高于澳大利亞南部A型花崗巖εNd(t)值(+2.0~-3.0),在玄武巖與地殼兩端元混合模擬計(jì)算中,可知地幔組分變化在87%~90%,而在玄武巖與大洋沉積物兩端元混合模擬計(jì)算中,中基性巖石變化在93%~95%,均反映源區(qū)以地幔組分為主。上述特征表明,堿性花崗巖并非幔源巖漿高度演化,而是來(lái)源于年輕地殼的部分熔融,且該地殼經(jīng)過(guò)一段時(shí)間的演化,成分以地幔組分為主。

圖10 堿性花崗巖源區(qū)同位素特征(據(jù)文獻(xiàn)[37])及A型花崗巖構(gòu)造環(huán)境判別(據(jù)文獻(xiàn)[49])Fig.10 Isotopic characteristics of alkaline granite and tectonic environment discrimination of A-type granite

玄武質(zhì)源巖可以通過(guò)脫水熔融產(chǎn)生中酸性巖漿[51~52],其形成的熔體幾乎全部為奧長(zhǎng)花崗質(zhì)熔體或英云閃長(zhǎng)巖熔體,Na2O/K2O≥1,但是也可在低度部分熔融(<2%~10%)情況下形成花崗質(zhì)熔體,Na2O/K2O比值仍大于1,可知玄武質(zhì)巖漿無(wú)法直接形成Na2O/K2O<1的富鉀質(zhì)花崗巖。本區(qū)堿性花崗巖Na2O/K2O比值(0.70~0.87)明顯小于1,為富鉀質(zhì)花崗巖,表明巖漿無(wú)法直接通過(guò)玄武質(zhì)源巖部分熔融形成,與玄武質(zhì)源巖形成的熔體存在明顯的矛盾。因此,筆者有理由推斷巖漿源區(qū)并非只有中基性玄武質(zhì)源巖,還可能存在另一組分端元。結(jié)合準(zhǔn)噶爾地區(qū)并未發(fā)現(xiàn)具有負(fù)εNd(t)值的花崗巖,表明準(zhǔn)噶爾地區(qū)英云閃長(zhǎng)質(zhì)結(jié)晶基底可能并不存在,即便存在也可能分布有限。因此,筆者認(rèn)為研究區(qū)堿性花崗巖的源區(qū)是以中基性玄武質(zhì)源巖為主,混合少量大洋沉積物。堿性花崗巖投點(diǎn)相對(duì)較為集中,暗示是在中基性巖與大洋沉積物的源區(qū)發(fā)生混合,大洋沉積物富H2O、K、Na等易活動(dòng)元素,為堿性花崗巖提供K、Na等物質(zhì)來(lái)源,而中基性玄武質(zhì)源巖可能是貧水,主要組成為斜長(zhǎng)石和輝石等物質(zhì),含水礦物較少,為巖漿提供主要的物質(zhì)來(lái)源。在伸展作用下,地下熱源使得大洋沉積物析出流體交代中基性玄武質(zhì)源巖,使源區(qū)熔點(diǎn)降低,而形成花崗巖,這一過(guò)程中,形成的酸性巖漿富集K、LILE等不相容元素特征,與富鉀質(zhì)花崗巖類似,經(jīng)過(guò)一定的分離結(jié)晶作用后最終形成堿性花崗巖。

4.2 形成時(shí)代及構(gòu)造意義

A型花崗巖作為一種特殊的巖石類型,往往能夠指示一定的構(gòu)造意義。大量研究表明, A型花崗巖一般形成于后碰撞或板內(nèi)2種構(gòu)造環(huán)境[49, 53]。因此,A型花崗巖對(duì)構(gòu)造背景有一定的指示意義。

