国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

對(duì)蝦白斑綜合征病毒免疫防治研究進(jìn)展

2016-03-04 08:31:56何培民郭媛媛賈曉會(huì)施定基莊旻敏
海洋漁業(yè) 2016年4期
關(guān)鍵詞:凡納濱白斑對(duì)蝦

何培民,郭媛媛,賈曉會(huì),施定基,2,莊旻敏,何 玲,賈 睿

(1.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306;2.中國(guó)科學(xué)院植物研究所,北京 100093)

對(duì)蝦白斑綜合征病毒免疫防治研究進(jìn)展

何培民1,郭媛媛1,賈曉會(huì)1,施定基1,2,莊旻敏1,何 玲1,賈 睿1

(1.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306;2.中國(guó)科學(xué)院植物研究所,北京 100093)

對(duì)蝦白斑綜合征病毒(white spot syndrome virus,WSSV)是一種引起養(yǎng)殖對(duì)蝦爆發(fā)性死亡的病毒,由于它宿主范圍廣、蔓延速度快以及致死率高,已經(jīng)成為對(duì)蝦養(yǎng)殖中的第一殺手,因此有效防治WSSV爆發(fā)在水產(chǎn)養(yǎng)殖中具有重要意義并極具挑戰(zhàn)性。本文主要介紹WSSV基因組以及結(jié)構(gòu)蛋白、對(duì)蝦WSSV免疫機(jī)制、對(duì)蝦WSSV疫苗研究進(jìn)展,以及我國(guó)對(duì)蝦養(yǎng)殖中WSSV防治措施,認(rèn)為對(duì)蝦WSSV疫苗將是今后對(duì)蝦大規(guī)模養(yǎng)殖中病害防治的一種重要手段。

白斑綜合征病毒(WSSV);對(duì)蝦;疫苗;防治進(jìn)展

對(duì)蝦白斑綜合征病毒(white spot syndrome virus,WSSU)是迄今對(duì)蝦養(yǎng)殖業(yè)危害最大的一種病毒[1]。該病毒分布范圍廣泛,自1992年WSSV首次在中國(guó)臺(tái)北對(duì)蝦養(yǎng)殖場(chǎng)中發(fā)現(xiàn)后,隨后,很快分別在中國(guó)大陸、韓國(guó)、日本、泰國(guó)、印度等幾乎整個(gè)亞洲地區(qū)的國(guó)家均發(fā)現(xiàn)了此病毒[2-4],如今已傳播到中東、歐洲、美國(guó)、中美洲和南美洲[5]。WSSV傳染能力極強(qiáng),致死率高,不僅感染對(duì)蝦,還可能感染克氏原鰲蝦(Procambarus clarkii)、中華絨螯蟹(Eriocheir sinensis)等淡水和海水甲殼類(lèi)動(dòng)物[6-8]。對(duì)蝦感染W(wǎng)SSV后,7~10 d死亡率可達(dá)100%。國(guó)際獸醫(yī)局(OIE)、聯(lián)合國(guó)糧農(nóng)組織(FAO)以及亞太地區(qū)水產(chǎn)養(yǎng)殖發(fā)展網(wǎng)絡(luò)中心(NACA)在20世紀(jì)90年代已將白斑綜合征列為需要報(bào)告的嚴(yán)重水生動(dòng)物病毒性疫病之一。20多年來(lái),國(guó)內(nèi)外學(xué)者對(duì)WSSV的傳播途徑進(jìn)行了大量研究,發(fā)現(xiàn)白斑綜合征病毒主要有3種傳播途徑:水平傳播[9](相同個(gè)體之間通過(guò)直接接觸傳播)、垂直傳播[10](通過(guò)感染的親代傳給子代)和種間傳播[11]。有研究表明口和消化道是宿主感染W(wǎng)SSV的主要途徑[8]。目前,對(duì)蝦生產(chǎn)上均采用養(yǎng)殖抗病力強(qiáng)的種類(lèi)及切斷WSSV傳播途徑等方法防止WSSV病害傳播。同時(shí),多年來(lái)國(guó)內(nèi)外許多學(xué)者試圖應(yīng)用免疫技術(shù)對(duì)對(duì)蝦白斑綜合征病毒進(jìn)行防治。本文就WSSV免疫防治研究新進(jìn)展進(jìn)行綜述,以期為今后有效防控WSSV提供參考。

1 對(duì)蝦白斑綜合征病毒基因組

WSSV是新設(shè)立的線極病毒科(Nimaviridae)白斑病毒屬(Whispovirus)的唯一種,為具有囊膜的環(huán)狀dsDNA病毒,大約300 kb[12]。目前Genbank中已經(jīng)公布了3株WSSV分離株的基因組序列,分別是中國(guó)大陸株(WSSV-CN,AF-332093[13])、中國(guó)臺(tái)灣株(WSSV-TW,AF440570[14]和泰國(guó)株(WSSV-TH,AF-369029[15])。其中,中國(guó)大陸株基因組為305107 bp[13],含531個(gè)ORF,已確定181個(gè)ORF可編碼功能蛋白,其基因組3%與其它物種ORF同源,97%為WSSV特征ORF(圖1);中國(guó)臺(tái)灣株基因組最大,全長(zhǎng)307 287 bp[14];泰國(guó)株基因組為292 967 bp[15],具有184個(gè)ORF,其中6%與其它物種ORF同源,94%為WSSV特征ORF。泰國(guó)株與中國(guó)大陸株99%序列同源,僅泰國(guó)株[15]缺失了1個(gè)12 kb片段;中國(guó)臺(tái)灣株比泰國(guó)株全序列[15]多出14 kb,與中國(guó)大陸株基因組序列一樣,比泰國(guó)株多出的序列均位于同一位置(即31 135 bp處),其余序列基本一致。國(guó)際分類(lèi)委員會(huì)(ICTV)已把中國(guó)大陸株列為該屬代表株系[11]。

2 對(duì)蝦白斑綜合征病毒結(jié)構(gòu)蛋白

隨著3株WSSV分離株的全基因組序列測(cè)定完成以及蛋白組學(xué)迅猛發(fā)展,WSSV結(jié)構(gòu)蛋白研究逐漸深入。WSSV結(jié)構(gòu)蛋白在病毒吸附、入侵宿主、包裝、釋放等過(guò)程中發(fā)揮著重要作用[16]。病毒的結(jié)構(gòu)蛋白主要包括囊膜蛋白和核衣殼[17],已經(jīng)確定的WSSV結(jié)構(gòu)蛋白至少有62種[18],包括VP26、VP28、VP24、VP19、VP15、VP51、VP60、VP136和VP37等[19],其中VP28和VP19為囊膜蛋白,VP15、VP24、VP136和VP60等為核衣殼蛋白,VP26蛋白則定位于被膜結(jié)構(gòu)中[20],且VP28和VP26占據(jù)整個(gè)囊膜的60%[21]。

VP28由wsv421編碼,為對(duì)蝦白斑綜合征病毒囊膜上含量最高的一種結(jié)構(gòu)蛋白。研究表明VP28在WSSV感染對(duì)蝦的開(kāi)始階段起著關(guān)鍵作用[12]。VP28作為病毒結(jié)合蛋白與對(duì)蝦細(xì)胞結(jié)合,幫助病毒進(jìn)入對(duì)蝦細(xì)胞內(nèi)[22]。有研究認(rèn)為VP28可能具有識(shí)別對(duì)蝦表面受體一些蛋白糖基化位點(diǎn)的作用[23]。

