李曉東 姚曉 王曉慶
內(nèi)質(zhì)網(wǎng)應(yīng)激和 JNK 信號通路在骨關(guān)節(jié)炎中的相關(guān)作用
李曉東 姚曉 王曉慶
骨關(guān)節(jié)炎;信號傳導(dǎo);內(nèi)質(zhì)網(wǎng)應(yīng)激;細(xì)胞凋亡;綜述
骨關(guān)節(jié)炎 (osteoarthritis,OA) 是一種關(guān)節(jié)軟骨的退行性變并伴有軟骨下骨質(zhì)增生的慢性骨關(guān)節(jié)疾病。根據(jù)國內(nèi)的流行病學(xué)調(diào)查顯示,在 60 歲以上人群中,OA 的患病率高達(dá) 50%[1]。軟骨細(xì)胞是關(guān)節(jié)軟骨中的主要細(xì)胞,隨著OA 的進(jìn)行性發(fā)展,軟骨細(xì)胞發(fā)生凋亡,并且軟骨細(xì)胞凋亡是關(guān)節(jié)軟骨中軟骨細(xì)胞逐漸減少的主要原因[2],這一切改變導(dǎo)致了關(guān)節(jié)軟骨不可逆的進(jìn)行性退化。導(dǎo)致軟骨細(xì)胞凋亡途徑主要包括有 Fas 途徑、NO 途徑、c-Jun 氨基末端激酶 (c-Jun N-terminal kinase,JNK) 信號途徑、腫瘤壞死因子相關(guān)的凋亡誘導(dǎo)配體 (TRAIL) 途徑,而內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS) 貫穿于諸多信號傳導(dǎo)通路之中[3-7]。其中,JNK 信號通路是近 20 年來發(fā)現(xiàn)的與細(xì)胞分化、凋亡、應(yīng)激反應(yīng)以及多種人類疾病的發(fā)生和發(fā)展關(guān)系非常密切的通路之一。
1. ERS 概述:ERS 是由缺血再灌注、氧化應(yīng)激等使內(nèi)質(zhì)網(wǎng)生理功能發(fā)生紊亂的一種亞細(xì)胞器病理過程,表現(xiàn)為蛋白質(zhì)合成暫停、ERS 蛋白表達(dá)和細(xì)胞凋亡等[8]。細(xì)胞代謝紊亂時(shí),錯(cuò)誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)腔內(nèi)聚集,激活非折疊蛋白反應(yīng) (unfolded protein response,UPR)[9]。
UPR 由內(nèi)質(zhì)網(wǎng)膜上的感受蛋白分子調(diào)控:蛋白激酶樣內(nèi)質(zhì)網(wǎng)激酶 [double-stranded RNA-activated protein kinase (PKR) - like ER kinase,PERK]、轉(zhuǎn)錄激活因子 6 (activating transcription factor 6,ATF6) 和肌醇需求激酶(inositol-requiring enzyme 1,IRE1)[10]。ERS 激活時(shí),分子伴侶 GRP78 從 PERK、ATF6 和 IRE1 上解離,三者被活化并啟動 UPR,分子伴侶 Bip 表達(dá)上調(diào),同時(shí),蛋白折疊酶和二硫化物異構(gòu)酶 (disulphide isomerases) 也不同程度的表達(dá)增加[11]。此外,非剪切的 XBP1 (X-box binding protein 1)(uXBP1) mRNA 剪切掉 26bp 單位后轉(zhuǎn)變?yōu)榧羟械?XBP1 (sXBP1) mRNA 而具活性,調(diào)控 GRP78 表達(dá)、抑制 ERS,逐步恢復(fù)軟骨細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)[12]。ATF6 可使 XBP1S 表達(dá)增加,促進(jìn) Grp78 合成,抑制 ERS 誘導(dǎo)的軟骨細(xì)胞凋亡[13]。與此同時(shí),CHOP 表達(dá)上調(diào),與 IL-1β 共同降低腺苷酸活化蛋白激酶 [adenosine 5‘-monophosphate (AMP) -activated protein kinase,AMPK] 的表達(dá),增強(qiáng)軟骨細(xì)胞內(nèi)ERS 水平、抑制細(xì)胞自噬水平[14]。Hirose 等[15]研究發(fā)現(xiàn)CHOP 可調(diào)控軟骨細(xì)胞凋亡,其誘導(dǎo)的軟骨細(xì)胞的凋亡加速了關(guān)節(jié)軟骨退化。