區(qū)域花崗巖形成年齡統(tǒng)計(jì)表明,東準(zhǔn)噶爾地區(qū)廣泛發(fā)育的花崗巖形成于距今320~270 Ma[1,54],早石炭花崗巖極少發(fā)育[55];哈爾里克地區(qū)(除哈爾里克西段外)花崗巖形成于距今320~270 Ma,A型花崗巖最早出現(xiàn)的時(shí)間在距今320 Ma[56]。研究區(qū)A型花崗巖出現(xiàn)的時(shí)間在351~330 Ma[20],發(fā)育大量早石炭世花崗巖,與區(qū)域上A型花崗巖的形成時(shí)間存在明顯差異,但與哈爾里克西鄰的博格達(dá)裂谷(裂陷槽)發(fā)育時(shí)間一致,這種獨(dú)特的時(shí)空分布可能與博格達(dá)裂陷槽(裂谷)發(fā)育有關(guān)。

早石炭晚期A型花崗巖與火山弧花崗巖、碰撞后花崗巖和同碰撞花崗巖[64]相差較大(見(jiàn)圖11a),除Ba較低外,其他元素標(biāo)準(zhǔn)化均與板內(nèi)花崗巖(減薄的大陸巖石圈)一致,揭示研究區(qū)早石炭世具有板內(nèi)構(gòu)造環(huán)境特征。在A型花崗巖構(gòu)造判別圖解[49](圖11b)中,本文早石炭世晚期堿性花崗巖落在A2區(qū)域。Eby[49]指出A1類型與OIB類似,形成于板內(nèi)地幔柱或裂谷環(huán)境;A2來(lái)自大陸地殼或板下地殼,形成環(huán)境較為復(fù)雜,可形成于后碰撞、后造山或非造山環(huán)境,表明A2類型花崗可以形成于多種環(huán)境,與板內(nèi)特征并不矛盾。此外,在Pearce[62]花崗巖構(gòu)造判別圖解中,早石炭世堿性花崗巖投點(diǎn)均落在板內(nèi)花崗巖區(qū)域,進(jìn)一步表明研究區(qū)早石炭世晚期處于板內(nèi)環(huán)境。

VAG—火山弧花崗巖;ORG—洋脊花崗巖;WPG—板內(nèi)花崗巖;syn-COLG—同碰撞花崗巖圖11 花崗巖形成環(huán)境判別圖[61~62]Fig.11 Tectonic environment discrimination of granite

區(qū)域地質(zhì)研究表明,哈爾里克山西鄰的博格達(dá)地區(qū)早石炭世處于伸展構(gòu)造背景,多數(shù)學(xué)者認(rèn)為其形成于裂谷環(huán)境[12~15, 17, 57~60],裂谷東段于早石炭世就已開(kāi)始斷離[14],裂離過(guò)程中的火山巖以玄武巖為主,含少量流紋巖,構(gòu)成雙峰式火山巖[15~16,58,60],裂谷盆地強(qiáng)烈沉降,形成深海—半深海環(huán)境,在早石炭世晚期以后裂谷已經(jīng)閉合,區(qū)域海相沉積區(qū)域明顯減少,地層沉積以海退序列沉積為特征[59]。博格達(dá)山與哈爾里克山一脈相連,但博格達(dá)山主要由石炭紀(jì)的火山沉積巖系組成,侵入巖出露較少,而哈爾里克山主要以?shī)W陶紀(jì)的中—細(xì)粒穩(wěn)定陸緣碎屑組合和石炭紀(jì)的火山碎屑巖為主,并且出露大量的深成侵入巖(見(jiàn)圖3)。以前認(rèn)為二者晚古生代構(gòu)造背景不同,但是據(jù)近年來(lái)的高精度同位素資料[10,55~56],二者具大體相同的巖漿活動(dòng)歷史,它們的區(qū)域背景也完全相同。因此,造成上述差別的主要原因可能是由于后期構(gòu)造變動(dòng)改造[5]。本文A型花崗巖形成時(shí)代與博格達(dá)東段裂谷伸展時(shí)間也大體一致,處于裂谷伸展晚期,進(jìn)一步表明研究區(qū)早石炭世晚期的堿性花崗巖構(gòu)造環(huán)境可能與博格達(dá)裂谷有關(guān),并非前人所說(shuō)的后碰撞和島弧環(huán)境。

