国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鋰離子電池?zé)o機(jī)固體電解質(zhì)的計(jì)算*

2016-02-10 01:10高健何冰施思齊
自然雜志 2016年5期
關(guān)鍵詞:第一性空位無(wú)機(jī)

高健,何冰,施思齊③?

①上海大學(xué)材料基因組工程研究院,上海 200444;②上海大學(xué)計(jì)算機(jī)工程與科學(xué)學(xué)院,上海 200444;③上海大學(xué)材料科學(xué)與工程學(xué)院,上海 200444

鋰離子電池?zé)o機(jī)固體電解質(zhì)的計(jì)算*

高?、?,何冰②,施思齊①③?

①上海大學(xué)材料基因組工程研究院,上海 200444;②上海大學(xué)計(jì)算機(jī)工程與科學(xué)學(xué)院,上海 200444;③上海大學(xué)材料科學(xué)與工程學(xué)院,上海 200444

利用高通量計(jì)算來(lái)挖掘材料基因是加速材料研發(fā)的有效手段。利用第一性原理對(duì)目標(biāo)材料進(jìn)行精確計(jì)算,可以得到晶體結(jié)構(gòu)、電子結(jié)構(gòu)、缺陷、相圖與相變、離子/電子輸運(yùn)機(jī)制等信息。通過(guò)綜述鋰離子電池?zé)o機(jī)固體電解質(zhì)材料的計(jì)算研究進(jìn)展,展望了計(jì)算在高電導(dǎo)率、寬電化學(xué)窗口且與正負(fù)極匹配的固體電解質(zhì)材料的高效優(yōu)化、選取和設(shè)計(jì)方面的應(yīng)用前景。

鋰離子電池;無(wú)機(jī)固體電解質(zhì);材料基因工程;高通量計(jì)算;第一性原理計(jì)算

石油資源短缺和環(huán)境問(wèn)題緊迫使“綠色環(huán)?!背蔀槿藗?nèi)找骊P(guān)注的焦點(diǎn)。綠色環(huán)保的核心是“新能源”,新能源的核心是化學(xué)電源。二次鋰(離子)電池因比容量大,儲(chǔ)存和循環(huán)壽命長(zhǎng),無(wú)記憶效應(yīng),環(huán)境污染小,而被廣泛應(yīng)用于便攜電器,如移動(dòng)電話、筆記本電腦、攝像設(shè)備等,從而大力推動(dòng)了信息產(chǎn)業(yè)化。近來(lái)智能電網(wǎng)的儲(chǔ)能電源、混合動(dòng)力車和電動(dòng)車電源等能量型和功率型儲(chǔ)能電源對(duì)其安全性問(wèn)題提出了新的挑戰(zhàn),而電解質(zhì)材料常常是引起安全問(wèn)題的關(guān)鍵。

目前商業(yè)化的鋰離子電池均采用可燃的有機(jī)電解液,即將鋰鹽溶于有機(jī)溶液中,并包含添加劑;凝膠電解質(zhì)是將鹽和溶劑同時(shí)溶于高分子聚合物形成的膠體狀態(tài)電解質(zhì)。電池充放電時(shí)內(nèi)部升溫較容易引起氣體膨脹,從而導(dǎo)致封裝材料破裂、漏液、起火,甚至爆炸。除安全隱患外,電解液的不可逆反應(yīng)可以消耗電極中的活性Li,降低電池的循環(huán)容量;副反應(yīng)產(chǎn)物可能增加電阻,影響充放電功率。此外,此類電池不易小型化,不適當(dāng)?shù)幕厥绽每赡芪廴经h(huán)境。

由于對(duì)安全性的需求引起對(duì)于更多電解質(zhì)種類的關(guān)注。固態(tài)聚合物電解質(zhì)將鋰鹽與聚合物復(fù)合,可應(yīng)用于柔性可彎折電池。因其沒(méi)有自由液體電解質(zhì),從而避免了漏液,而且電極、電解質(zhì)和隔膜式一體結(jié)構(gòu)使電池更耐沖擊、振動(dòng)、變形,大大緩解了燃燒、爆炸等安全問(wèn)題。然而其電導(dǎo)率目前仍難以滿足應(yīng)用需求。熔鹽電解質(zhì)可以根據(jù)電池的需求來(lái)選擇/設(shè)計(jì)合適的陽(yáng)離子-陰離子組合,使得其電導(dǎo)率在工作溫度范圍內(nèi)滿足需求。其電化學(xué)窗口較寬,具有較好的高溫性能,且具備不揮發(fā)、不易燃、不易爆、毒性小、熔點(diǎn)低等特點(diǎn)。但是,由于其成本較高,黏度較大,合成條件苛刻,且對(duì)環(huán)境中水分敏感,還需做進(jìn)一步的研究。

無(wú)機(jī)陶瓷是另一種有競(jìng)爭(zhēng)力的備選電解質(zhì)材料,其具有不可燃燒、不會(huì)爆炸、無(wú)泄漏、不腐蝕等特點(diǎn),是安全問(wèn)題的根本解決方案。目前已研發(fā)出多種鋰離子電導(dǎo)率可以與液體電解質(zhì)相比擬的材料體系。由于固體電解質(zhì)的鋰離子遷移率接近1,因此當(dāng)其與液體電解質(zhì)總電導(dǎo)率相近時(shí),前者的有效鋰離子電導(dǎo)率要高得多。固體電解質(zhì)具有的優(yōu)點(diǎn)還包括:在較寬的溫度范圍內(nèi)具有良好的離子傳導(dǎo)性能及電化學(xué)穩(wěn)定性,可以應(yīng)用于嚴(yán)苛的極端環(huán)境,對(duì)國(guó)防安全有重大意義;較高的致密度和機(jī)械強(qiáng)度,可以抑制鋰枝晶刺穿造成的短路,使得Li負(fù)極成為可能,并顯著提高電池的能量密度。對(duì)于無(wú)機(jī)固體電解質(zhì)的要求包括高的離子電導(dǎo)率、可忽略的電子電導(dǎo)、寬的電化學(xué)窗口,以及與電極材料匹配,包括較低的界面阻抗、不發(fā)生(電)化學(xué)反應(yīng)、脫嵌鋰/熱膨脹過(guò)程中保持應(yīng)力/應(yīng)變匹配等。目前尚未有單種材料可以滿足需求。豐富的鋰離子無(wú)機(jī)晶體種類,既具有巨大的挖掘空間,也為選擇合適的材料提出極大的挑戰(zhàn)。由于無(wú)機(jī)固體電解質(zhì)具有周期性的晶體結(jié)構(gòu),其性質(zhì)易于計(jì)算,以材料基因組思想為基礎(chǔ)將計(jì)算、數(shù)據(jù)庫(kù)與實(shí)驗(yàn)結(jié)合,可以大大減小材料的開(kāi)發(fā)周期和研發(fā)成本。本文將從材料的高通量篩選和精確計(jì)算兩個(gè)角度,綜述鋰離子無(wú)機(jī)固體電解質(zhì)的研究進(jìn)展。

1 鋰(離子)電池?zé)o機(jī)固體電解質(zhì)高通量計(jì)算進(jìn)展

2011年,美國(guó)總統(tǒng)奧巴馬提出“先進(jìn)制造業(yè)伙伴關(guān)系”計(jì)劃,明確再工業(yè)化戰(zhàn)略以期實(shí)現(xiàn)制造業(yè)的復(fù)興。2011年底推出的“材料基因組計(jì)劃”作為其重要部分,尋找和建立材料從原子排列到相的形成到顯微組織的形成到材料性能與使用壽命之間的相互關(guān)系,期望大大加快材料研發(fā)速度,降低材料研發(fā)的成本,提高材料設(shè)計(jì)的成功率,為產(chǎn)品和設(shè)備提供新材料,并帶動(dòng)現(xiàn)今制造業(yè)的發(fā)展。2011年12月21—23日,以“材料科學(xué)系統(tǒng)工程”為主題的香山會(huì)議在北京舉行,將鋰離子電池材料作為代表性示范材料之一,計(jì)劃將基于計(jì)算模擬的材料數(shù)據(jù)庫(kù)、開(kāi)源軟件工具以及機(jī)器學(xué)習(xí)方法應(yīng)用于鋰(離子)電池的研發(fā)的全產(chǎn)業(yè)鏈,系統(tǒng)地提高能量密度,降低成本,提高服役壽命,并大大縮短鋰(離子)電池產(chǎn)業(yè)鏈的研發(fā)周期。