晚期糖基化終末產(chǎn)物 (advanced glycation end products,AGES) 可使 UPR 功能失調(diào)而誘導(dǎo) ERS[16]。Chop- / -與 Chop+ / +軟骨細(xì)胞比,由 AGES 誘導(dǎo)的細(xì)胞凋亡更少,這與 Hirose 的結(jié)果一致。Rasheed 等[17]研究也發(fā)現(xiàn) AGEs可誘導(dǎo)軟骨細(xì)胞 ERS,Bag-1、GRP78 表達(dá)增加。Yang 等[18]研究發(fā)現(xiàn) AGEs 可通過激活 JNK 與 p38 而使過氧化物酶增殖體激活型受體 (PPARr) 的表達(dá)下降,PPARr不僅調(diào)節(jié)脂質(zhì)和糖的代謝平衡,而且可減緩 OA 炎癥反應(yīng)[19]??傊糗浌羌?xì)胞 ERS 狀態(tài)持續(xù)存在、超過細(xì)胞自身修復(fù)能力,那么最終將通過軟骨細(xì)胞的凋亡清除受損的軟骨細(xì)胞。
2. ERS 在 OA 中的作用:在 OA 的發(fā)展過程中,ERS標(biāo)志物 Grp78、Xbp1s、CHOP、PERK、pJNK的表達(dá)水平不但增加,而且這些分子在關(guān)節(jié)軟骨不同層面中 (表層、中上層、中下層、深層) 的表達(dá)量也各不相同[20],這說明不同層面的關(guān)節(jié)軟骨對 ERS 的反應(yīng)程度具有差異。如前所述,UPR 與 ERS 具有十分密切的聯(lián)系,當(dāng)細(xì)胞發(fā)生UPR 時(shí),蛋白二硫化物異構(gòu)酶的表達(dá)量增加。ERp57 是一種蛋白二硫化物異構(gòu)酶,在 ERp57 基因敲出的小鼠軟骨內(nèi),可誘發(fā)軟骨細(xì)胞發(fā)生 ERS、UPR,軟骨細(xì)胞的凋亡增加,從而引起軟骨的進(jìn)行性退化[21]。BBF2H7 (box B-binding factor 2 human homolog on chromosome 7) 是一跨膜轉(zhuǎn)錄因子,當(dāng)軟骨細(xì)胞發(fā)生 ERS 時(shí),BBF2H7 可被激活,不僅使軟骨基質(zhì)蛋白的分泌增加,而且調(diào)節(jié)軟骨細(xì)胞的分化,以減緩軟骨的退化,對軟骨具有重要的保護(hù)作用[22]。
核因子 1 (nuclear protein-1,NUPR1) 是一種與基因轉(zhuǎn)錄有關(guān)的應(yīng)激誘導(dǎo)蛋白,當(dāng)細(xì)胞發(fā)生氧化應(yīng)激、ERS時(shí),NUPR1 的表達(dá)量增加。NUPR1 通過氧化應(yīng)激 -MAP激酶 -AFT4 通路的調(diào)節(jié)使金屬蛋白酶 MMP-13 的生成量增加,降解軟骨細(xì)胞分泌的二型膠原,從而誘導(dǎo)關(guān)節(jié)軟骨OA 的發(fā)生[23-24]。研究發(fā)現(xiàn) NUPR1 的表達(dá)需要 c-Jun 激酶的調(diào)控[25],進(jìn)一步證實(shí) JNK 信號通路在 OA 的發(fā)病過程中具有重要作用。此外,NO 也是一種誘導(dǎo)軟骨細(xì)胞凋亡的重要信號分子,其主要是通過調(diào)控軟骨細(xì)胞 ERS 途徑來誘導(dǎo)軟骨細(xì)胞的凋亡[7]。