5 結(jié)論

哈爾里克早石炭世晚期堿性花崗巖主要為堿長(zhǎng)花崗巖和堿性花崗巖,暗色礦物以黑云母為主,見(jiàn)鈉質(zhì)角閃石,屬于準(zhǔn)鋁質(zhì)—過(guò)鋁質(zhì)高鉀鈣堿性系列。巖石地球化學(xué)特征顯示其巖漿主要來(lái)源于新生造山帶下部的年輕地殼。

哈爾里克早石炭世晚期堿性花崗巖的鋯石加權(quán)平均年齡為331±1.9 Ma,巖石地球化學(xué)顯示其具有板內(nèi)花崗巖的構(gòu)造屬性,與前人認(rèn)為哈爾里克地區(qū)石炭紀(jì)屬島弧環(huán)境觀點(diǎn)不同,對(duì)哈爾里克地區(qū)早石炭世構(gòu)造環(huán)境屬裂谷環(huán)境提出了新的證據(jù)。

[1] 韓寶福,何國(guó)琦,王式?jīng)?,? 新疆北部后碰撞幔源巖漿活動(dòng)與陸殼縱向生長(zhǎng)[J]. 地質(zhì)論評(píng),1998,44(4): 396~404.

HAN Bao-fu, HE Guo-qi, WANG Shi-guang, et al. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xin jiang[J]. Geological Review, 1998, 44(4): 396~404.

[2] WU F, SUN D, LI H, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143~173.

[3] WU F, JAHN B, WILDE S, et al. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1/2): 89~113.

[4] JAHN B, WU F, CAPDEVILA R, et al. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59(4): 171~198.

[5] 王宗秀. 博格達(dá)山鏈的造山活動(dòng)與山體形成演化[D]. 北京:中國(guó)地震局地質(zhì)研究所, 2003.

WANG Zong-xiu. Orogeny, Formation and evolution in the Bogeda Mountain Chains,Northwestern China[D] Beijing: Institute of Geology, Seismological Bureau of China,2003.

[6] XIAO W J. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370~395.

[7] 李錦軼,何國(guó)琦,徐新,等. 新疆北部及鄰區(qū)地殼構(gòu)造格架及其形成過(guò)程的初步探討[J]. 地質(zhì)學(xué)報(bào), 2006, 80(1): 148~168.

LI Jin-yi, HE Guo-qi, XU Xin, et al. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica, 2006, 80(1): 148~168.

[8] 李錦軼,張進(jìn),楊天南,等. 北亞造山區(qū)南部及其毗鄰地區(qū)地殼構(gòu)造分區(qū)與構(gòu)造演化[J]. 吉林大學(xué)學(xué)報(bào): 地球科學(xué)版, 2009, 39(4): 584~605.

LI Jin-yi, ZHANG Jin, YANG Tian-nan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(4): 584~605.

[9] 孫桂華. 新疆哈爾里克山古生代以來(lái)構(gòu)造變形及構(gòu)造演化[D]. 北京:中國(guó)地質(zhì)科學(xué)院, 2007.

SUN Gui-hua. Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang since the Paleozoic[D]. Beijing: Chinese Academy of Geological Sciences, 2007.

[10] 王京彬,徐新. 新疆北部后碰撞構(gòu)造演化與成礦[J]. 地質(zhì)學(xué)報(bào), 2006, 80(1): 23~31.

WANG Jing-bin, XU Xin, et al. Post-collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1): 23~31.

[11] 夏林圻,夏祖春,徐學(xué)義,等. 天山古生代洋陸轉(zhuǎn)化特點(diǎn)的幾點(diǎn)思考[J]. 西北地質(zhì), 2002, 35(4): 9~20.

XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Some thoughts on the characteristics of Paleozoic ocean-continent transition from Tian shan mountoins[J]. Northwestern Geology, 2002, 35(4): 9~20.

[12] 夏林圻,夏祖春,徐學(xué)義,等. 天山及鄰區(qū)石炭紀(jì)—早二疊世裂谷火山巖巖石成因[J]. 西北地質(zhì), 2008, 41(4): 1~68.

XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 41(4): 1~68.