Ceder教授是材料基因組計(jì)劃的發(fā)起者之一,原就職于麻省理工大學(xué),現(xiàn)就職于加州大學(xué)伯克利分校。他的研究組開(kāi)發(fā)機(jī)器學(xué)習(xí)方法預(yù)測(cè)新結(jié)構(gòu)[1]和挖掘現(xiàn)有數(shù)據(jù)庫(kù)中缺失的材料[2-3],在已有數(shù)據(jù)庫(kù)基礎(chǔ)上建立新的數(shù)據(jù)庫(kù),并對(duì)其中的材料進(jìn)行第一性原理計(jì)算[4-5]。目前已完成開(kāi)源交互式可視化平臺(tái)的建設(shè),并期望將材料的設(shè)計(jì)、計(jì)算、證實(shí)、發(fā)布和分析測(cè)試結(jié)合起來(lái),以提高材料開(kāi)發(fā)速度[6]。Wang等[7]從氧離子堆積方式與鋰離子通道的角度,提出氧的體心立方堆積,預(yù)示了高電導(dǎo)率的可能性??紤]到固體電解質(zhì)與電極材料的界面電阻常常是全電池電阻的重要來(lái)源,Richards等[8]大量預(yù)測(cè)不同電解質(zhì)/包覆層/電極材料之間的穩(wěn)定性,以及化學(xué)反應(yīng)可能形成的界面相產(chǎn)物,并計(jì)算界面相的離子電導(dǎo)率,以預(yù)測(cè)高性能的組合。此外,Ceder目前在各個(gè)學(xué)校工作的學(xué)生,依然為全固態(tài)電池高通量計(jì)算做出了大量相關(guān)的工作。馬里蘭大學(xué)的Mo等[9-10]從電化學(xué)窗口的角度,對(duì)固體電解質(zhì)材料相對(duì)于正/負(fù)極的電化學(xué)穩(wěn)定性進(jìn)行了高通量計(jì)算。在全固態(tài)電池的服役過(guò)程中,固體電解質(zhì)的力學(xué)性能同樣重要。加州大學(xué)圣地亞哥分校的Ong等[11]計(jì)算了堿金屬超離子導(dǎo)體的彈性性質(zhì)??紤]到無(wú)機(jī)快離子導(dǎo)體除了可以作為固體電解質(zhì)材料替代有機(jī)電解液,同樣也可以作為水系電池的隔膜材料,Ong等[12]利用第一性原理計(jì)算了鋰離子和鈉離子超離子導(dǎo)體在不同電勢(shì)以及酸堿性條件下相對(duì)于水系電解液的穩(wěn)定性,并作出Pourbaix圖,同時(shí)指出氧化物材料的穩(wěn)定性通常優(yōu)于硫化物/鹵化物材料,堿金屬類型同樣會(huì)影響材料相對(duì)于環(huán)境的穩(wěn)定性。

具有高的鋰離子電導(dǎo)率是無(wú)機(jī)固體電解質(zhì)材料的首要要求,而連通的鋰離子通道是高電導(dǎo)率的先決條件。對(duì)于實(shí)驗(yàn)手段而言,鋰離子通道可以通過(guò)中子衍射直接得到[13-14]。對(duì)于理論研究而言,可以通過(guò)基于能量變化的第一性原理[15-18],基于配位環(huán)境變化的鍵價(jià)方法(bond valence method, BVM)[17-21],以及基于幾何結(jié)構(gòu)的Voroni-Dirichlet分割[22]、Colony表面[23]、Procrystal分析[24]等方法計(jì)算獲得。其中,鍵價(jià)理論一直以來(lái)廣泛應(yīng)用于晶體學(xué)中,可確定晶體結(jié)構(gòu)里面原子的占據(jù)位置[25]。對(duì)于小體積的離子,如Ag+或者Li+,所有的原子可占據(jù)位點(diǎn)可能相互連通,形成一個(gè)原子價(jià)地圖(valence map)。González-Platas等[26]編寫(xiě)VALMAP 程序,首次展示了該地圖。新加坡國(guó)立大學(xué)(National University of Singapore, NUS)的Adams小組[27-28]基于BVM開(kāi)發(fā)了新程序,可以獲得三維的原子價(jià)態(tài)圖,即“離子通道”。BVM最大的優(yōu)勢(shì)在于“快速”和“可視化”,使得高通量計(jì)算并篩選固體電解質(zhì)成為可能[27,29]。此外,他們?cè)诶碚摲矫孀龀龅呐?,包括使該?jì)算方法更適合于計(jì)算載流子的離子通道[29-32],以及賦予計(jì)算結(jié)果能量尺度(類似于躍遷勢(shì)壘)的意義[33-34]。得益于這種方法的低計(jì)算成本,該組已完成對(duì)于無(wú)機(jī)晶體結(jié)構(gòu)數(shù)據(jù)庫(kù)(Inorganic Crystal Structure Database, ICSD)中堿土金屬離子材料中鋰離子通道的計(jì)算和材料的篩選[35]。此外,該組與Aarhus大學(xué)合作,利用Procrystal方法可視化鋰離子遷移通道。該方法基于原子的球殼狀電子密度,同樣具有計(jì)算快速的特點(diǎn),并應(yīng)用在電池材料的篩選中[24]。

中國(guó)科學(xué)院物理研究所陳立泉院士是中國(guó)“材料科學(xué)系統(tǒng)工程”香山會(huì)議的發(fā)起人之一,目前其課題組從國(guó)際衍射數(shù)據(jù)中心(International Centre for Diffraction Data, ICDD) 數(shù)據(jù)庫(kù)中獲得材料的結(jié)構(gòu)數(shù)據(jù),從中提取含鋰、無(wú)重金屬、無(wú)變價(jià)元素的材料作為備選數(shù)據(jù)庫(kù)利用BVM計(jì)算其離子通道。篩選過(guò)程如圖1所示[36],將鋰離子通道連通的材料作為固體電解質(zhì)候選材料,并對(duì)目標(biāo)材料進(jìn)行第一性原理計(jì)算研究[37]。該課題組采用改進(jìn)的方法,將鍵價(jià)參數(shù)用Morse勢(shì)與靜電庫(kù)侖勢(shì)表示,得到使離子通道連通的活化能,與密度泛函理論(density functional theory, DFT)計(jì)算值比較如圖2所示[38]。2015年4月23日,由上海大學(xué)牽頭的上海材料基因組工程研究院成立;2016年2月4日,北京材料基因工程創(chuàng)新聯(lián)盟成立。新型能源材料,包括鋰(離子)全固態(tài)電池和鋰離子無(wú)機(jī)固體電解質(zhì),均是重要的研究方向。

圖1 固態(tài)電解質(zhì)篩選流程圖[36]

圖2 基于BV方法和DFT方法計(jì)算鋰離子輸運(yùn)活化能(Ea)[38]

2 常見(jiàn)鋰離子無(wú)機(jī)固體電解質(zhì)材料的精確計(jì)算研究進(jìn)展

電解質(zhì)材料位于正負(fù)極材料之間,起到輸運(yùn)離子、隔絕電子的作用。因此,以實(shí)際應(yīng)用為導(dǎo)向,對(duì)于無(wú)機(jī)固體電解質(zhì)材料的計(jì)算研究大多集中在高電導(dǎo)率材料的成分/組分優(yōu)化、擴(kuò)散系數(shù)、輸運(yùn)機(jī)制,以及相對(duì)于電極材料以及環(huán)境的穩(wěn)定性等方面。由于快離子導(dǎo)體中常常有過(guò)量的鋰離子可占據(jù)位置,因此建立無(wú)序的結(jié)構(gòu)模型通常是理論計(jì)算的難點(diǎn)之一。無(wú)序常常會(huì)有助于鋰離子的協(xié)同躍遷,這需要采用原子尺度的計(jì)算方法來(lái)闡明其中的輸運(yùn)機(jī)理。下面分別就常見(jiàn)的固體電解質(zhì)材料(結(jié)構(gòu)如圖1(a)~1(d)所示)簡(jiǎn)述其部分計(jì)算的研究進(jìn)展。