若軟骨細(xì)胞內(nèi)的內(nèi)質(zhì)網(wǎng)蛋白降解相關(guān)系統(tǒng)功能降低,而軟骨細(xì)胞 ERS 狀態(tài)持續(xù)存在,那么最終會激活軟骨細(xì)胞的凋亡通路,以消除損傷而不能修復(fù)的軟骨細(xì)胞。細(xì)胞凋亡信號通路主要有:(1) 由激活的 PERK 調(diào)控的CHOP 的高表達(dá)[26]來調(diào)控軟骨細(xì)胞的凋亡;(2) 通過激活的 IRE1a 而引起腫瘤壞死因子受體相關(guān)因子 2 的表達(dá)增加而激活 JNK 信號通路[27];(3) 半胱天冬酶 12 的激活通路[28]。近年來,一些研究表明多種中藥制劑對抑制 ERS誘導(dǎo)的軟骨細(xì)胞凋亡、緩解關(guān)節(jié)軟骨的退化過程具有重要作用[29-31]。
總之,若軟骨細(xì)胞內(nèi)質(zhì)網(wǎng)中未折疊蛋白質(zhì)及錯(cuò)誤折疊蛋白質(zhì)的負(fù)荷超過了內(nèi)質(zhì)網(wǎng)正常的蛋白質(zhì)加工修飾能力,將會引起軟骨細(xì)胞產(chǎn)生 ERS。如果內(nèi)質(zhì)網(wǎng)蛋白降解相關(guān)系統(tǒng)能夠調(diào)節(jié)內(nèi)質(zhì)網(wǎng)腔內(nèi)的未折疊蛋白和錯(cuò)誤折疊的蛋白質(zhì)形成正確的折疊,那么內(nèi)質(zhì)網(wǎng)加工修飾蛋白質(zhì)的正常功能也將繼續(xù)維持、軟骨細(xì)胞繼續(xù)維持活性。但如果這種細(xì)胞內(nèi)穩(wěn)態(tài)一旦失去平衡,軟骨細(xì)胞 ERS 狀態(tài)將會持續(xù)存在,最終激活軟骨細(xì)胞凋亡通路以清除這些受損的軟骨細(xì)胞,這雖有一定的機(jī)體自我保護(hù)機(jī)制,但是不可避免地引起關(guān)節(jié)軟骨發(fā)生進(jìn)行性退化。
1. JNK 信號通路概述:絲裂原活化蛋白激酶 (mitogenactived protein kinases,MAPKS) 有四種亞型:細(xì)胞外調(diào)節(jié)蛋白激酶 1、2 (ERK1 / 2),p38MAPKS,JNK 和 ERK5[32]。ERK 和 MAPK 主要發(fā)揮細(xì)胞保護(hù)作用,而 JNK 和 p38MAPK表現(xiàn)為促細(xì)胞凋亡作用。在細(xì)胞中,這些信號因子按照MAPKKK-MAPKK-MAPK 的方式進(jìn)行信號傳遞。
JNK 是絲裂原活化蛋白激酶 (MAPK) 家族重要成員之一,JNK 由 jnk1、jnk2 和 jnk3 三種基因編碼,其表達(dá)的JNK1、JNK2、JNK3 蛋白主要位于細(xì)胞質(zhì),為絲氨酸 / 蘇氨酸蛋白激酶[33]。跟所有 MAPK 一樣,JNK 是 MAPKKKMAPKK-MAPK 信號傳導(dǎo)系列中的一部分[34]。通過共聚焦顯微鏡觀察發(fā)現(xiàn) JNK、MKK4 和 MKK7 共同定位于細(xì)胞質(zhì),MKK4 和 MKK7 是 JNK 的上游激酶。當(dāng)細(xì)胞受到 IL-1刺激后,JNK 會發(fā)生磷酸化、繼而轉(zhuǎn)移至細(xì)胞核中[35]。蘇氨酸和酪氨酸殘基的磷酸化作用按 MAPKKK-MAPKKMAPK 順序依次進(jìn)行。隨后 MAPKS 上磷酸化的蘇氨酸和酪氨酸殘基被雙重特異性磷酸酶類 (DUSPS) 去磷酸化,使其失活[36]。
JNK 信號通路可被細(xì)胞的缺血再灌注、氧化損傷、高滲環(huán)境損傷、內(nèi)質(zhì)網(wǎng)損傷等激活,另外非經(jīng)典的 Wnt 通路也可激活 JNK 信號通路,該通路在細(xì)胞增殖與分化、細(xì)胞凋亡、應(yīng)激反應(yīng)等多種細(xì)胞調(diào)控方面發(fā)揮著關(guān)鍵作用[37]。當(dāng)細(xì)胞受到外界刺激后,JNKK1 / MKK4 / SEK1 或 JNKK2 / MKK7 介導(dǎo) JNK 上 Thr183 和 Tyr185 發(fā)生磷酸化,使 JNK完全活化、獲得酶催化活性。JNK 激活后轉(zhuǎn)移至細(xì)胞核與c-Jun 氨基末端的活化區(qū)結(jié)合并使其第 63、73 位絲氨酸殘基發(fā)生磷酸化,激活依賴于轉(zhuǎn)錄的細(xì)胞凋亡信號通路。