[13] 夏林圻,李向民,夏祖春,等. 天山石炭—二疊紀(jì)大火成巖省裂谷火山作用與地幔柱[J]. 西北地質(zhì), 2006, 39(1): 1~49.

XIA Lin-qi, LI Xiang-min, XIA Zu-chun, XU Xue-yi, et al. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tian shan, Northwestern China[J]. Northwestern Geology, 2006, 39(1): 1~49.

[14] 顧連興,胡受奚,于春水,等. 論博格達(dá)俯沖撕裂型裂谷的形成與演化[J]. 巖石學(xué)報(bào), 2001, 17(4): 585~597.

GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Initiation and evolution of the Bogda subduction-torn-type rift[J]. Acta Petrologica Sinica, 2001, 17(4): 585~597.

[15] 王銀喜,顧連興,張遵忠,等. 博格達(dá)裂谷雙峰式火山巖地質(zhì)年代學(xué)與Nd-Sr-Pb同位素地球化學(xué)特征[J]. 巖石學(xué)報(bào), 2006, 22(5): 1215~1224.

WANG Yin-xi, GU Lian-xing, ZHANG Zun-zhong, et al. Geochronology and Nd-Sr-Pb isotope of the bimodal volcanic rocks of the Bogda rift[J]. Acta Petrologica Sinica, 2006, 22(5): 1215~1224.

[16] 顧連興,胡受奚,于春水,等. 東天山博格達(dá)造山帶石炭紀(jì)火山巖及其形成地質(zhì)環(huán)境[J]. 巖石學(xué)報(bào), 2000,16(3): 305~316.

GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Carbonif erous volcanites in the Bogda orogenic belt of eastern Tianshan: their tectonic implications[J]. Acta Petrologica Sinica, 2000, 16(3): 305~316.

[17] 李錦軼,王克卓,孫桂華,等. 東天山吐哈盆地南緣古生代活動(dòng)陸緣殘片:中亞地區(qū)古亞洲洋板塊俯沖的地質(zhì)記錄[J]. 巖石學(xué)報(bào), 2006, 22(5): 1087~1102.

LI Jin-yi, WANG Ke-zhuo, SUN Gui-hua, et al. Paleozoie active margin slices in the southern Turfan-Hami basin:geologlcal records of subduction of the Paleo-Asian Ocean Plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5): 1087~1102.

[18] XIAO W, HAN C, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/4): 102~117.

[19] JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 2004, 226(1): 73~100.

[20] 新疆省地質(zhì)礦產(chǎn)局.中華人民共和國(guó)區(qū)域地質(zhì)調(diào)查報(bào)告——口門(mén)子(K46E005015)幅(1:5萬(wàn)).2016.

[21] Creaser R A,楊庚. A型花崗巖回顧——對(duì)殘留源區(qū)模式的評(píng)價(jià)[J]. 地質(zhì)科學(xué)譯叢, 1992, (1): 21~26.

[22] LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535~1546.

[23] LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34~43.

[24] LUDWIG K R. Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 631~656.

[25] ANDERSEN T. Correction of common lead in U-Pb analyses that do not report204Pb[J]. Chemical Geology, 2002, 192(1/2): 59~79.

[26] GAO S, RUDNICK R L, YUAN H, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892~897.

[27] HOSKIN P W O, BLACK L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4): 423~439.

[28] HOSKIN P W O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27~62.

[29] 吳元保,鄭永飛. 鋯石成因礦物學(xué)研究及其對(duì)U-Pb年齡解釋的制約[J]. 科學(xué)通報(bào), 2004, 49(16): 1589~1604.

WU Yuan-bao, ZHENG Yong-fei, et al. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Science Bulletin, 2004, 49(15):1589~1604.

[30] 路風(fēng)香,桑隆康. 巖石學(xué)[M]. 北京:地質(zhì)出版社,2007.

LU Feng-xiang, SANG Long-kang. Petrology[M]. Beijing: Geological Publishing House, 2007.

[31] FROST C D, FROST B R. On ferroan (A-type) granitoids: Their compositional variability and modes of origin[J]. Journal of Petrology, 2010, 52(1): 39~53.