1977年,Goodenough和Hong等[39]提出高電導(dǎo)率NASICON (Na SuperIonic CONductor)型鋰離子無(wú)機(jī)固體電解質(zhì)材料LiM2(PO4)3,其中MO6八面體和PO4四面體組成共價(jià)的[M1M2P3O12]-骨架,導(dǎo)電鋰離子分布在骨架中形成三維的鋰離子通道。鋰離子存在的兩種占位類型A1和A2,純相中A1位占滿而A2位留空,低價(jià)摻雜可以使A2位部分占據(jù)。Francisco等[40]將第一性原理計(jì)算與實(shí)驗(yàn)結(jié)果相結(jié)合,對(duì)不同占據(jù)模式導(dǎo)致的熵變進(jìn)行了討論。豐富的摻雜取代,使NASICON結(jié)構(gòu)成為研究化學(xué)摻雜-晶體結(jié)構(gòu)-導(dǎo)電性能關(guān)系的典型范例之一[41],其中Li1.3Al0.3Ti1.7(PO4)3具有最高的電導(dǎo)率[42-43]。然而,由于載流子濃度和遷移率的提高在實(shí)驗(yàn)上很難區(qū)分,該摻雜使電導(dǎo)率提高的機(jī)理并不明確。Aono等[44]提出Al摻雜導(dǎo)致的致密度提高和晶界電阻降低或許是其具有高電導(dǎo)率的本質(zhì)原因。Nuspl等[45]利用分子力學(xué)和分子動(dòng)力學(xué)方法模擬了純相LiTi2(PO4)3以及Al摻雜體系中的鋰離子擴(kuò)散通道和活化能,證明了鋰離子遷移勢(shì)壘(0.30 eV)受Al摻雜的影響較小。但是,Lang等[46]利用第一性原理計(jì)算了LiTi2(PO4)3中Ti被不同元素取代后(LXTP, X可為3、4、5價(jià)元素)間隙位以及空位鋰離子擴(kuò)散的躍遷勢(shì)壘,結(jié)果表明間隙位鋰離子在遵循Knock-off機(jī)制時(shí)躍遷勢(shì)壘低至0.19 eV。然而為了引入間隙位鋰離子,用Al3+部分取代Ti4+將會(huì)導(dǎo)致鋰離子“陷入”Al附近,反而使躍遷勢(shì)壘提高。

1978年,Hong等[47]提出同樣具有三維離子通道的LISICON(Li SuperIonic CONductor)結(jié)構(gòu),Li14Zn(GeO4)4,并可擴(kuò)展為γ-Li3PO4體系(xLi4MIVO4—(1-x)Li3MVO4;MIV= Ge,Ti;MV=As,V),該體系僅在有限的濃度(x=0.4~0.6)和溫度范圍內(nèi)可以形成固溶體純相[48]。第一性原理方法主要用于計(jì)算周期性結(jié)構(gòu),對(duì)于該固溶體體系通常需要擴(kuò)展晶胞以滿足計(jì)量比要求,且該體系鋰離子擴(kuò)散過(guò)程中復(fù)雜的化學(xué)環(huán)境和多種輸運(yùn)機(jī)制給計(jì)算帶來(lái)很大的挑戰(zhàn)。Fujimura和Tanaka等[49]利用團(tuán)簇展開(kāi)法建立較寬范圍的固溶體組分模型,確定有序—無(wú)序相轉(zhuǎn)變溫度以及多種摻雜/取代組分三元相圖,并利用第一性原理分子動(dòng)力學(xué)方法模擬了高溫鋰離子電導(dǎo)率;隨后結(jié)合實(shí)驗(yàn)數(shù)據(jù),利用機(jī)器學(xué)習(xí)的方法預(yù)測(cè)各個(gè)組分100 ℃的電導(dǎo)率,并系統(tǒng)地對(duì)該結(jié)構(gòu)進(jìn)行組成與電導(dǎo)率優(yōu)化。然而,對(duì)于該體系的組分調(diào)控是有限的,且理論最大電導(dǎo)率仍不超過(guò)10-3S/cm。2000年,Kanno等[50]提出硫代LISICON結(jié)構(gòu)(thio-LISICON)具有比氧系更高的電導(dǎo)率。2011年,Kamaya與Kanno等[51]報(bào)道了Li10GeP2S12,其室溫鋰離子電導(dǎo)率可高達(dá)10-2S/cm,并結(jié)合第一性原理計(jì)算確定其晶體結(jié)構(gòu)。其四面體4d位的P/Ge分?jǐn)?shù)占據(jù)為建模帶來(lái)難度[52]。由經(jīng)典[18]和第一性原理[53]分子動(dòng)力學(xué)計(jì)算可得超快的一維鋰離子通道,可動(dòng)鋰離子之間的強(qiáng)庫(kù)侖相互作用導(dǎo)致“線狀協(xié)同運(yùn)動(dòng)(stringlike cooperative ionic motion)”[54]。Du等[52]認(rèn)為鋰離子的擴(kuò)散勢(shì)壘與其配位環(huán)境相關(guān),三種不同配位方式的一維通道勢(shì)壘分別為0.16、0.20、0.29 eV,二維通道分別為0.37、0.27、0.24 eV。中子衍射結(jié)果表明低溫時(shí)一維通道連通,高溫時(shí)二維通道開(kāi)始連通[55]。固態(tài)核磁共振結(jié)果證實(shí)了各向異性的三維通道,一維超快鋰離子通道的活化能為0.16 eV,二維快鋰離子通道的活化能為0.26 eV[56],均證實(shí)了計(jì)算結(jié)果。然而,考慮多體之間的范德華力時(shí)會(huì)得出三維通道的結(jié)論[57],且范德華力對(duì)于力學(xué)性質(zhì)而言非常重要,計(jì)算表明材料具有較好的延展性。利用第一性原理計(jì)算衍生體系Li10±1MP2X12(M=Ge,Si,Sn,Al,P;X=O,S,Se)體的相圖、電化學(xué)穩(wěn)定性和電導(dǎo)率,表明取代導(dǎo)致的晶格參數(shù)減小會(huì)顯著抑制鋰離子輸運(yùn),但是晶格參數(shù)增大對(duì)于電導(dǎo)率的提高并不明顯。雖然氧化物具有更高的化學(xué)穩(wěn)定性,但是氧原子替換硫原子會(huì)導(dǎo)致結(jié)構(gòu)熱穩(wěn)定性下降,且氧化物電導(dǎo)率極低。此外,考慮到Ge對(duì)于Li負(fù)極通常不穩(wěn)定,而Si和Sn不僅穩(wěn)定且價(jià)格更便宜,計(jì)算表明Li10SiP2S12和Li10SnP2S12與Ge系材料性能相近[58](Sn[59-60]、Si[60-62]取代已被實(shí)驗(yàn)驗(yàn)證)。硫代γ-Li3PO4體系及其相應(yīng)的納米結(jié)構(gòu)和玻璃態(tài)同樣是研究熱點(diǎn)。Liu等[63]認(rèn)為β-Li3PS4是高電導(dǎo)率相;Yang等[64]利用第一性原理分子動(dòng)力學(xué)計(jì)算了β-Li3PS4和γ-Li3PS4的擴(kuò)散系數(shù),認(rèn)為前者更高的電導(dǎo)率來(lái)源于本征的鋰空位,而具有更多缺陷位的納米團(tuán)簇中鋰離子遷移率更高。Xiao等[38]利用BVM算得O部分取代S反而可以提高電導(dǎo)率。Ohara等[65]利用密度泛函理論和可逆蒙特卡洛方法,并結(jié)合實(shí)驗(yàn)結(jié)果分析二元Li2S-P2S5玻璃體系的相組分、局域結(jié)構(gòu)以及電子結(jié)構(gòu),認(rèn)為可通過(guò)調(diào)節(jié)PSx和LiSx多面體共享邊的結(jié)構(gòu)以及降低電子在P和橋接S之間的轉(zhuǎn)移,來(lái)提高體系的電導(dǎo)率。