圖1 WSSV中國(guó)大陸株基因組[13]Fig.1 Isolated genome of WSSV[13]by China

VP26由wsv311編碼,是含量很高的主要結(jié)構(gòu)蛋白之一。2001年,VAN HULTEN等[24]最早用western-blot實(shí)驗(yàn)表明VP26為核衣殼蛋白,但2年后,ZHANG等[25]通過(guò)免疫膠體金電鏡觀察發(fā)現(xiàn)VP26定位在WSSV囊膜蛋白上,與VAN HULTEN等結(jié)論完全相反。TSAI等[26]通過(guò)免疫電鏡觀察膠體金顆粒,得出VP26不同于囊膜蛋白和核衣殼蛋白,是位于一個(gè)介于病毒囊膜蛋白和核衣殼之間的核膜結(jié)構(gòu)層,且XIE等[27]發(fā)現(xiàn)VP26分別能與宿主actin和VP28發(fā)生相互作用,因此認(rèn)為該蛋白為囊膜與核衣殼之間的連接蛋白。

VP24由wsv002編碼,為主要結(jié)構(gòu)蛋白且含量很高[28],在病毒包膜復(fù)合物形成過(guò)程中起著重要的作用[29]。VP26、VP24與VP28屬同一基因家族,且為同源蛋白,它們可能是基因復(fù)制后根據(jù)不同的功能分化為不同的蛋白[25]。

3 對(duì)蝦白斑綜合征病毒免疫應(yīng)答爭(zhēng)議

對(duì)蝦作為無(wú)脊椎動(dòng)物,其抵抗外界病原體的免疫機(jī)制存在爭(zhēng)議。長(zhǎng)期以來(lái),學(xué)者們認(rèn)為無(wú)脊椎動(dòng)物不存在后天適應(yīng)形成的專(zhuān)一性免疫能力,它們的免疫機(jī)制主要是依靠非特異性免疫。1985年,RATCLIFFE等[30]報(bào)道以細(xì)胞為基礎(chǔ)而建立起來(lái)的無(wú)脊椎動(dòng)物天然免疫系統(tǒng)非常完善。2002年,HOFFMANN等[31]也指出無(wú)脊椎動(dòng)物缺乏真正的適應(yīng)性免疫性,僅依靠先天的免疫。一般認(rèn)為,包括對(duì)蝦在內(nèi)的甲殼類(lèi)動(dòng)物在應(yīng)對(duì)病原體入侵的先天免疫系統(tǒng)包括體液免疫和細(xì)胞免疫[32-33]。細(xì)胞免疫包括吞噬作用、結(jié)節(jié)形成以及整合素介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)[29],而體液免疫包括proPo級(jí)聯(lián)反應(yīng)、凝血反應(yīng)、抗菌肽(AMPs)、凝集素、唐氏綜合癥細(xì)胞粘附分子(Dscam)、Toll和IMD通路[28],這些分子直接或間接觸發(fā)一系列防御反應(yīng)。

目前國(guó)內(nèi)外學(xué)者已研制出對(duì)蝦各種疫苗(抗WSSV核酸藥物等[34])和植物提取物有效成份等[35],對(duì)于抵抗病毒具有一定療效。這些研究表明特異性免疫在對(duì)蝦防御機(jī)制中具有重要作用。VENEGAS等[36]研究表明日本囊對(duì)蝦(Marsupenaeus japonicus)在自然或?qū)嶒?yàn)感染W(wǎng)SSV后存在類(lèi)免疫反應(yīng)。2013年LIN等[37]認(rèn)為蝦可能有特定的記憶性,讓蝦初次暴露在高溫殺死的溶藻弧菌或福爾馬林耐受的溶藻弧菌后,再讓蝦暴露在活的溶藻弧菌中,結(jié)果顯示免疫參數(shù)均有較大提高。此外,POPE等[38]將耐受福爾馬林的哈氏弧菌注射進(jìn)對(duì)蝦血腔,第7天收集對(duì)蝦血細(xì)胞,并與哈氏弧菌、革蘭氏陽(yáng)性菌枯草芽孢桿菌共同培養(yǎng),結(jié)果顯示血細(xì)胞吞噬哈氏弧菌活性明顯增強(qiáng),表明對(duì)蝦體內(nèi)存在特定的免疫記憶能力,可以抵抗外界病原體入侵。本實(shí)驗(yàn)室研究也表明,將轉(zhuǎn)入VP28基因并獲得表達(dá)的藍(lán)藻喂養(yǎng)對(duì)蝦幼苗,可以明顯提高幼苗存活率[39]。

同時(shí),抗體作為特異性免疫的重要成分雖未在對(duì)蝦體內(nèi)鑒定到,但抗體研究已取得一定進(jìn)展。SHIH等[40]獲得了能夠識(shí)別WSSV的VP28和VP19的兩種單克隆抗體(MAbs)6E1和3E8,MAb 6E1和病毒濾液的混合物接種于從凡納濱對(duì)蝦(Litopenaeus vannamei)的淋巴器官(Oka器官)中得到的主要外植體單層培養(yǎng)物上。細(xì)胞病的阻斷顯示MAb很可能中和了病毒對(duì)單層細(xì)胞的感染。將中和病毒液注射進(jìn)凡納濱對(duì)蝦蝦苗,攻毒后陽(yáng)性對(duì)照組在第34天100%死亡,陰性對(duì)照組沒(méi)有死亡,而死亡率6E1是6.7%、3E8是13.3%。綜合這些體內(nèi)和體外實(shí)驗(yàn)表明,MAbs能識(shí)別WSSV包膜蛋白,它們對(duì)這種病毒具有中和作用。

4 對(duì)蝦白斑綜合征病毒免疫學(xué)防治

4.1 利用免疫因子增強(qiáng)對(duì)蝦先天免疫能力

蝦的先天免疫系統(tǒng)通過(guò)模式識(shí)別受體(PRRs)識(shí)別病原相關(guān)分子模式(PAMPs)而激活,此識(shí)別過(guò)程可直接或間接地觸發(fā)一系列的防御反應(yīng)以減少病原體的入侵[41-42],包括免疫識(shí)別、信號(hào)轉(zhuǎn)導(dǎo)和效應(yīng)物的產(chǎn)生[43]。相建海等[33]報(bào)道的TLRs(Toll-like receptors)是一類(lèi)在先天免疫系統(tǒng)中起重要作用的蛋白,Toll信號(hào)途徑通過(guò)調(diào)節(jié)很多套基因在應(yīng)對(duì)革蘭氏陽(yáng)性菌和真菌中起關(guān)鍵作用。果蠅中的Toll通路典型成分包括Sp?tzle、Toll、Pelle、Tube、MyD88、Cactus、Dorsal、Dorsal-related immunity factor(DIF)[44]。對(duì)蝦中也已發(fā)現(xiàn)了Dorsal同系物,包括FcDorsal和LvDorsal,且已克隆到中國(guó)明對(duì)蝦(Penaeus chinensis)的Cactus和MyD88的cDNA序列[45],可見(jiàn)對(duì)蝦中存在Toll通路。