[32] SHAND S J. Eruptive rocks[M]. Murby London, 1927.

[33] De la ROCHE H, LETERRIER J, GRANDCLAUDE P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses: Its relationships with current nomenclature[J]. Chemical Geology, 1980, 29(1/4): 183~210.

[34] 蘇玉平,唐紅峰. A型花崗巖的微量元素地球化學(xué)[J]. 礦物巖石地球化學(xué)通報(bào), 2005, 24(3): 245~251.

SU Yu-ping, TANG Hong-feng, et al. Trace Element Geochemistry of A-Type Granites[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3): 245~251.

[35] WHALEN J B. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contrib Mineral Petrol, 1987, 95(4): 407~419.

[36] WU F, SUN D, GE W, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1~30.

[37] HAN B, WANG S, JAHN B, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4): 135~159.

[38] 李獻(xiàn)華. Sm-Nd模式年齡和等時(shí)線年齡的適用性與局限性[J]. 地質(zhì)科學(xué), 1996, 31(1): 97~104.

LI Xian-hua. Li X H,A discussion on the model and isochron ages of Sm-Nd isotopic systematics:Suitability and limitation[J].Scientia Geologica Sinica, 1996, 31(1): 97~104.

[39] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313~345.

[40] JAHN B, WU F, HONG D. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia[J]. Journal of Earth System Science, 2000, 109(1): 5~20.

[41] WHITE W M, DUPRé B, VIDAL P. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1875~1886.

[42] WHITE B W C A. I- and S-type granites in the Lachlan Fold Belt[J]. GSA Special Papers, 1992, 272: 1~26.

[43] LOISELLE M C W D R. Characteristics and origin of anorogenic granites[J]. California: San Diego, 1979: 468.

[44] 吳福元,李獻(xiàn)華,楊進(jìn)輝,等. 花崗巖成因研究的若干問(wèn)題[J]. 巖石學(xué)報(bào), 2007, 23(6): 1217~1238.

WU Fu-yuan, LI Xian-hua, YANG Jin-hui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217~1238.

[45] CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535~551.

[46] 李小偉,莫宣學(xué),趙志丹,等. 關(guān)于A型花崗巖判別過(guò)程中若干問(wèn)題的討論[J]. 地質(zhì)通報(bào), 2010, (Z1): 278~285.

LI Xiao-wei, MO Xuan-xue, ZHAO Zhi-dan, et al. A discussion on how to discriminate A-type granite[J]. Geological Bulletin of China, 2010, (Z1): 278~285.

[47] KING P L. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371~391.

[48] 顧連興. A型花崗巖的特征、成因及成礦[J]. 地質(zhì)科技情報(bào), 1990, (1): 25~31.

GU Lian-xing. Geological features, petrogenesis and metallogeny of A-type granites[J]. Geological Science and Technology Information, 1990, (1): 25~31.

[49] EBY N G. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 7 (20): 641~644.

[50] SYLVESTER P J. Post-Collisional Alkaline Granites[J]. The Journal of Geology, 1989, 97(3): 261~280.

[51] 劉紅濤,孫世華,劉建明,等. 華北克拉通北緣中生代高鍶花崗巖類:地球化學(xué)與源區(qū)性質(zhì)[J]. 巖石學(xué)報(bào), 2002, 18(3): 257~274.

LlU Hong-tao, SUN Shi-hua,LlU Jian-ming, et al. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton geochemistry and source region[J]. Acta Petrologica Sinica, 2002, 18(3): 257~274.

[52] 賈小輝,王強(qiáng),唐功建. A型花崗巖的研究進(jìn)展及意義[J]. 大地構(gòu)造與成礦學(xué), 2009, 33(3): 465~480.

JIA Xiao-hui, WANG Qian, TANG Gong-jian, et al. A-type granites: Research progress and implications[J]. Geotectonica et Metallogenia, 2009, 33(3): 465~480.

[53] BONIN B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1~29.