1953年,Brous等合成Li0.5La0.5TiO3鈣鈦礦型固體電解質(zhì)。通過(guò)調(diào)節(jié)組分得到的Li3xLn2/3-x□1/3-2xTiO3本征存在晶格空位,可以用滲流機(jī)制模型定性地?cái)M合電導(dǎo)率 σ與鋰離子濃度n、空位濃度n′、滲流閾值xc的關(guān)系式:

這里,α為晶格扭曲導(dǎo)致局域無(wú)序度增加的修正項(xiàng),扭曲可以忽略時(shí)α=0。在立方結(jié)構(gòu)中,對(duì)于三維通道,xc=0.311 7,μ=2,擬合結(jié)果與實(shí)驗(yàn)濃度-電導(dǎo)率圖符合很好[66-67]。1993至1994年,Inaguma等[68-69]發(fā)現(xiàn)Li0.33Ln0.56TiO3具有最高的電導(dǎo)率,然而由于O的電子2p軌道具有不對(duì)稱性[70],實(shí)驗(yàn)中常發(fā)現(xiàn)二維的鋰離子通道[13,71-72]。此時(shí)xc=0.296,μ=1.3。滲流模型先驗(yàn)地假定Li、La和空位的晶格位等價(jià),而實(shí)際上鈣鈦礦具有富La層和貧La層的超晶格結(jié)構(gòu),且層間Li、La與空位占據(jù)存在無(wú)序性。這不僅造成其定量地偏離簡(jiǎn)單的滲流模型,亦提高了第一性原理計(jì)算的建模難度[73]。Nakayama等[74]結(jié)合團(tuán)簇展開(kāi)、蒙特卡洛方法和第一性原理計(jì)算,得到La和空位與溫度相關(guān)的排列方式。Catti等根據(jù)實(shí)驗(yàn)結(jié)果建立各個(gè)組分相應(yīng)的空間群模型,通過(guò)靜電勢(shì)分布推測(cè)鋰離子最可能的占據(jù)位置[75]或通過(guò)基態(tài)能計(jì)算確定最穩(wěn)定Li-La-空位分布[76-77]。Tanaka等[70]通過(guò)分析鋰離子擴(kuò)散能面中能谷的構(gòu)型特征,預(yù)測(cè)鋰離子分布方式以及對(duì)應(yīng)的輸運(yùn)通道。Jay和Kilner等[78]創(chuàng)新地利用遺傳算法(genetic algorithm),使子構(gòu)型不斷繼承高離子電導(dǎo)率局域序結(jié)構(gòu)的“父體(富La層)”和“母體(貧La層)”的“基因”,最終“繁衍”出高電導(dǎo)率結(jié)構(gòu)。以上結(jié)構(gòu)模型建立后,鋰離子輸運(yùn)機(jī)制的研究就順理成章,其與Li/La/空位組分以及層內(nèi)/層間序結(jié)構(gòu)均有很大關(guān)系。然而,該類材料總電導(dǎo)率限制因素常歸因于過(guò)高的晶界電阻。Moriwake等[79]構(gòu)造了直角的疇界,解釋實(shí)驗(yàn)上觀察到的疇現(xiàn)象[80-81],但是該模型并不能解釋復(fù)雜得多的實(shí)際晶界。

2003年Weppner等[82]發(fā)現(xiàn)石榴石(Garnet)結(jié)構(gòu)Li5La3M2O12(M=Ta,Nb)具有較高的離子電導(dǎo)率和較寬的電化學(xué)窗口,且因其相對(duì)于金屬Li穩(wěn)定而受到關(guān)注。2007年Murugan等[83]發(fā)現(xiàn)Li7La3Zr2O12,室溫離子電導(dǎo)率超過(guò)10-4S/ cm。石榴石通式為,其中孤立的(SiO4)四面體四個(gè)頂角與(B3+O6)八面體頂角相連,A2+在十二面體空隙中。其鋰離子化合物變體LixLa3M2O12(x=3~7.5;M=W,Te,Ta,Nb,Zr,Y,…)中,M占據(jù)B位,La占據(jù)A位,Li在3個(gè)四面體(原結(jié)構(gòu)中的Si位)以及6個(gè)八面體(原結(jié)構(gòu)中為空)位占據(jù),分配方式與鋰含量有關(guān),且鋰離子之間由于相互作用而盡量遠(yuǎn)離。極限值為3時(shí)僅有四面體位占據(jù),7.5時(shí)一半四面體24 d和全部八面體位中的一半96 h位占據(jù)[84]?!皊tuffed”的鋰占據(jù)方式為該體系實(shí)驗(yàn)研究的熱點(diǎn)之一[14,84-87]。Wang等[88]利用逆向蒙特卡洛法和經(jīng)典分子動(dòng)力學(xué)方法,以Li5La3Ta2O12為例研究鋰的局域結(jié)構(gòu)和熱力學(xué)分布。Adams等[89]和Bernstein等[90]以Li7La3Zr2O12為例,利用鍵價(jià)方法、分子動(dòng)力學(xué)和第一性原理計(jì)算等方法,研究其鋰離子分布以及溫度相關(guān)的相變。實(shí)驗(yàn)表明Li含量在6.5左右時(shí)四方相—立方相轉(zhuǎn)變溫度較低,且室溫電導(dǎo)率可高達(dá)10-3S/cm[91]。Bernstein等[90]解釋相變機(jī)理:四方相中鋰離子有序分布,立方相中鋰離子無(wú)序分布,相變伴隨著鋰的重新分布和晶格向高對(duì)稱性扭曲;引入鋰空位可以增加構(gòu)型熵,緩解立方相無(wú)序化帶來(lái)的能量增加,導(dǎo)致更低的四方—立方相轉(zhuǎn)變溫度。Santosh等[92]通過(guò)第一性原理計(jì)算,認(rèn)為鋰空位缺陷生成能較低,或許可以帶來(lái)額外的非化學(xué)計(jì)量比空位。四面體的Li是否參與鋰離子輸運(yùn)在實(shí)驗(yàn)研究中被長(zhǎng)期爭(zhēng)論[93]。Xu等[94]利用第一性原理計(jì)算研究了立方相不同鋰含量石榴石結(jié)構(gòu)LixLa3M2O12(x=3,5,7;M=Te,Nb,Zr)的鋰離子占據(jù)方式和躍遷勢(shì)壘。根據(jù)不同含量的鋰離子配位推測(cè)可知:x=3,鋰離子傾向于占據(jù)四面體位,基本不可躍遷;x=5,八面體位鋰離子傾向于繞過(guò)四面體鋰占據(jù)位躍遷,勢(shì)壘約為0.8 eV;x=7,鋰離子傾向于經(jīng)過(guò)四面體空位在八面體之間躍遷,勢(shì)壘約為0.3 eV;實(shí)際活化能為不同躍遷方式的幾率平均[94]。然而,Wang等[88]認(rèn)為x=5時(shí)鋰離子也不會(huì)繞過(guò)四面體,以八面體—八面體方式直接躍遷。Adams等[89]認(rèn)為四面體不參與鋰離子遷移,但四面體和八面體鋰離子通道并不是分離的,四面體的占據(jù)會(huì)阻礙鋰離子在八面體之間有效躍遷,因此可以通過(guò)M位高價(jià)摻雜等方式引入足夠的四面體空位來(lái)提高電導(dǎo)率??勺⒁獾?,Al摻雜可以有效穩(wěn)定立方相,增加空位濃度,提高電導(dǎo)率[15],計(jì)算證實(shí)了Al在Li位的摻雜方式[95]。無(wú)序的空位有助于載流子協(xié)同運(yùn)動(dòng),計(jì)算表明協(xié)同輸運(yùn)機(jī)制廣泛存在于Li7La3Zr2O12[96-97]和Li5La3Ta2O12