衣啟麟等[46]以海洋無(wú)脊椎動(dòng)物為研究對(duì)象,分離鑒定參與免疫識(shí)別、免疫信號(hào)轉(zhuǎn)導(dǎo)和病原清除的關(guān)鍵分子,篩選能激活免疫系統(tǒng)、增強(qiáng)機(jī)體免疫防御能力的活性物質(zhì),最終明確了水生無(wú)脊椎動(dòng)物免疫系統(tǒng)的基本分子組成,獲得了25個(gè)具有顯著抗菌活性的重組免疫因子,發(fā)現(xiàn)了CpGODN可激活蝦蟹類(lèi)的免疫系統(tǒng),顯著提高抵御白斑綜合征病毒感染的能力。張立新等[47]對(duì)山東青島及其附近海域常見(jiàn)的21種海洋無(wú)脊椎動(dòng)物的粗提物進(jìn)行了免疫調(diào)節(jié)活性測(cè)定,結(jié)果發(fā)現(xiàn)海洋無(wú)脊椎動(dòng)物對(duì)T、B淋巴細(xì)胞具有ConA或LPS協(xié)同刺激作用或者抑制作用,這表明海洋無(wú)脊椎動(dòng)物粗提物具有一定的免疫調(diào)節(jié)功能。隨著深入研究,未來(lái)更多的無(wú)脊椎動(dòng)物免疫因子將逐步被發(fā)現(xiàn)。

4.2 利用植物、菌類(lèi)等有效成分提高對(duì)蝦免疫能力

BINDHU等[48]利用開(kāi)花薔薇(Agathi grandifora)乙酸乙酯和甲醇提取物投喂已注射過(guò)WSSV的印度明對(duì)蝦(Penaeus indicus),其死亡率是對(duì)照組的10%~20%,推斷可能是開(kāi)花薔薇提取物阻斷了WSSV的轉(zhuǎn)錄和翻譯,進(jìn)而抑制WSSV增殖,減少了對(duì)蝦WSSV負(fù)載量。GRASIAN等[49]通過(guò)RT-PCR驗(yàn)證了隨著投喂的馬尾藻(Sargassum wightii)密度增加,凡納濱對(duì)蝦體內(nèi)WSSV拷貝數(shù)不斷減少,0.3%馬尾藻投喂組WSSV拷貝數(shù)是11,Ct值36.26,而陽(yáng)性對(duì)照組WSSV拷貝數(shù)高達(dá)1.42×106個(gè),可見(jiàn)馬尾藻對(duì)WSSV具有較強(qiáng)的抗性。付永鋒等[50]從一種中溫性食用菌—姬松茸(Agaricus blazei)中獲得5種酒精沉淀物(含有大量姬松茸多糖、糖蛋白復(fù)合物、甾醇類(lèi)等物質(zhì)),通過(guò)日本囊對(duì)蝦淋巴細(xì)胞的細(xì)胞毒性測(cè)試,發(fā)現(xiàn)姬松茸水溶液經(jīng)17%、29%和38%酒精沉淀得到的樣品可以完全抑制WSSV感染。劉恒等[51]報(bào)道從海藻獲得的免疫多糖作為餌料添加劑投喂凡納濱對(duì)蝦幼蝦,10 d后可提高對(duì)蝦的酚氧化酶活力、超氧化酶活力及溶菌和抗菌活力。江曉路等[52]用海藻多糖(PV911)和北蟲(chóng)草多糖(cP)作為餌料添加劑飼喂中國(guó)明對(duì)蝦20 d后,可以顯著提高中國(guó)明對(duì)蝦血細(xì)胞的吞噬能力、血清SOD的活力和酚氧化酶的活力,溶菌酶的活性也有一定的提高,增強(qiáng)了對(duì)蝦的免疫能力??梢?jiàn),海藻多糖具有很好的應(yīng)用前景。

4.3 利用疫苗來(lái)提高對(duì)蝦的特異性免疫活性

VP28作為疫苗已多次證明可產(chǎn)生對(duì)WSSV的免疫力,但至今尚未鑒定到它的抗體,所以VP28疫苗曾被稱為“免疫促進(jìn)劑”[53]或“疫苗的候選者”[54]。更多的研究發(fā)現(xiàn),通過(guò)DNA疫苗、蛋白質(zhì)亞單位疫苗和dsRNA疫苗均可以誘發(fā)蝦體產(chǎn)生免疫應(yīng)答的保護(hù)效應(yīng),提高對(duì)蝦抵抗WSSV的能力進(jìn)而提高對(duì)蝦成活率。

4.3.1 DNA疫苗

DNA疫苗是防治WSSV過(guò)程中很有效的一種疫苗,它也就是裸露的DNA分子,稱為質(zhì)粒,在宿主體內(nèi)作為抗原被翻譯成免疫蛋白并表達(dá)于細(xì)胞表面,當(dāng)病原體與宿主細(xì)胞表面分子相互作用時(shí),將引發(fā)有效的免疫保護(hù)反應(yīng)。

ROUT等[55]利用編碼WSSV結(jié)構(gòu)蛋白VP15、VP28、VP35和VP281的基因構(gòu)建重組DNA質(zhì)粒,然后分別用這些重組質(zhì)粒去免疫凡納濱對(duì)蝦,再用WSSV攻毒,實(shí)驗(yàn)結(jié)果表明VP28或VP281的DNA重組質(zhì)粒在第35天時(shí)仍有很強(qiáng)的保護(hù)效果,保護(hù)率分別是50%和46.7%,而表達(dá)WSSV核酸蛋白VP15和VP35的DNA不會(huì)引起保護(hù)性反應(yīng)。RAJESH KUMAR等[56]用DNA疫苗免疫斑節(jié)對(duì)蝦(Penaeusmonodon),試驗(yàn)組對(duì)蝦存活率是56.6%~90.0%,同時(shí)對(duì)蝦體內(nèi)的酚氧化酶原和SOD水平增加,這表明這些免疫因子可能參與抵抗WSSV并提高對(duì)蝦免疫力。NING等[57]首次用減毒的鼠傷寒沙門(mén)氏菌(Salmonella typhimurium)為活的載體口服投喂克氏原螯蝦DNA疫苗,從而誘導(dǎo)克氏原螯蝦對(duì)WSSV的免疫保護(hù)效應(yīng),攻毒組免疫保護(hù)率有56.7%~83.3%??梢?jiàn)DNA疫苗具有很好的抵抗WSSV免疫保護(hù)效果。

4.3.2 蛋白亞單位疫苗

應(yīng)用原核表達(dá)系統(tǒng)將WSSV結(jié)構(gòu)蛋白制備蛋白亞單位疫苗已多次報(bào)道,且獲得很好的保護(hù)效果。施定基等[39]和JIA等[1]將VP28基因連接質(zhì)粒構(gòu)建穿梭表達(dá)載體,通過(guò)三親接合轉(zhuǎn)移法分別轉(zhuǎn)化念珠藻(Nostoc)、聚球藻7002(Synechococcussp.PCC 7002)和魚(yú)腥藻7120(Anabaenasp.PCC7120),然后用轉(zhuǎn)基因藻投喂蝦苗再攻毒,念珠藻、聚球藻7002和魚(yú)腥藻7120試驗(yàn)組成活率分別高達(dá)61.5%、76.9%和68%,而陽(yáng)性對(duì)照組100%死亡。除此以外,國(guó)際上還有多種VP28表達(dá)系統(tǒng)。2004年,WITTEVELDT等[58]首次利用原核表達(dá)載體在大腸桿菌中分別對(duì)VP28、VP19蛋白進(jìn)行重組表達(dá),分別投喂包裹了過(guò)度表達(dá)的WSSV囊膜蛋白VP19和VP28失活細(xì)菌的餌料,在免疫后的第3天、第7天分別進(jìn)行攻毒實(shí)驗(yàn),試驗(yàn)組與對(duì)照組相比,VP28蛋白投喂組有較高的保護(hù)效果,相對(duì)存活率分別是64%和77%,而VP19未見(jiàn)保護(hù)效果,可見(jiàn)通過(guò)這種方式得到的VP28蛋白高效,但蛋白需要純化且大腸桿菌會(huì)分泌內(nèi)毒素。2014年,VALDEZ等[59]將表達(dá)有VP26融合蛋白的枯草芽孢桿菌(Bacillus subtilis)包裹在餌料中,然后投喂凡納濱對(duì)蝦,能100%保護(hù)對(duì)蝦免受WSSV感染,且該疫苗無(wú)致病性并能分泌蛋白,是大腸桿菌表達(dá)系統(tǒng)的一種新改進(jìn)。

