湯自凱 侯耀平
摘 要 設(shè)G=(V,E)是簡單連通圖,第二原子鍵連通指數(shù)是一種的新的原子鍵連通指數(shù)ABC2,即
ABC2 = ABC2(G)=∑uv∈E(G)nu+nv-2nunv,
其中nu(nv)表示圖中到邊e=uv的頂點(diǎn)u(v)距離比到頂點(diǎn)v(u)距離小的頂點(diǎn)數(shù).本文刻畫了具有第一小、第二小與第一大、第二大第二原子鍵連通指數(shù)的樹及具有最小第二原子鍵連通指數(shù)的單圈圖.
關(guān)鍵詞 第二原子鍵連通指數(shù);樹;單圈圖
All graphs in this article are simple and finite. The vertex and edge sets of a graph G are V(G) and E(G), respectively. The degree of a vertex u in G is denoted by degG(u) or du: The number of vertices of G is denoted by n(G) and is called the order of G. The distance dG(u,v) between vertices u and v∈V(G) is the number of edges on a shortest path connecting u and v in G. Molecular descriptors play a significant role in chemistry, pharmacology, etc, Among which, topological indices have a prominent place[1]. There are numerous topological descriptors that were applied in theoretical chemistry, especially in QSPR/QSAR research[2-5].
The atom-bond connectivity index is a novel topological index ABC and was conceived by Estrada, Torres, Rodriguez and Gutman[6], defined as
References:
[1] TODESCHNI R, CONSONNI V. Handbook of molecular descriptors[M]. Weinheim: Wiley-VCH, 2000.
[2] WIENER H. Structural determination of paraffin boiling points[J]. J Am Chem Soc,1947,69(1):17-20.
[3] HOSOYA H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bull Chem Soc Jpn, 1971,44(9):2332-2339.
[4] DAS K C, GUTMAN I. Estimating the Szeged index[J]. Appl Math Lett, 2009,22(11):1680-1684.
[5] LIU B, GUTMAN I. On a conjecture on Randic indices[J]. MATCH Commun Math Comput Chem, 2009,157(8):1766-1772.
[6] ESTRADA E, TORRES L, RODR L, et al. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes[J]. Indian J Chem, 1998,37(10):849-855.
[7] ESTRADA E. Atom-bond connectivity and the energetic of branched alkanes[J].Chem Phys Lett, 2008,463(4):422-425.
[8] FURTULA B, GRAOVAC A, VUKICEVIC D. Atom-bond connectivity index of trees[J]. Discrete Appl Math, 2009,157(13):2828-2835.
[9] XING R, ZHOU B, DU Z. Further results on atom-bond connectivity index of trees[J]. Discrete Appl Math, 2010,158(14):1536-1545.
[10] DAS K C. Atom-bond connectivity index of graphs[J]. Discrete Appl Math, 2010,158(11):1181-1188.
[11] GRAOVAC A, GHORBANI M. A new version of atom-bond connectivity index[J].Acta Chim Slov, 2010,57(3):609-612.
[12] GUTMAN I. A formula for the wiener number of trees and its extension to graphs containing cycles [J]. Graph Theory Notes New York, 1994,27(9):9-15.
[13] KHADIKAR P V, KARMARKAR S, AGRAWAL V K. A novel PI index and its applications to QSPR/QSAR studies[J]. J Chem Inf Comput Sci, 2001,41(4):934-949.
(編輯 胡文杰)