[98]中。為了優(yōu)化電導(dǎo)率,Miara等[99]計(jì)算不同摻雜后證實(shí),增加晶胞參數(shù)不會(huì)顯著提高電導(dǎo)率,減小晶胞參數(shù)會(huì)快速降低電導(dǎo)率,且鋰離子電導(dǎo)率與空位和鋰的濃度均相關(guān)。因此,異價(jià)摻雜使得鋰離子與四面體/八面體鋰空位濃度適中并保持立方結(jié)構(gòu),是優(yōu)化電導(dǎo)率的方向??紤]到實(shí)際應(yīng)用環(huán)境的(電)化學(xué)與機(jī)械性能穩(wěn)定,計(jì)算研究了LixLa3M2O12與H2O/CO2[100]界面、Li[101]和LiCoO2電極材料[102]界面的穩(wěn)定性及其彈性性質(zhì)[103]。

2012年,Zhao等[104]基于鈣鈦礦ABX3結(jié)構(gòu),用一價(jià)陽(yáng)離子Li+占據(jù)X位得到富鋰材料,并用-1價(jià)的鹵族元素和-2價(jià)的O分別來(lái)替代A位和B位。此時(shí)材料中元素的電性與傳統(tǒng)鈣鈦礦材料相反,且具有高鋰離子濃度,因此稱之為“富鋰的反鈣鈦礦材料” (Lithium-rich anti-perovskites, LiRAP),其中Li3OCl0.5Br0.5具有該體系最高的室溫電導(dǎo)率(6.05×10-3S/cm)。Deng等[105]根據(jù)不同鹵化物局域環(huán)境的鋰離子躍遷勢(shì)壘建立鍵滲流模型,認(rèn)為0.235≤x≤0.395時(shí)Li3OCl1-xBrx具有更高的電導(dǎo)率,并利用第一性原理分子動(dòng)力學(xué)證實(shí)Li3OCl0.75Br0.25擴(kuò)散系數(shù)高于Li3OCl0.5Br0.5。計(jì)算表明反鈣鈦礦是亞穩(wěn)態(tài),0 K時(shí)單相Li3OA(A=Cl,Br)相對(duì)于混合相Li2O和LiA能量更高[106-108],但是可以通過(guò)提高溫度超過(guò)550 K獲得[108]。Chen等[109]通過(guò)計(jì)算聲子譜發(fā)現(xiàn)Li3OCl力學(xué)不穩(wěn)定,Li6O八面體的傾斜將降低整體能量,但當(dāng)溫度超過(guò)480 K時(shí)振動(dòng)熵可以穩(wěn)定其結(jié)構(gòu)。Zhao等[104]提出材料制備的熱處理歷史導(dǎo)致微觀結(jié)構(gòu)的變化,例如空位增多、結(jié)構(gòu)扭曲(如八面體的傾斜)、局域無(wú)序等,這為確定載流子類型以及研究微觀輸運(yùn)機(jī)制帶來(lái)難度?;罨軐?shí)驗(yàn)值也并不統(tǒng)一(0.18 eV[104]和0.36 eV[110])。Zhang等[106]利用第一性原理的分子動(dòng)力學(xué)方法,認(rèn)為當(dāng)材料存在鋰空位時(shí)可以在熔點(diǎn)以下獲得超離子相變(亞晶格融化)。Zhang等[106]和Deng等[105]均認(rèn)為材料遵循空位躍遷,活化能為0.3~0.4 eV。Emly等[107]認(rèn)為材料中的主要缺陷為電中性的弗蘭克缺陷對(duì),協(xié)同輸運(yùn)機(jī)制躍遷勢(shì)壘為0.15 eV。Mouta等[108,111]則用經(jīng)典原子準(zhǔn)靜態(tài)計(jì)算,推斷材料中的主要缺陷為L(zhǎng)iCl肖脫基缺陷對(duì),鋰空位的遷移勢(shì)壘約為0.3 eV。由于電荷補(bǔ)償機(jī)制,肖脫基缺陷可以提高間隙鋰缺陷濃度,推填子機(jī)制躍遷時(shí)勢(shì)壘約為0.1 eV。Lu等[112]利用第一性原理計(jì)算該體系電中性缺陷對(duì)和導(dǎo)致的間隙鋰和空位鋰的缺陷生成能和遷移能,并利用經(jīng)典分子動(dòng)力學(xué)研究其擴(kuò)散機(jī)理,支持肖脫基缺陷對(duì)以及鋰空位躍遷,其經(jīng)過(guò)Cl空位路徑的活化能<0.34 eV。計(jì)算均表明本征缺陷濃度依然十分低,難以達(dá)到實(shí)驗(yàn)得到的電導(dǎo)率。因此空位/間隙位輸運(yùn)機(jī)制以及不同的活化能,可能歸結(jié)于不同制備過(guò)程中[104,110]非本征缺陷濃度的過(guò)量程度、鹵素的耗損以及無(wú)序結(jié)構(gòu)導(dǎo)致的協(xié)同輸運(yùn)機(jī)制。如何調(diào)控和優(yōu)化電導(dǎo)率,目前仍未有定論。關(guān)于該材料的電化學(xué)窗口,亦有一定爭(zhēng)議性:Zhang等[106]算得電化學(xué)窗口接近5 eV;Braga等[113]算出電子能隙為6.44 eV,130 ℃的循環(huán)伏安實(shí)驗(yàn)表明實(shí)際的穩(wěn)定范圍超過(guò)8 V;Emly等[107]通過(guò)計(jì)算鋰化學(xué)勢(shì)-組分相圖發(fā)現(xiàn),雖然Li3OCl具有超過(guò)5 eV的帶隙,然而當(dāng)對(duì)其施加2.5 V偏壓時(shí),反鈣鈦礦材料傾向于分解為L(zhǎng)i2O2、LiCl和LiClO4。

3 小結(jié)與展望

鋰離子無(wú)機(jī)固體電解質(zhì)材料的應(yīng)用有希望提高鋰(離子)電池的安全性和能量密度,但獲取可以和有機(jī)液體電解質(zhì)電導(dǎo)率(>1 mS/cm)比擬的材料依舊是一項(xiàng)挑戰(zhàn)。利用材料基因組的思想將計(jì)算、數(shù)據(jù)庫(kù)與實(shí)驗(yàn)結(jié)合,有希望提高無(wú)機(jī)固體電解質(zhì)材料的研發(fā)和優(yōu)化速度,以滿足應(yīng)用需求,包括高的電導(dǎo)率、良好的機(jī)械性能、對(duì)環(huán)境以及正負(fù)極的穩(wěn)定性等。本文從材料的高通量篩選以及針對(duì)特定材料的精確計(jì)算兩方面,綜述鋰離子無(wú)機(jī)固體電解質(zhì)的計(jì)算研究進(jìn)展。從材料的篩選與設(shè)計(jì)方面,新型高性能材料仍有待于進(jìn)一步的研究和探索。從特定材料的機(jī)理研究方面,快離子導(dǎo)體具有無(wú)序性與載流子協(xié)同輸運(yùn)的特征[114],其所涉及的關(guān)鍵物理問(wèn)題可能更為復(fù)雜,仍然缺乏深入的認(rèn)識(shí),例如無(wú)序的晶體結(jié)構(gòu)模型、快離子導(dǎo)體的相變機(jī)制、協(xié)同運(yùn)動(dòng)的微觀機(jī)制、載流子與骨架離子/載流子與電子之間的相互作用以及晶體結(jié)構(gòu)與高電導(dǎo)率之間的構(gòu)效關(guān)系等等,而第一性原理計(jì)算與分子動(dòng)力學(xué)模擬提供了微觀機(jī)理研究的有力工具。對(duì)于全固態(tài)電池而言,界面電阻常常是問(wèn)題的關(guān)鍵,實(shí)際界面不僅要考慮復(fù)雜的空間電荷層,而且還需要考慮互擴(kuò)散導(dǎo)致的有限固溶體組分、由于晶格匹配造成的應(yīng)力、界面形貌/分形與納米結(jié)構(gòu)等復(fù)雜的問(wèn)題,這不僅包括長(zhǎng)期以來(lái)有關(guān)納米/團(tuán)簇計(jì)算的挑戰(zhàn),也涉及實(shí)際充放電中由動(dòng)力學(xué)控制的結(jié)構(gòu)演化/熱力學(xué)非平衡過(guò)程,需要從多時(shí)間-空間尺度來(lái)綜合考慮。

(2016年5月4日收稿)■

[1] FISCHER C C, TIBBETTS K J, MORGAN D, et al. Predicting crystal structure by merging data mining with quantum mechanics [J]. Nat Mater, 2006, 5(8): 641-646.