[54] 童英,王濤,洪大衛(wèi),等. 北疆及鄰區(qū)石炭-二疊紀(jì)花崗巖時(shí)空分布特征及其構(gòu)造意義[J]. 巖石礦物學(xué)雜志, 2010, 29(6): 619~641.

TONG Ying, WANG Tao, HONG Da-wei, et al. Spatial and temporal distribution of the Carboniferous-Permian granitoidsin northern Xinjiang and its adjacent areas, and its tectonic significance [J]. Acta Petrologica Et Mineralogica, 2010, 29(6): 619~641.

[55] 田健. 東準(zhǔn)噶爾卡拉麥里地區(qū)早石炭世侵入巖的巖石學(xué)特征及其地質(zhì)意義[D]. 武漢:中國(guó)地質(zhì)大學(xué), 2014.

TIAN Jian. The petrologic characteristics and tectonic implications for Early Carboniferous intrusions from the area of Karamaili in eastern Junggar[D]. Wuhan: China University of Geosciences, 2014.

[56] 黃偉. 東天山哈密地區(qū)石炭—二疊紀(jì)堿性花崗巖年代學(xué)、地球化學(xué)及成因[D]. 北京: 中國(guó)地質(zhì)大學(xué), 2014.

HUANG Wei. Geochoronology, Geochemistry and Origin of Carboniferous-Permian Alkali Granites inEastern Tianshan Hami, NW China[D]. Beijing: China University of Geosciences,2014.

[57] 鄭建平,王方正,成中梅,等. 拼合的準(zhǔn)噶爾盆地基底:基底火山巖Sr-Nd同位素證據(jù)[J]. 地球科學(xué). 2000(02): 179~185.

ZHENG Jian-ping, WANG Fang-zheng, CHENG Zhong-mei, et al. Nature and evolution of amalgamated basement of Junggar Basin, northwestern China: Sr-Nd isotope evidences of basement igneous rock[J]. Earth Science. 2000(02): 179~185.

[58] 田黎萍,王金榮,湯中立,等. 新疆博格達(dá)山東段早石炭世火山巖地球化學(xué)特征及其構(gòu)造意義[J]. 蘭州大學(xué)學(xué)報(bào):自然科學(xué)版, 2010, 46(4): 30~36.

TIAN Li-ping, WANG Jin-rong, TANG Zhong-li, et al. Geochemical characteristic and tectonic significance of the early carboniferous volcanic rocks in eastern Bogda mountains of Xinjiang region[J]. Journal of Lanzhou University: Natural Science, 2010, 46(4): 30~36.

[59] 易鵬飛. 東天山博格達(dá)—巴里坤塔格石炭紀(jì)—早二疊世陸內(nèi)裂谷演化特征[D]. 西安:長(zhǎng)安大學(xué), 2013.

YI Peng-fei. Evolution characteristics of Bogda-Balkun intracontinental rift in Carboniferous- Early Permian[D]. Xi’an: Chang'an University, 2013.

[60] 王銀喜,顧連興,張遵忠,等. 東天山晚石炭世大石頭群流紋巖Sr-Nd-Pb同位素地球化學(xué)研究[J]. 巖石學(xué)報(bào), 2007, 23(7): 1749~1755.

WANG Yin-xi,GU Lian-xing,ZHANG Zun-zhi, et al. Sr-Nd-Pb isotope geochemistry of Rhyolite of the Late Carboniferous Dashitou group in eastern Tianshan[J]. Acta Petrologica Sinica, 2007, 23(7): 1749~1755.

[61] 張旗,潘國(guó)強(qiáng),李承東,等. 花崗巖構(gòu)造環(huán)境問(wèn)題:關(guān)于花崗巖研究的思考之三[J]. 巖石學(xué)報(bào), 2007, 23(11): 2683~2698.

ZHANG Qi, PAN Guoqiang, Li Chengdong, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3) [J]. Acta Petrologica Sinica, 2007, 23(11): 2683~2698.

[62] PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications. 1984, 16(1): 77~94.