應(yīng)用3種真核表達(dá)系統(tǒng)也獲得了很好效果。魏克強(qiáng)等[60]將含有WSSV囊膜蛋白VP28基因的重組桿狀病毒HyNPV-VP28感染家蠶(Bombyx mori)蛹,制成藥餌持續(xù)口服免疫克氏原鰲蝦35 d后,克氏厚鰲蝦血細(xì)胞的酚氧化酶活性、超氧化物歧化酶活性以及抗菌和溶菌活性等均顯著提高。免疫35 d后攻毒,試驗(yàn)組累積存活率高達(dá)66.67%,對(duì)照組僅6.67%,說(shuō)明口服免疫家蠶蛹具有增強(qiáng)抵抗WSSV感染作用。雷杰等[61]應(yīng)用畢赤酵母(Pichia pastoris)表達(dá)VP28、VP19蛋白投喂克氏原鰲蝦25 d,接著第3天進(jìn)行攻毒實(shí)驗(yàn),VP28蛋白組累積死亡率為26.4%,VP19蛋白組為81.9%,陽(yáng)性對(duì)照組為86.6%,陰性對(duì)照組無(wú)死亡。JHA等[62]將含有重組蛋白VP28和VP19顆粒餌料投喂對(duì)蝦25 d,分別在停餌后第3天和第21天進(jìn)行攻毒,陽(yáng)性對(duì)照組累積死亡率為90%,試驗(yàn)組分別為39.6%和39.83%,陰性對(duì)照組無(wú)死亡。FENG等[63]用含VP28基因的鹽生杜氏藻(Dunaliella salina)制備一種新型口服亞單位疫苗,對(duì)蝦在接種轉(zhuǎn)基因鹽生杜氏藻后具有較高的存活率(59%死亡率),陽(yáng)性對(duì)照組100%死亡。桿狀病毒也用于表達(dá)VP28基因,SYED MUSTHAQ等[64]將VP28插入桿狀病毒載體,ie1啟動(dòng)子調(diào)控其在桿狀病毒表面表達(dá)VP28蛋白,再將得到的Bac-VP28免疫凡納濱對(duì)蝦,攻毒后投喂組和浸泡組累積存活率分別是81.7%和76.7%,而陰性對(duì)照組100%死亡。

4.3.3 dsRNA疫苗

2004年,ROBALINO等[65]首次報(bào)道了給凡納濱對(duì)蝦肌內(nèi)注射從脊椎動(dòng)物體內(nèi)得到的不同dsRNA,均表現(xiàn)出對(duì)白斑綜合征病毒抗性。這種抗病毒狀態(tài)的誘發(fā)是獨(dú)立于dsRNA序列的,有別于序列特異的dsRNA介導(dǎo)基因干擾現(xiàn)象。該研究表明無(wú)脊椎動(dòng)物的免疫系統(tǒng)就像脊椎動(dòng)物一樣,可以將dsRNA當(dāng)作病毒相關(guān)分子模式,引起一個(gè)先天的抗病毒反應(yīng)的激活。

2007年,KIM等[4]在中國(guó)明對(duì)蝦幼體中注射與WSSV蛋白激酶基因、VP28和VP281基因相關(guān)的長(zhǎng)鏈dsRNAs,注射VP28試驗(yàn)組100%存活,VP281試驗(yàn)組死亡率為20%,陰性對(duì)照組死亡率為46.7%,說(shuō)明在肌內(nèi)注射長(zhǎng)鏈dsRNAs能夠防治WSSV。2008年,SARATHI等[66]在斑節(jié)對(duì)蝦肌內(nèi)注射VP28-dsRNA,然后攻毒,30 d時(shí)間內(nèi)沒(méi)有出現(xiàn)蝦死亡的現(xiàn)象,陽(yáng)性對(duì)照組10 d內(nèi)全部死亡。2011年,MEJIA-RUIZ等[67]用VP28或VP26的dsRNA通過(guò)注射方式免疫凡納濱對(duì)蝦10 d,單次攻毒試驗(yàn)組累積死亡率為13%。再次攻毒后累積死亡率為33%,可見(jiàn)單次攻毒、連續(xù)攻毒均有較好的抗病毒保護(hù)效應(yīng)。2015年,JARIYAPONG等[68]以MrNv-VLPs(Macrobrachium rosenbergiinodavirus-like particles)為載體構(gòu)建了VP28 dsRNA,免疫蝦后,陽(yáng)性對(duì)照組100%死亡,試驗(yàn)組在攻毒后相對(duì)存活率為44.5%,表明MrNv-VLPs載體系統(tǒng)能保證VP28-dsRNA介導(dǎo)的免疫保護(hù)可以控制WSSV感染。

5 養(yǎng)殖過(guò)程中預(yù)防措施

白斑綜合征病毒嚴(yán)重危害了對(duì)蝦養(yǎng)殖業(yè)健康快速發(fā)展,在積極研制各種抗WSSV藥物的同時(shí),養(yǎng)殖過(guò)程中仍需采取一些預(yù)防措施,這些措施在生產(chǎn)上發(fā)揮了很大作用,對(duì)我國(guó)對(duì)蝦養(yǎng)殖業(yè)發(fā)展具有很大貢獻(xiàn)。

5.1 引進(jìn)抗病力強(qiáng)的蝦種-凡納濱對(duì)蝦

中國(guó)明對(duì)蝦,俗稱東方對(duì)蝦,因其對(duì)白斑綜合征病毒抗性差,因而1993~1994年使我國(guó)對(duì)蝦養(yǎng)殖業(yè)遭受巨大損失。凡納濱對(duì)蝦,俗稱南美白對(duì)蝦,對(duì)WSSV具有一定抗性,原產(chǎn)自西太平洋沿岸,是美洲重要對(duì)蝦養(yǎng)殖品種,也是世界養(yǎng)殖產(chǎn)量最高的三大蝦種之一。1988年凡納濱對(duì)蝦由中科院海洋研究所張偉權(quán)研究員從夏威夷海洋研究所初次引進(jìn)我國(guó),1991年經(jīng)農(nóng)業(yè)部批準(zhǔn)引進(jìn)了第二批凡納濱對(duì)蝦(P7-10)蝦苗4 000 ind,運(yùn)輸成活率達(dá)85%[72]。1994年通過(guò)人工育苗獲得小批量蝦苗,到2000年已實(shí)現(xiàn)工廠化育苗生產(chǎn),養(yǎng)殖規(guī)模逐年擴(kuò)大[73]。據(jù)聯(lián)合國(guó)糧食及農(nóng)業(yè)組織(FAO)統(tǒng)計(jì)數(shù)據(jù)顯示,世界凡納濱對(duì)蝦養(yǎng)殖產(chǎn)量由1998年的19×104t迅速增加到2004年的133×104t,再發(fā)展到2013年產(chǎn)量超過(guò)330×104t[74]。目前凡納濱對(duì)蝦已成為我國(guó)養(yǎng)殖對(duì)蝦的主要品種[75]。