[2] HAUTIER G, FISCHER C C, JAIN A, et al. Finding nature's missing ternary oxide compounds using machine learning and density functional theory [J]. Chem Mater, 2010, 22(12): 3762-3767.

[3] HAUTIER G, FISCHER C, EHRLACHER V, et al. Data mined ionic substitutions for the discovery of new compounds [J]. Inorg Chem, 2011, 50(2): 656-663.

[4] CEDER G. Opportunities and challenges for frst-principles materials design and applications to Li battery materials [J]. MRS Bull, 2010, 35(9): 693-701.

[5] CEDER G, HAUTIER G, JAIN A, et al. Recharging lithium battery research with frst-principles methods [J]. MRS Bull, 2011, 36(3): 185-191.

[6] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J]. APL Mater, 2013, 1(1): 011002.

[7] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors [J]. Nat Mater, 2015, 14(10): 1026-1031.

[8] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries [J]. Chem Mater, 2016, 28(1): 266-273.

[9] ZHU Y, HE X, MO Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solidstate Li-ion batteries [J]. J Mater Chem A, 2016, 4(9): 3253-3266.

[10] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations [J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693.

[11] DENG Z, WANG Z, CHU I H, et al. Elastic properties of alkali superionic conductor electrolytes from frst principles calculations [J]. J Electrochem Soc, 2016, 163(2): A67-A74.

[12] RADHAKRISHNAN B, ONG S P. Aqueous stability of alkali superionic conductors from frst-principles calculations [J]. Frontiers in Energy Research, 2016. doi: 10.3389/fenrg.2016.00016.

[13] YASHIMA M, ITOH M, INAGUMA Y, et al. Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3[J]. J Am Chem Soc, 2005, 127(10): 3491-3495.

[14] HAN J T, ZHU J L, LI Y T, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12[J]. Chem Commun, 2012, 48(79): 9840-9842.

[15] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: A fast lithium-ion conductor [J]. Inorg Chem, 2011, 50(3): 1089-1097.

[16] LI W, WU G T, ARAUJO C M, et al. Li+ion conductivity and diffusion mechanism in α-Li3N and β-Li3N [J]. Energ Environ Sci, 2010, 3(10): 1524-1530.

[17] ADAMS S, RAO R P. Ion transport and phase transition in Li7-xLa3(Zr2-xMx)O12(M=Ta5+, Nb5+, x=0, 0.25) [J]. J Mater Chem, 2012, 22(4): 1426-1434.

[18] ADAMS S, RAO R P. Structural requirements for fast lithium ion migration in Li10GeP2S12[J]. J Mater Chem, 2012, 22(16): 7687-7691.

[19] ADAMS S, SWENSON J. Pathway models for fast ion conductors by combination of bond valence and reverse Monte Carlo methods [J].Solid State Ionics, 2002, 154: 151-159.

[20] ADAMS S. Bond valence analysis of structure-property relationships in solid electrolytes [J]. J Power Sources, 2006, 159(1): 200-204.

[21] THANGADURAI V, ADAMS S, WEPPNER W. Crystal structure revision and identifcation of Li+-ion migration pathways in the garnetlike Li5La3M2O12(M=Nb, Ta) oxides [J]. Chem Mater, 2004, 16(16): 2998-3006.

[22] ANUROVA N A, BLATOV V A. Analysis of ion-migration paths in inorganic frameworks by means of tilings and Voronoi-Dirichlet partition: a comparison [J]. Acta Crystallogr B, 2009, 65: 426-434.

[23] NUSPL G, TAKEUCHI T, WEISS A, et al. Lithium ion migration pathways in LiTi2(PO4)3and related materials [J]. J Appl Phys, 1999, 86(10): 5484-5491.

[24] FILSO M O, TURNER M J, GIBBS G V, et al. Visualizing lithium-ion migration pathways in battery materials [J]. Chem-Eur J, 2013, 19(46): 15535-15544.

[25] BROWN I D. Recent developments in the methods and applications of the bond valence model [J]. Chem Rev, 2009, 109(12): 6858-6919.

[26] GONZALEZ-PLATAS J, GONZALEZ-SILGO C, RUIZ-PEREZ C. VALMAP2.0: contour maps using the bond-valence-sum method [J]. J Appl Crystallogr, 1999, 32: 341-344.

[27] ADAMS S, SWENSON J. Determining ionic conductivity from structural models of fast ionic conductors [J]. Phys Rev Lett, 2000, 84(18): 4144-4147.

[28] ADAMS S, RAO R P. Understanding ionic conduction and energy storage materials with bond-valence-based methods [M]//BROWN I D, POEPPELMEIER K R (eds). Bond Valences. [S. l.]: Springer Berlin Heidelberg, 2014: 129-159.

[29] ADAMS S. Relationship between bond valence and bond softness of alkali halides and chalcogenides [J]. Acta Crystallogr B, 2001, 57: 278-287.

[30] ADAMS S, TAN E S. Pathways for ion transport in nanostructured BaF2: CaF2[J]. Solid State Ionics, 2008, 179(1-6): 33-37.

[31] ADAMS S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids [J]. Solid State Ionics, 2006, 177: 1625-1630.

[32] ADAMS S. SoftBV web pages [M]. G?ttingen: Universit?t G?ttingen, 2003.

[33] ADAMS S, RAO R P. High power lithium ion battery materials by computational design [J]. Phys Status Solidi A, 2011, 208(8): 1746-1753.

[34] ADAMS S, RAO R P. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes [J]. Phys Chem Chem Phys, 2009, 11(17): 3210-3216.

[35] AVDEEV M, SALE M, ADAMS S, et al. Screening of the alkali-metal ion containing materials from the inorganic crystal structure database (ICSD) for high ionic conductivity pathways using the bond valence method [J]. Solid State Ionics, 2012, 225: 43-46.

[36] GAO J, CHU G, HE M, et al. Screening possible solid electrolytes by calculating the conduction pathways using bond valence method [J]. Sci China Phys Mech Astron, 2014, 57(8): 1526-1536.

[37] XIAO R, LI H, CHEN L. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations [J]. Journal of Materiomics, 2015, 1(4): 325-332.

[38] XIAO R, LI H, CHEN L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory [J]. Sci Rep, 2015, 5: 14227.

[39] TAYLOR B E, ENGLISH A D, BERZINS T. New solid ionic conductors [J]. Materials Research Bulletin, 1977, 12(2): 171-181.

[40] FRANCISCO B E, STOLDT C R, MPEKO J C. Energetics of ion transport in Nasicon-type electrolytes [J]. Journal of Physical Chemistry C, 2015, 119(29): 16432-16442.

[41] ANANTHARAMULU N, RAO K K, RAMBABU G, et al. A wideranging review on Nasicon type materials [J]. J Mater Sci, 2011, 46(9): 2821-2837.

[42] AONO H, SUGIMOTO E, SADAOKA Y, et al. Ionic conductivity of solid electrolytes based on lithium titanium phosphate [J]. J Electrochem Soc, 1990, 137(4): 1023-1027.

[43] AONO H, SUGIMOTO E, SADAOKA Y, et al. Ionic-conductivity of the lithium titanium phosphate (Li1+xAlxTi2-x(PO4)3), (Li1+xScxTi2-x(PO4)3), (Li1+xYxTi2-x(PO4)3), (Li1+xLaxTi2-x(PO4)3systems [J]. J Electrochem Soc, 1989, 136(2): 590-591.