PETROGENESIS AND TECTONIC SIGNIFICANCE OF EARLY CARBONIFEROUS A-TYPE GRAINTE IN HARLIK, XINJIANG

WANG Liang-yu1,2, LIAO Qun-an1, XIAO Dian1,3, LUO Ting1,ZHAO Hao1, LIU Hong-fei1, WANG Guo-can1

(1.SchoolofEarthSciences,ChinaUniversityofGeosciences,Wuhan430074,China;2.No.243GeologicalPartyofNuclearIndustry,CNNC,Chifeng024006,InnerMongolia,China;3.SichuanGeologicalSurvey,Chengdu610081,China)

The alkali-feldspar granite is located at the area of Nanshankou, western part of the Harlik Mountain. Its LA-ICP-MS zircon U-Pb age is 331.3±1.9 Ma. Therefore, the granite is formed in the late stage of Early Carboniferous. The dark minerals in the rock are mainly biotite, with litte Na amphibolite. This type of granite is riched in alkali elements, poor in calsium, magnesium, and has low content of aluminum and iron oxide. The rock is riched in large ion lithosphile elements, such as Rb, Th and K. It has abundant HFSE elements and depleted in Ba, Sr and Eu. The 10000 Ga/Al value is varied from 2.93~3.80. It indicates that the rock is A-type granite, formed in intraplate tectonic settings, instead of the previous island arc environment. Its εNd(t) values range from 5.66 to 6.12, the Nd model ages are 600~620 Ma. It tells that the magma may originate from the young crust. Based on the results of the 1∶50000 regional geological survey, the Bogada rift was extended during Early Carboniferous, and closed at the late stage of Early Carboniferous. The Late Early Carboniferous alkali-feldspar granites should formed in the rift environment, instead of coming from the previous post-collisional or arc tectonic setting.

A-type granites; late Early Carboniferous; rift; Harlik

1006-6616(2016)04-1032-17

2016-09-15

中國(guó)地質(zhì)調(diào)查局“特殊地質(zhì)地貌區(qū)填圖試點(diǎn)”項(xiàng)目(DD20160060;12120114042801)

王良玉(1990-),男,碩士,礦物學(xué)、巖石學(xué)、礦床學(xué)專業(yè)。E-mail:532434457@qq.com

廖群安(1959-),男,博士,教授,主要從事巖石學(xué)及巖石地球化學(xué)研究。E-mail:qanliao@cug.edu.cn

P588.1;P597

A

猜你喜歡
石炭世哈爾鋯石
什么,為什么,怎么樣?
新疆伊吾縣北晚石炭世侵入巖地球化學(xué)特征、鋯石U-Pb年齡及其后碰撞構(gòu)造環(huán)境的確定
俄成功試射“鋯石”高超音速巡航導(dǎo)彈
軍事文摘(2020年24期)2020-02-06 05:56:36
青海省半沙山地區(qū)早石炭世侵入巖地球化學(xué)特征及其地質(zhì)意義
不要盲目答應(yīng)
內(nèi)蒙古蘇尼特左旗白音烏拉地區(qū)晚石炭世花崗閃長(zhǎng)巖地球化學(xué)特征及地質(zhì)意義
西部資源(2017年1期)2017-03-27 21:51:37
東天山七角井大向斜外圍塔克爾巴斯陶組化石新發(fā)現(xiàn)和地質(zhì)意義
紅鋯石
鋯石微區(qū)原位U-Pb定年的測(cè)定位置選擇方法
杰克·吉倫哈爾比弗利山莊不夠味
電影故事(2015年29期)2015-02-27 09:02:50
新邵县| 吉木萨尔县| 大姚县| 台北市| 遵义县| 嘉定区| 班戈县| 包头市| 温州市| 嘉黎县| 永年县| 阿尔山市| 遂宁市| 罗江县| 桑日县| 温泉县| 镇康县| 江门市| 义乌市| 满城县| 祁东县| 安丘市| 长春市| 屏东县| 洛南县| 东源县| 闸北区| 礼泉县| 漳州市| 松江区| 姚安县| 庆安县| 富蕴县| 翁牛特旗| 景谷| 肃宁县| 宁国市| 安图县| 广平县| 大姚县| 毕节市|