表1 防治WSSV疫苗Tab.1 Different vaccines againstWSSV

5.2 放養(yǎng)無(wú)病毒優(yōu)質(zhì)種苗

對(duì)蝦養(yǎng)殖最關(guān)鍵是蝦苗的選擇,加快對(duì)蝦無(wú)毒良種幼苗的培育開(kāi)發(fā)尤為重要。1999年我國(guó)已引進(jìn)美國(guó)SPF凡納濱對(duì)蝦種蝦和繁育技術(shù),培育出了SPF凡納濱對(duì)蝦蝦苗[75],SPF親蝦具有生長(zhǎng)快、大小均勻、產(chǎn)卵量大等優(yōu)良特性,但其抗病力和適應(yīng)性無(wú)明顯優(yōu)勢(shì),因此親蝦病原檢出率也不低[76]。因此,我國(guó)對(duì)蝦養(yǎng)殖業(yè)還應(yīng)加強(qiáng)對(duì)蝦育苗場(chǎng)的監(jiān)督和管理。同時(shí)在選取蝦苗過(guò)程中,要求對(duì)蝦個(gè)體健康體壯、大小相對(duì)均勻、肌肉飽滿、活動(dòng)能力強(qiáng)、刺激反應(yīng)靈敏、體節(jié)細(xì)長(zhǎng)、體色透明、體表干凈[73],并確保優(yōu)質(zhì)蝦苗在0.8~1.0 cm之間[77],養(yǎng)殖戶應(yīng)在放苗之前確認(rèn)試水安全,即可放苗。

5.3 改善對(duì)蝦養(yǎng)殖環(huán)境

對(duì)蝦生長(zhǎng)與養(yǎng)殖環(huán)境密切相關(guān)。在放苗前需要使用免疫制劑[77-78]對(duì)養(yǎng)殖塘和養(yǎng)殖用水作消毒處理,養(yǎng)殖過(guò)程中需要大量增氧,合理且適量投喂具有生產(chǎn)許可證的餌料,適當(dāng)增加日常換水次數(shù)[79],合理協(xié)調(diào)養(yǎng)殖面積、養(yǎng)殖密度,確保對(duì)蝦養(yǎng)殖水質(zhì)優(yōu)良,可以達(dá)到較高經(jīng)濟(jì)效益[61]。

6 展望

6.1 對(duì)蝦免疫機(jī)制研究

對(duì)蝦等海洋甲殼動(dòng)物免疫學(xué)是一門(mén)重要學(xué)科,是最終戰(zhàn)勝對(duì)蝦病害的重要基礎(chǔ)[80]。在過(guò)去的十年中,對(duì)蝦先天免疫的研究突飛猛進(jìn)[46],同時(shí)越來(lái)越多研究表明無(wú)脊椎動(dòng)物存在適應(yīng)性免疫現(xiàn)象。盡管如此,目前蝦類(lèi)免疫學(xué)的研究還不完善,需要更深入的研究。已多次證明VP28作為疫苗可產(chǎn)生WSSV免疫力,雖至今尚未鑒定到它的抗體,但已有一定的研究進(jìn)展,為以后深入研究對(duì)蝦免疫機(jī)制奠定了基礎(chǔ)。

另外,HE等[81]報(bào)道了病毒微小 RNA(miRNA)能夠避免宿主免疫系統(tǒng)的攻擊和保持病毒處于潛伏期狀態(tài)。病毒在侵染宿主過(guò)程中會(huì)編碼病毒自身的miRNA,而WSSV編碼miRNA(WSSV-miR-66和WSSV-miR-68)的靶向性病毒基因能抑制病毒感染。HUANG等[82]指出一些特定的DNA病毒產(chǎn)生微小RNAs能夠調(diào)控宿主和病毒基因的表達(dá),病毒的miRNA(WSSV-miRN24)能夠靶向蝦的半胱天冬酶8基因,同時(shí)WSSV-miR-N24和半胱天冬酶8基因相互作用可進(jìn)一步抑制蝦體內(nèi)的血細(xì)胞的凋亡。

6.2 疫苗的應(yīng)用與推廣

免疫防治是水產(chǎn)養(yǎng)殖病害防治的最好途徑。目前疫苗使用有注射法、浸泡法和口服法等。注射法是導(dǎo)入疫苗簡(jiǎn)便有效的方法,但生產(chǎn)上不可能對(duì)每只對(duì)蝦進(jìn)行肌肉注射[53]。浸泡法效果較好,但所需要的疫苗含量高,成本較高導(dǎo)致應(yīng)用受限[80]??诜ㄐЧ^好,但多為轉(zhuǎn)基因細(xì)菌制備,需純化后才能使用,所以成本較高[71]。JIA等[1]獲得的VP28轉(zhuǎn)基因藍(lán)藻,可作為蝦苗的餌料投喂,藥食同源,具有較高的免疫保護(hù)效果,且不需要純化成本低,這種疫苗有望能應(yīng)用到規(guī)?;a(chǎn)上。

[1] JIA X H,ZHANG C L,SHI D J,et al.Oral administration ofAnabaena-expressed VP28 for both drug and food against white spot syndrome virus in shrimp[J].Journal of Applied Phycology,2015,DIO 10.1007/s10811-015-0607-4.

[2] 劉 飛.中國(guó)大陸幾株WSSV毒株毒力測(cè)定及分析[D].青島:中國(guó)海洋大學(xué),2013.

LIU F.Determination and analysis for virulence of WSSV strains from mainland of China[D].Qingdao:Ocean University Of China,2013.

[3] HE F,F(xiàn)ENNER B J,GODWIN A K,et al.White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumor suppressor via ubiquitination[J].Journal of Virology,2006,80(8):3884-3892.

[4] KIM C S,KOSUKE Z,NAM Y K,et al.Protection of shrimp(Penaeus chinensis)against white spot syndrome virus(WSSV)challenge by doublestranded RNA[J].Fish&Shellfish Immunology,2007,23(1):242-246.

[5] MOSER JR,áLVAREZ DAG,CANO F M,et al.Water temperature influences viral load and detection of White Spot Syndrome Virus(WSSV)in Litopenaeus vannamei and wild crustaceans[J].Aquaculture,2012,326(1):9-14.

[6] 何建國(guó),周化民,姚 伯等.白斑綜合癥桿狀病毒的感染途徑和宿主種類(lèi)[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),1999,38(2):66-70.

HE J G,ZHOU H M,Y B,et al.White spot syndrome baculovirus(WSBV)host range and transmission route[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,1999,38(2):66-70.

[7] BADHUL HAQ M A,VIGNESH R,SRINIVASAN M.Deep insight into white spot syndrome virus vaccines:A review[J].Asian Pacific Journal of Tropical Disease,2012,2(1):73-77.

[8] DING Z,YAO Y,ZHANG F,et al.The first detection of white spot syndrome virus in naturally infected cultured Chinese mitten crabs,Eriocheir sinensis in China[J].Journal of Virological Methods,2015(220):49-54.

[9] CHOU H Y,HUANG C Y,LO C F,et al.Studies on transmission of white spot syndrome associated baculovirus(WSBV)inPenaeusmonodonandP.japonicusvia waterborne contact and oral ingestion[J].Aquaculture,1998,164(1):263-276.

[10] 江世貴,何建國(guó),呂 玲,等.白斑綜合征病毒對(duì)斑節(jié)對(duì)蝦親蝦的感染及垂直傳播的初步研究[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2000,39:164-171.

JIANG SG,HE JG,LU L,et al.The infectivity of white spot syndrome virus to the brooders of Penaeus monodon and vertical transmission of the virus[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2000(39):164-171.

[11] 馬曉燕,李 鵬,嚴(yán) 潔,等.對(duì)蝦白斑綜合征病毒的概述[J].南京師大學(xué)報(bào)(自然科學(xué)版),2012,35(4):90-100.