[44] AONO H, SUGIMOTO E, SADAOKA Y, et al. Electrical property and sinterability of LiTi2(PO4)3mixed with lithium salt (Li3PO4or Li3PO3) [J]. Solid State Ionics, 1991, 47(3/4): 257-264.

[45] NUSPL G, TAKEUCHI T, WEIB A, et al. Lithium ion migration pathways in LiTi2(PO4)3and related materials [J]. J Appl Phys, 1999, 86(10): 5484-5491.

[46] LANG B, ZIEBARTH B, ELSAESSER C. Lithium ion conduction in LiTi2(PO4)3and related compounds based on the Nasicon structure: A frst-principles study [J]. Chem Mater, 2015, 27(14): 5040-5048.

[47] HONG H Y P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4and other new Li+superionic conductors [J]. Materials Research Bulletin, 1978, 13(2): 117-124.

[48] BRUCE P G, WEST A R. Phase-diagram of the lisicon, solid electrolyte system, Li4GeO4-Zn2GeO4[J]. Materials Research Bulletin, 1980, 15(3): 379-385.

[49] FUJIMURA K, SEKO A, KOYAMA Y, et al. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms [J]. Adv Energy Mater, 2013, 3(8): 980-985.

[50] KANNO R, MARUYAMA M. Lithium ionic conductor thio-LISICON. The Li2S-GeS2-P2S5system [J]. J Electrochem Soc, 2001, 148(7): A742-A746.

[51] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor [J]. Nat Mater, 2011, 10(9): 682-686.

[52] DU F, REN X, YANG J, et al. Structures, thermodynamics, and Li+mobility of Li10GeP2S12: a first-principles analysis [J]. Journal of Physical Chemistry C, 2014, 118(20): 10590-10595.

[53] MO Y, ONG S P, CEDER G. First principles study of the Li10GeP2S12lithium super ionic conductor material [J]. Chem Mater, 2012, 24(1): 15-17.

[54] XU M, DING J, MA E. One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor [J]. Appl Phys Lett, 2012, 101: 031901. doi: 10.1063/1.4737397.

[55] KWON O, HIRAYAMA M, SUZUKI K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2-δS12[J]. J Mater Chem A, 2015, 3(1): 438-446.

[56] LIANG X, WANG L, JIANG Y, et al. In-channel and in-plane Li ion diffusions in the superionic conductor Li10GeP2S12probed by solidstate NMR [J]. Chem Mater, 2015, 27(16): 5503-5510.

[57] HU C H, WANG Z Q, SUN Z Y, et al. Insights into structural stability and Li superionic conductivity of Li10GeP2S12from first-principles calculations [J]. Chemical Physics Letters, 2014, 591: 16-20.

[58] ONG S P, MO Y, RICHARDS W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X=O, S or Se) family of superionicconductors [J]. Energy & Environmental Science, 2013, 6(1): 148-156.

[59] BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: An affordable lithium superionic conductor [J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697.

[60] KATO Y, SAITO R, SAKANO M, et al. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1-xMx)P2S12(M = Si, Sn) [J]. Journal of Power Sources, 2014, 271: 60-64.

[61] WHITELEY J M, WOO J H, HU E, et al. Empowering the lithium metal battery through a silicon-based superionic conductor [J]. J Electrochem Soc, 2014, 161(12): A1812-A1817.

[62] KUHN A, GERBIG O, ZHU C, et al. A new ultrafast superionic Liconductor: ion dynamics in Li11Si2PS12and comparison with other tetragonal LGPS-type electrolytes [J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674.

[63] LIU Z, FU W, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. J Am Chem Soc, 2013, 135(3): 975-978.

[64] YANG J, TSE J S. First-principles molecular simulations of Li diffusion in solid electrolytes Li3PS4[J]. Computational Materials Science, 2015, 107: 134-138.

[65] OHARA K, MITSUI A, MORI M, et al. Structural and electronic features of binary Li2S-P2S5glasses [J]. Scientific Reports, 2016, 6: 21302.

[66] INAGUMA Y, ITOH M. Infuences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides [J]. Solid State Ionics, 1996, 86-88: 257-260.

[67] KATSUMATA T, MATSUI Y, INAGUMA Y, et al. Influence of site percolation and local distortion on lithium ion conductivity in perovskite-type oxides La0.55Li0.35-xKxTiO3and La0.55Li0.35TiO3-KMO3(M=Nb and Ta) [J]. Solid State Ionics, 1996, 86-88: 165-169.

[68] INAGUMA Y, CHEN L Q, ITOH M, et al. High ionic-conductivity in lithium lanthanum titanate [J]. Solid State Commun, 1993, 86(10): 689-693.

[69] INAGUMA Y, CHEN L Q, ITOH M, et al. Candidate compounds with perovskite structure for high lithium ionic-conductivity [J]. Solid State Ionics, 1994, 70: 196-202.

[70] TANAKA Y, OHNO T. Two dimensional Li diffusion in ion-conductive lithium lanthanum titanates [J]. ECS Electrochemistry Letters, 2013, 2(7): A53-A55.

[71] EMERY J, BUZARE J Y, BOHNKE O, et al. Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes [J]. Solid State Ionics, 1997, 99(1/2): 41-51.

[72] BOHNKE O, EMERY J, FOURQUET J L. Anomalies in Li+ion dynamics observed by impedance spectroscopy and Li-7 NMR in the perovskite fast ion conductor (Li3xLa2/3-x□1/3-2x)TiO3[J]. Solid State Ionics, 2003, 158(1/2): 119-132.

[73] OHARA K, KAWAKITA Y, PUSZTAI L, et al. Structural disorder in lithium lanthanum titanate: the basis of superionic conduction [J]. Journal of Physics: Condensed Matter, 2010, 22(40): 404203.

[74] NAKAYAMA M, SHIRASAWA A, SAITO T. Arrangement of La and vacancies in La2/3TiO3predicted by frst-principles density functional calculation with cluster expansion and Monte Carlo simulation [J]. Journal of the Ceramic Society of Japan, 2009, 117(1368): 911-916.

[75] CATTI M. First-principles modeling of lithium ordering in the LLTO (LixLa2/3-x/3TiO3) superionic conductor [J]. Chem Mater, 2007, 19(16): 3963-3972.

[76] CATTI M. Ion mobility pathways of the Li+conductor Li0.125La0.625TiO3by ab initio simulations [J]. Journal of Physical Chemistry C, 2008, 112(29): 11068-11074.

[77] CATTI M. Short-range order and Li+ion diffusion mechanisms in Li5La9□2(TiO3)16(LLTO) [J]. Solid State Ionics, 2011, 183(1): 1-6.

[78] JAY E E, RUSHTON M J D, CHRONEOS A, et al. Genetics of superionic conductivity in lithium lanthanum titanates [J]. Phys Chem Chem Phys, 2015, 17(1): 178-183.

[79] MORIWAKE H, GAO X, KUWABARA A, et al. Domain boundaries and their influence on Li migration in solid-state electrolyte (La,Li) TiO3[J]. J Power Sources, 2015, 276: 203-207.

[80] GAO X, FISHER C A J, KIMURA T, et al. Lithium atom and A-site vacancy distributions in lanthanum lithium titanate [J]. Chem Mater, 2013, 25(9): 1607-1614.

[81] GAO X, FISHER C A J, KIMURA T, et al. Domain boundary structures in lanthanum lithium titanates [J]. J Mater Chem A, 2014, 2(3): 843-852.

[82] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12(M=Nb, Ta) [J]. J Am Ceram Soc, 2003, 86(3): 437-440.

[83] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed Engl, 2007, 46(41): 7778-7781.

[84] XIE H, ALONSO J A, LI Y, et al. Lithium distribution in aluminumfree cubic Li7La3Zr2O12[J]. Chem Mater, 2011, 23(16): 3587-3589.

[85] CUSSEN E J. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+conductors [J]. Chem Commun, 2006, 4: 412-413.

[86] VAN WULLEN L, ECHELMEYER T, MEYER H W, et al. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12[J]. Physical Chemistry Chemical Physics, 2007, 9(25): 3298-3303.