MA X Y,LIP,YAN J,et al.A review on shrimp white spot syndrome virus[J].Journal of Nanjing Normal University(Natural science edition),2012,35(4):90-100.

[12] HUANG J,LIF,WU J,etal.White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis[J].Virology,2015(486):35-43.

[13] YANG F,HE J,LIN X,et al.Complete genome sequence of the shrimp white spot bacilliform virus[J].Journal of Virology,2001,75(23):11811-11820.

[14] TSAI M F,YU H T,TZENG H F,et al.Identification and characterization of a shrimp white spot syndrome virus gene that encodes a novel chimeric polypeptide of cellular type thymidine kinase and thymidylate kinase[J].Virology,2000,277(1):100-110.

[15] VAN HULTEN M CW,WITTEVELDT J,PETERS S,et al.The white spot syndrome virus DNA genome sequence[J].Virology,2001,286(1):7-22.

[16] 丁 晶.以枯草芽孢桿菌遞呈對(duì)蝦白斑綜合征病毒囊膜蛋白VP28對(duì)凡納對(duì)蝦抗病毒免疫保護(hù)機(jī)制的研究[D].杭州:浙江工商大學(xué),2013.

DING J.Immune responses oflitopenaeus vannameiagainstwhite spot syndrome virus after oral delivery of VP28 using nacillus[D].Hangzhou:Zhejiang Gongshang University,2013.

[17] 李建波.對(duì)蝦白斑綜合癥病毒(WSSV)膜蛋白VP12和VP150的功能研究以及病毒極早期基因RNA干擾的初步研究[D].廈門(mén):廈門(mén)大學(xué),2013.

LI JB.The functional analysis of envelope proteins VP12 and VP150 of white spot syndrome virus(WSSV)and the preliminary research on the RNA interference of WSSV immediate-early genes[D].Xiamen:Xiamen University,2013.

[18] 孫玉苗.白斑綜合征病毒(WSSV)三種重要囊膜蛋白的重組表達(dá)及在病害防控中的作用[D].青島:中國(guó)科學(xué)院研究生院(海洋研究所),2012.

SUN Y M.Recombinant expression of three important white spot syndrome virus(WSSV)envelope proteins and their ability on disease control[D].Qingdao:Institute of Oceanology Chinese Academy of Sciences,2012.

[19] 鐘汝杰.中國(guó)對(duì)蝦整合素β亞基與對(duì)蝦白斑癥病毒(WSSV)感染的相互關(guān)系研究[D].青島:中國(guó)海洋大學(xué),2013.

ZHONG R J.Study on the interrelationship between beta-integrin ofFennropenaeus chinensisand the infection ofwhite spotsyndrome virus[D].Qingdao:Ocean University of China,2013.

[20] 張 毅.抗WSSV口服VP28亞單位疫苗研究及促克氏螯蝦生長(zhǎng)口服DNA藥物研究[D].武漢:武漢大學(xué),2011.

ZHANG Y.Oral subunit vaccine VP28 against WSSV and promoting the growth of crayfish oral DNA-Drug[D].Wuhan:Wuhan University,2011.

[21] TANG X H,WU JL,SIVARAMANJ,et al.Crystal structures ofmajor envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship[J].Journal of Virology,2007,81(12):6709-6717.

[22] YIG,WANG Z,QIY,et al.VP28 of shrimp white spot syndrome virus is involved in theattachment and penetration into shrimp cells[J].Journal of Biochemistry and Molecular Biology,2004,37(6):726-734.

[23] TSAI JM,WANG H C,LEU JH,et al.Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus[J].Journal of Virology,2004,78(20):11360-11370.

[24] VAN HULTENM C,WESTENBERGM,GOODALL SD,et al.Identification of twomajor virion protein genes of white spot syndrome virus of shrimp[J].Virology,2000,266(2):227-236.

[25] ZHANG X,HUANG C,XU X,et al.Transcription and identification of an envelope protein gene(p22)from shrimp white spot syndrome virus[J].The Journal of General Virology,2002,83(2):471-477.

[26] TSAIJM,WANG H C,LEU JH,et al.Identification of the nucleocapsid,tegument,and envelope proteins of the shrimp white spot syndrome virus[J].Journal of Virology,2006,80(6):3021-3029.

[27] XIE X,YANG F.Interaction ofwhite spot syndrome virus VP26 protein with actin[J].Virology,2005,336(1):93-99.

[28] VAN HULTEN M CW,WITTEVELDT J,SNIPPE M,et al.White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp[J].Virology,2001,285(2):228-233.

[29] JIE Z,XU L,YANG F.The C-terminal region of envelope protein VP38 from white spot syndrome virus is indispensable for interaction with VP24[J].Archives of Virology,2008,153(11):2103-2106.

[30] RATCLIFFE N A,ROWLEY A F,F(xiàn)ITZGERALD S W.Invertebrate immunity-basic concepts and recent advances[J].International Review of Cytology,1985(97):183-350.

[31] HOFFMANN J A,REICHHART JM.Drosophila innate immunity:an evolutionary perspective[J].Nature Immunology,2002,3(2):121-126.

[32] SYED MUSTHAQ S K,KWANG J.Reprint of“Evolution of specific immunity in shrimp-A vaccination perspective against white spot syndrome virus”[J].Developmental&Comparative Immunology,2015,48(2):342-353.

[33] LI F,XIANG J.Recent advances in researches on the innate immunity of shrimp in China[J].Developmental&Comparative Immunology,2013,39(1-2):11-26.

[34] Han J.Anti-WSSV and/or TSV nucleic acid drug:國(guó)外專(zhuān)利,US8354391[P].2013-1-15.

[35] OH H G,SUNG K H,JEON H R,et al.Composition and method for treating or preventing white spot syndrome virus:國(guó)外專(zhuān)利,US2009258077[P].2009-10-15.

[36] VENEGAS C A,NONAKA L,MUSHIAKE K,et al.Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus(PRDV)[J].Diseases of Aquatic Organisms,2000,42(2):83-89.

[37] LIN Y C,CHEN J C,MORNIW Z W,et al.Vaccination enhances early immune responses in white shrimpLitopenaeus vannameiafter secondary exposure tovibrio alginolyticus[J].Plos One,2013,8(7):1-15.

[38] POPE E C,ADAM P,ROBERTS E C,et al.Enhanced cellular immunity in shrimp(Litopenaeusvannamei)after'vaccination'[J].Plos One,2011,6(6):e20960.

[39] 施定基,賈曉會(huì),張春莉,等.一種阻斷白斑綜合征病毒感染對(duì)蝦的口服劑及其制備方法和應(yīng)用[P]:上海,CN103272229A[P].2013.09.04.

SHID J,JIA X H,ZHANG C L,et al.Oral agent for blocking prawns from infecting white spot syndrome viruses,and preparation method and application thereof:Shanghai,CN103272229A[P].2013-09-04.

[40] SHIH H H.Neutralization of White spot syndrome virus bymonoclonal antibodies against viral envelope proteins[J].Taiwania,2004,49(3):159-165.

[41] SRITUNYALUCKSANA K,S?DERH?LL K.The proPO and clotting system in crustaceans[J].Aquaculture,2000,191(1-3):53-69.

[42] 杜欣軍.中國(guó)明對(duì)蝦先天免疫的模式識(shí)別與效應(yīng)分子[D].濟(jì)南:山東大學(xué),2007.

DU X J.Pattern recognition and effectors of innate immunity in Chinese shrimp(Fenneropenaeuschinensis)[D].Jinan:Shangdong University,2007.

[43] HULTMARK D.Drosophilaimmunity:paths and patterns[J].Current Opinion In Immunology,2003,15(1):12-19.

[44] BELVIN M P,ANDERSON K V.A conserved signaling pathway:the Drosophila toll-dorsal pathway[J].Annual Review of Cell and Developmental Biology,1996(12)393-416.

[45] 許 森.L型凝集素和Toll、IMD信號(hào)通路關(guān)鍵因子在日本對(duì)蝦先天免疫中的功能研究[D].濟(jì)南:山東大學(xué),2014.

XU S.Functions of L type lectin and key components of Toll and IMD signaling pathways in innate immunity of kurma shrimp(Marsupenaeus japonicus)[D].Jinan:Shangdong University,2014.

[46] 衣啟麟.養(yǎng)殖蝦蟹疫病免疫防控的初步研究[D].青島:中國(guó)科學(xué)院研究生院(海洋研究所),2014.

YIQ L.Preliminary study on immune prevention and control of diseases in aqualculture crustaceans[D].Qingdao:Institute of Oceanology,Chinese Academy of Science,2014.

[47] 張立新,范 曉,牛榮麗.海洋無(wú)脊椎動(dòng)物提取物免疫調(diào)節(jié)活性的初步研究[J].中國(guó)免疫學(xué)雜志,2003(11)739-743.

ZHANG L X,F(xiàn)AN X,NIU R L.Immunomodulatory activity determination of ethanol extracts from some marine invertebrates[J].Chinese Journal of Immunology,2003(11)739-743.

[48] BINDHU F,VELMURUGAN S,DONIOM B,etal.Influence of Agathi grandiflora active principles inhibit viral multiplication and stimulate immune system in Indian white shrimp Fenneropenaeus indicus against white spot syndrome virus infection[J].Fish&Shellfish Immunology,2014,41(2):482-492.

[49] IMMANUEL G,SIVAGNANAVELMURUGAN M,MARUDHUPANDIT,et al.The effect of fucoidan from brown seaweed Sargassum wightii on WSSV resistance and immune activity in shrimpPenaeus monodon(Fab)[J].Fish&Shellfish Immunology,2012,32(4):551-564.

[50] 付永鋒.不同姬松茸提取物對(duì)對(duì)蝦白斑病毒感染能力的影響研究[D].青島:中國(guó)海洋大學(xué),2005.

FU Y F.Effects of different mushroom(Agaricus bazei)extracts on infective abiiities of white spot syndrome virus[D].Qingdao:Ocean University of China,2005.

[51] 劉 恒,李光友.免疫多糖對(duì)養(yǎng)殖南美白對(duì)蝦作用的研究[J].海洋與湖沼,1998(2):113-118.

LIU H,LIG Y.The effect of immunopolysaccharide as a food additive on the penaeid shrimp,Penaeus vannamei[J].Oceanologia et Limnologia Sinica,1998(2):113-118.

[52] 江曉路,劉樹(shù)青,牟海津,等.真菌多糖對(duì)中國(guó)對(duì)蝦血清及淋巴細(xì)胞免疫活性的影響[J].動(dòng)物學(xué)研究,1999(1)42-46.

JIANG X L,LIU SQ,MOU H J,et al.Effects of fungus polysaccharose on immune activities of serum and lymphocyte ofPenaeus chinensis[J].Zoological Research,1999(1):42-46.

[53] ROWLEY A F,POPE EC.Vaccines and crustacean aquaculture-A mechanistic exploration[J].Aquaculture,2012(334-337):1-11.

[54] FU L L,SHUAI J B,XU Z R,et al.Immune responses ofFenneropenaeus chinensisagainst white spot syndrome virus after oral delivery of VP28 usingBacillus subtilisas vehicles[J].Fish&Shellfish Immunology,2010,28(1):49-55.

[55] ROUT N,KUMAR S,JAGANMOHAN S,et al.DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp[J].Vaccine,2007,25(15):2778-2786.

[56] RAJESH KUMAR S,ISHAQ AHAMED V P,SARATHI M,et al.Immunological responses of Penaeusmonodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus(WSSV)[J].Fish&Shellfish Immunology,2008,24(4):467-478.

[57] NING J F,ZHU W J,ZHENG C Y,et al.Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuatedSalmonella typhimurium[J].Vaccine,2009,27(7):1127-1135.

[58] WITTEVELDT J,CIFUENTESC C,VLAK JM,et al.Protection ofPenaeusmonodonagainstwhite spot syndrome virus by oral vaccination[J].Journal of Virology,2004,78(4):2057-2061.

[59] VALDEZ A,YEPIZ-PLASCENCIA G,RICCA E,et al.FirstLitopenaeus vannameiWSSV 100%oral vaccination protection using CotC:VP26 fusion protein displayed onBacillus subtilisspores surface[J].Journal of Applied Microbiology,2014,117(2):347-357.

[60] 魏克強(qiáng).家蠶蛹表達(dá)的重組VP28疫苗對(duì)克氏原螯蝦免疫反應(yīng)的影響[J].分子細(xì)胞生物學(xué)報(bào),2006,39(6):527-536.

WEIK Q.Influence of white spot syndrome virus envelope protein VP28 expressed in silkworm(Bombyxmori)in Procambarus Clarkii[J].Journal of Molecular Cell Biology,2006,39(6):527-536.

[61] 雷 杰.白斑綜合征病毒重組蛋白對(duì)克氏原螯蝦免疫效果的研究[D].杭州:浙江大學(xué),2006.

LEI J.The efficacy of recombinant vaccines against white spot syndrome virus in crayfish(Procambarus clarkii)[D].Hangzhou:Zhejiang University,2006.

[62] JHA R K,XU Z R,SHEN J,et al.The efficacy of recombinant vaccines against white spot syndrome virus inProcambarus clarkii[J].Immunology Letters,2006,105(1):68-76.

[63] FENGSY,F(xiàn)ENGW P,ZHAO L,etal.Preparation of transgenicDunaliella salinafor immunization against white spot syndrome virus in crayfish[J].Archives of Virology,2014,159(3):519-525.

[64] SYED MUSTHAQ S,KWANG J.Oral vaccination of baculovirus-expressed VP28 displays enhanced protection against whitespot syndrome virus inPenaeusmonodon[J].Plos One,2011,6(11):e26428.

[65] ROBALINO J,BROWDY C L,PRIOR S,et al.Induction of antiviral immunity by double-stranded RNA in a marine invertebrate[J].Journal of Virology,2004,78(19):10442-10448.

[66] SARATHIM,SIMON M C,AHMED V P,et al.Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA[J].Marine Biotechnology,2008,10(2):198-206.

[67] MEJIA-RUIZ C H,VEGA-PENA S,ALVAREZRUIZ P,et al.Double-stranded RNA against white spot syndrome virus(WSSV)VP28 or VP26 reduced susceptibility ofLitopenaeus vannameito WSSV,and survivors exhibited decreased susceptibility in subsequent re-infections[J].Journal of Invertebrate Pathology,2011,107(1):65-68.

[68] JARIYAPONG P,CHOTWIWATTHANAKUN C,DIREKBUSARAKOM S,et al.Delivery of double stranded RNA byMacrobrachium rosenbergiinodavirus-like particles to protect shrimp from white spot syndrome virus[J].Aquaculture,2015(435):86-91.

[69] LIX,LIU Q,HOU L,et al.Effect of VP28 DNA vaccine on white spot syndrome virus in Litopenaeusvannamei[J].Aquaculture International,2010,18(6):1035-1044.