[87] O'CALLAGHAN M P, CUSSEN E J. Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3-xTa2O12(0<x≤1.6) [J]. Chem Commun, 2007, 20: 2048-2050.

[88] WANG Y X, KLENK M, PAGE K, et al. Local structure and dynamics of lithium garnet ionic conductors: A model material Li5La3Ta2O12[J]. Chem Mater, 2014, 26(19): 5613-5624.

[89] ADAMS S, RAO R P. Ion transport and phase transition in Li7-xLa3(Zr2-xMx)O12(M=Ta5+, Nb5+, x=0, 0.25) [J]. J Mater Chem, 2012, 22(4): 1426-1434.

[90] BERNSTEIN N, JOHANNES M D, HOANG K. Origin of the structural phase transition in Li7La3Zr2O12[J]. Phys Rev Lett, 2012, 109(20): 205702.

[91] LI Y, HAN J T, WANG C A, et al. Optimizing Li+conductivity in a garnet framework [J]. J Mater Chem, 2012, 22(30): 15357.

[92] SANTOSH K C, LONGO R C, XIONG K, et al. Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries [J]. Solid State Ionics, 2014, 261: 100-105.

[93] ZEIER W G. Structural limitations for optimizing garnet-type solid electrolytes: a perspective [J]. Dalton Transactions, 2014, 43(43): 16133-16138.

[94] XU M, PARK M S, LEE J M, et al. Mechanisms of Li+transport in garnet-type cubic Li3+xLa3M2O12(M=Te, Nb, Zr) [J]. Phys Rev B, 2012, 85(5): 052301. doi: 10.1103/phys Rev B. 85.052301.

[95] RETTENWANDER D, BLAHA P, LASKOWSKI R, et al. DFT study of the role of Al in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12garnet [J]. Chem Mater, 2014, 26(8): 2617-2623.

[96] JALEM R, YAMAMOTO Y, SHIIBA H, et al. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12[J]. Chem Mater, 2013, 25(3): 425-430.

[97] MEIER K, LAINO T, CURIONI A. Solid-state electrolytes: Revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO byfrst-principles calculations [J]. The Journal of Physical Chemistry C, 2014, 118(13): 6668-6679.

[98] JAEM R, NAKAYAMA M, MANALASTAS W, et al. Insights into the lithium-ion conduction mechanism of garnet-type cubic Li5La3Ta2O12by ab-initio calculations [J]. Journal of Physical Chemistry C, 2015, 119(36): 20783-20791.

[99] MIARA L J, ONG S P, MO Y, et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr2-yTay) O12(0≤x≤0.375, 0≤y≤1) superionic conductor: a first principles investigation [J]. Chem Mater, 2013, 25(15): 3048-3055.

[100] KANG S G, SHOLL D S. First-principles study of chemical stability of the lithium oxide garnets Li7La3M2O12(M=Zr, Sn, or Hf) [J]. The Journal of Physical Chemistry C, 2014, 118(31): 17402-17406.

[101] NAKAYAMA M, KOTOBUKI M, MUNAKATA H, et al. Firstprinciples density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides [J]. Phys Chem Chem Phys, 2012, 14(28): 10008-10014.

[102] MIARA L J, RICHARDS W D, WANG Y E, et al. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets [J]. Chem Mater, 2015, 27(11): 4040-4047.

[103] YU S, SCHMIDT R D, GARCIA-MENDEZ R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12(LLZO) [J]. Chem Mater, 2016, 28(1): 197-206.

[104] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich antiperovskites [J]. J Am Chem Soc, 2012, 134(36): 15042-15047.

[105] DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition optimization of the lithium-rich Li3OCl1-xBrxanti-perovskite superionic conductors [J]. Chem Mater, 2015, 27(10): 3749-3755.

[106] ZHANG Y, ZHAO Y, CHEN C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites [J]. Phys Rev B, 2013, 87(13): 134303. doi: 10.1103/PhysRevB.87.134303.

[107] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors [J]. Chem Mater, 2013, 25(23): 4663-4670.

[108] MOUTA R, MELO M á B, DINIZ E M, et al. Concentration of charge carriers, migration, and stability in Li3OCl solid electrolytes [J]. Chem Mater, 2014, 26(24): 7137-7144.

[109] CHEN M H, EMLY A, VAN DER VEN A. Anharmonicity and phase stability of antiperovskite Li3OCl [J]. Phys Rev B, 2015, 91(21): 214306.

[110] LU X, WU G, HOWARD J W, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity [J]. Chem Commun, 2014, 50(78): 11520-11522.

[111] MOUTA R, DINIZ E M, PASCHOAL C W A. Li+interstitials as the charge carriers in superionic lithium-rich anti-perovskites [J]. J Mater Chem A, 2016, 4(5): 1586-1590.

[112] LU Z, CHEN C, BAIYEE Z M, et al. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors [J]. Phys Chem Chem Phys, 2015, 17(48): 32547-32555.

[113] BRAGA M H, FERREIRA J A, STOCKHAUSEN V, et al. Novel Li3ClO based glasses with superionic properties for lithium batteries [J]. J Mater Chem A, 2014, 2(15): 5470-5480.

[114] GAO J, ZHAO Y S, SHI S Q, et al. Lithium-ion transport in inorganic solid state electrolyte [J]. Chin Phys B, 25(1): 018211.

(編輯:沈美芳)

Calculating investigations of inorganic solid-state electrolytes for Li-ion battery

GAO Jian①, HE Bing②, SHI Siqi①③
①M(fèi)aterials Genome Institute, Shanghai University, Shanghai 200444, China; ②School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; ③School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

The high throughput calculations can be used to mine the structure-activity relationship and accelerate the discovery of novel materials. The exact frst-principles calculations can predict the crystal structure, electronic structure, defects, phase diagram and phase transition, and the transport mechanisms of ions and electrons. This review is focused on the developments and perspectives in inorganic solid-state electrolytes calculating investigations, including the effective and effcient optimizing, screening and designing for the solid electrolytes with high conductivities, wide electrochemical windows, and proper compatibilities with electrodes.

Li-ion battery, inorganic solid-state electrolyte, materials genome initiative, high-throughput calculation, frst-principles calculation

10.3969/j.issn.0253-9608.2016.05.004

*國(guó)家自然科學(xué)基金(51622207、51372228、U1630134)資助

?通信作者,國(guó)家優(yōu)秀青年科學(xué)基金獲得者,研究方向:電化學(xué)能量存儲(chǔ)材料的第一性原理計(jì)算和設(shè)計(jì)。E-mail: sqshi@shu.edu.cn

猜你喜歡
第一性空位無(wú)機(jī)
富鋰錳基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成*
實(shí)踐性是勞動(dòng)教育課程的第一性
CdGeAs2晶體熱力性質(zhì)的第一性原理研究
無(wú)機(jī)滲透和促凝劑在石材防水中的應(yīng)用
CrN中原子位移的第一性原理計(jì)算研究
加快無(wú)機(jī)原料藥產(chǎn)品開(kāi)發(fā)的必要性和途徑
Zn空位缺陷長(zhǎng)余輝發(fā)光材料Zn1-δAl2O4-δ的研究
不斷蓬勃發(fā)展 不斷涌現(xiàn)新生長(zhǎng)點(diǎn)的無(wú)機(jī)材料
--先進(jìn)無(wú)機(jī)材料論壇例記(Ⅰ)
有機(jī)心不如無(wú)機(jī)心
金屬熱導(dǎo)率的第一性原理計(jì)算方法在鋁中的應(yīng)用
太和县| 都兰县| 凤阳县| 英山县| 金门县| 阿克| 佛山市| 哈尔滨市| 镇原县| 乌兰浩特市| 河曲县| 堆龙德庆县| 名山县| 昌图县| 凤阳县| 原阳县| 府谷县| 德清县| 丹棱县| 平定县| 东辽县| 和平县| 保靖县| 鄢陵县| 白城市| 元朗区| 铜川市| 友谊县| 前郭尔| 格尔木市| 巴东县| 青铜峡市| 湘潭市| 巴马| 宜春市| 海南省| 哈巴河县| 高平市| 伽师县| 农安县| 花莲县|