[70] CAIPANG C M,VERJAN N,OOI E L,et al.Enhanced survival of shrimp,Penaeus(Marsupenaeus)japonicusfrom white spot syndrome disease after oral administration of recombinant VP28expressed in Brevibacillus brevis[J].Fish&Shellfish Immunology,2008,25(3):315-320.

[71] MAVICHAK R,TAKANO T,KONDO H,etal.The effect of liposome-coated recombinant protein VP28 against white spot syndrome virus in kuruma shrimp,Marsupenaeus japonicus[J].Journal of Fish Diseases,2010,33(1):69-74.

[72] 李向民.海洋的旋律[M].北京:海洋出版社,2014:106-109.

LIX M.The rhythm of ocean[M].Beijing:Ocean Press(In Chinese),2014:106-109.

[73] 李卓佳.南美白對(duì)蝦高效生態(tài)養(yǎng)殖新技術(shù)[M].北京:海洋出版社,2012:1-2.

LI Z J.The efficient breeding new technology ofLitopenaeus vannamei[M].Beijing:Ocean Press(In Chinese),2014:106-109.

[74] FAO.Cultured Aquatic Species Information Programme,Penaeus vannamei.FAO Fisheries and Aquaculture Department,2015.

[75] 李 鋒,林繼輝,劉楚吾.凡納濱對(duì)蝦引進(jìn)親蝦及其子一代的遺傳多樣性研究[J].海洋科學(xué),2006,30(4):64-68.

LIF,LIN JH,LIU CW.Genetic diversity analysis of primary parent and the first filial generation of pacific white shrimp,Litopenaeus vannamei[J].Marine Sciences,2006,30(4):64-68.

[76] JOSEPH T C,JAMES R,RAJAN L A,et al.Occurrence of viral pathogens inPenaeus monodonpost-larvae from aquaculture hatcheries[J].Data in Brief,2015(4):170-176.

[77] 吳翔宇.溶藻弧菌VZ5株與芽孢桿菌BZ5株在凡納濱對(duì)蝦育苗中的應(yīng)用[D].青島:中國(guó)海洋大學(xué),2014.

WU X Y.The Application of Vibrio alginolyticus(VZ5)and Bacilhts(BZ5)inLitopenaeus vannameinursery[D].Qingdao:Ocean University of China,2014.

[78] YANG H,LIS,LIF,et al.Recombinant expression and functional analysis of an isoform of antilipopolysaccharide factors(FcALF5)from Chinese shrimpFenneropenaeus chinensis[J].Developmental&Comparative Immunology,2015,53(1):47-54.

[79] 彭 敏.南美白對(duì)蝦育苗及養(yǎng)殖HACCP模式的初步研究[D].南寧:廣西大學(xué),2007.

PENG M.Preliminary study on HACCP model in Litopenaeus vannamei breeding and aquaculture[D].Nanning:Guangxiuniversity,2007.

[80] 魏克強(qiáng),許梓榮.對(duì)蝦的免疫機(jī)制及其疾病預(yù)防策略的研究[J].中國(guó)獸藥雜志,2004,38(9):25-29.WEIK Q,XU Z R.Studies on immunemechanism in shrimp and strategies for disease prevention[J].2004,38(9):25-29.

[81] HE Y D,YANG K,ZHANG X B.ViralmicroRNAs targeting virus genes promote virus infection in shrimp in vivo[J].Journal of Virology,2014,88(2):1104-1112.

[82] HUANG T Z,CUIY L,ZHANG X B.Involvement of viral microRNA in the regulation of antiviral apoptosis in shrimp[J].Journal of Virology,2014,88(5):2544-2554.

Research advance of immunology prevention of shrimp white spot syndrome virus

HE Pei-ming1,GUO Yuan-yuan1,JIA Xiao-hui1,SHIDing-ji1,2,ZHUANG Min-min1,HE Ling1,JIA Rui1
(1.College of Fisheries and Life Science,ShanghaiOcean University,Shanghai201306,China;(2.Institute of Botany,Chinese Academy of Sciences,Beijing10093,China)

White spot syndrome virus(WSSV)has emerged as one of the most virulent,widespread and lethal virus known tomost shrimp farming areas in the world.WSSV is highly lethal tomost of commercially cultivated penaeid shrimp species.WSD caused byWSSV emerged in the east Asia in 1992-1993 and itwas quickly dispersed across the Asian continent to the Southeast Asia,Thailand,southeastern Europe,India,the Middle East and USA where it caused a major pandemic,and continued to cause large economic losses to shrimp aquaculture industry.An acute outbreak of WSD(white spot disease)can cause a cumulative mortality up to 100%within 3-10 days in cultured shrimp.WSSV has a broad host range among decapod crustaceans and is reported to infect aquatic animals that include marine and brackish water crustaceans,crabs,penaeids,freshwater prawns and crayfish.Thus effective prevention of the outbreak ofWSSV has the vital significance in aquaculture and it’s full of challenge.So far,domestic and foreign researchers have gradually deepened understanding of the WSSV,focused on the development of some drugs and made some breakthrough.Several achievements have been attained in preventing and controlling the WSSV.In the paper,we illuminated the genome and structural protein of WSSV in the first place.And we introduced the immunemechanism of shrimp.There is a commonly accepted opinion that shrimp only has innate immune response,but the dispute between specific immunity and innate immune response exists.The paper also discussed the relevantmethods of prevention and control of the shrimp WSSV.Finally,we suggested that vaccination trials should attract more attention than others in the shrimp industry after we analyzed the characteristics of several vaccines.In addition,oral vaccination of shrimp againstWSSV has great application potential for field use in large-scale production.

WSSV;shrimp;vaccine;progress in prevention and controlling

S 941

A

1004-2490(2016)04-0437-12

2015-09-10

國(guó)家海洋863計(jì)劃項(xiàng)目(2014AA093506);上海市科委項(xiàng)目(12391901700);上海海洋大學(xué)海洋學(xué)科高原項(xiàng)目

何培民,男,教授,博士生導(dǎo)師。Tel:15692165272,E-mail:pmhe@shou.edu.cn

賈 睿,副教授。E-mail:rjia@shou.edu.cn

猜你喜歡
凡納濱白斑對(duì)蝦
對(duì)蝦養(yǎng)殖弱勢(shì)群體的管理
對(duì)蝦吃料慢的原因分析和處理
對(duì)蝦白斑綜合征病毒免疫應(yīng)答研究進(jìn)展
對(duì)蝦免疫增強(qiáng)劑研究進(jìn)展
白斑消褪靠自灸
對(duì)蝦常見(jiàn)環(huán)境性疾病的防治
凡納濱對(duì)蝦白斑綜合征病毒防治研究進(jìn)展(一)
惹人癢的外陰白斑
媽媽寶寶(2017年3期)2017-02-21 01:22:34
維吾爾醫(yī)治療85例外陰白斑臨床療效總結(jié)
凡納濱對(duì)蝦與點(diǎn)帶石斑魚(yú)的混養(yǎng)模式
江门市| 宁明县| 浙江省| 阳高县| 信丰县| 望奎县| 民和| 凤冈县| 三江| 渭南市| 繁昌县| 黎平县| 荥阳市| 清镇市| 新竹县| SHOW| 中超| 体育| 海晏县| 静宁县| 洛浦县| 三亚市| 大田县| 广昌县| 焦作市| 密云县| 娄底市| 威海市| 林甸县| 普格县| 西峡县| 筠连县| 尚志市| 兴安县| 措勤县| 本溪| 昔阳县| 扬州市| 岳西县| 定襄县| 金堂县|