2. JNK 信號通路在 OA 軟骨細(xì)胞凋亡中的調(diào)控作用:近年來,許多實(shí)驗(yàn)證實(shí) JNK 信號通路與許多疾病有密切聯(lián)系,如在糖尿病、帕金森病等方面已有較多的研究,但在OA 方面研究甚少。對 OA 患者關(guān)節(jié)軟骨的軟骨細(xì)胞應(yīng)用免疫組化處理后顯示 c-Jun 和 PUMA 等蛋白的表達(dá)上調(diào)。
PUMA 通過特異的 BH3 結(jié)構(gòu)域發(fā)揮促細(xì)胞凋亡作用以及參與線粒體自噬。PUMA 是 Bcl-2 家族中具有 BH3 結(jié)構(gòu)域的一種促凋亡分子。Lu 等[38]研究表明在應(yīng)用 IL-1β處理小鼠軟骨細(xì)胞 4 h 后,小鼠軟骨細(xì)胞中的 PUMA 表達(dá)水平明顯升高。然后應(yīng)用 PUMA RNA 干擾技術(shù)處理軟骨細(xì)胞以降低 PUMA 表達(dá),隨之軟骨細(xì)胞的凋亡水平也明顯的降低。應(yīng)用 JNK 抑制劑 CE11004 或者 SP600125 對軟骨細(xì)胞 JNK / c-Jun 通路進(jìn)行抑制后,發(fā)現(xiàn) PUMA 的表達(dá)量明顯減少,并且軟骨細(xì)胞凋亡程度也會降低。以上實(shí)驗(yàn)結(jié)果表明 PUMA 可通過 JNK / c-Jun 通路參與軟骨細(xì)胞的凋亡。
此外,有研究發(fā)現(xiàn) Bim 和 Noxa 與軟骨細(xì)胞凋亡有關(guān)[39]。Bim 是 Bcl-2 家族中一種促細(xì)胞凋亡分子。應(yīng)用IL-1β 誘導(dǎo)鼠軟骨細(xì)胞后,JNK-c-Jun 通路被激活,隨之c-Jun 蛋白表達(dá)量增加,同時(shí) Bim 的表達(dá)也上調(diào)。如果預(yù)先應(yīng)用 JNK 抑制劑或 RNA 干擾技術(shù)對 JNK-c-Jun 通路進(jìn)行干預(yù),那么再應(yīng)用 IL-1β 誘導(dǎo)軟骨細(xì)胞,軟骨細(xì)胞中的Bim 的表達(dá)量并不會明顯增加,這說明 JNK-c-Jun 通路可調(diào)節(jié) Bim 使其表達(dá)量增加,從而進(jìn)一步表明 JNK-c-Jun通路可促進(jìn)軟骨細(xì)胞凋亡[40]。有研究證實(shí)在 OA 軟骨中IL-1β 可能通過激活 JNK 信號通路引起 Lipocalin 型前列腺素 D 合成酶的表達(dá)增加,而前列腺素 D 具有抗炎癥與抗分解代謝作用,這為治療 OA 提供了新思路[41]。
許多炎癥因子如 IL-1α 通過 JNK 信號通路介導(dǎo)金屬蛋白酶的表達(dá),逐步分解軟骨基質(zhì)、加速軟骨細(xì)胞凋亡,從而引起關(guān)節(jié)軟骨的進(jìn)行性退化[42-43]。當(dāng) OA 發(fā)生時(shí),除了軟骨細(xì)胞凋亡外,軟骨的另一個(gè)重要組織學(xué)特征就是軟骨細(xì)胞外基質(zhì)的明顯減少。正常情況下,軟骨細(xì)胞可以通過細(xì)胞膜上的 LRP1 (lipoprotein receptor-related protein 1)內(nèi)吞聚蛋白多糖酶,減少軟骨細(xì)胞周圍的聚蛋白多糖的降解。Ismail 等[43]研究發(fā)現(xiàn),當(dāng)用 IL-1β 刺激軟骨細(xì)胞時(shí),JNK-2 信號被激活繼而導(dǎo)致 LRP1 從細(xì)胞膜上脫落,使聚蛋白多糖酶的內(nèi)吞減少,軟骨細(xì)胞周圍的基質(zhì)分解增加,使軟骨的組織學(xué)特性發(fā)生改變。
目前有關(guān) JNK 信號通路在 OA 中的研究多基于某種藥物或化學(xué)物質(zhì)是否對 JNK 信號通路以及一系列的酶和細(xì)胞因子有調(diào)控作用,從而為臨床上尋找更適合治療 OA 的藥物提供了機(jī)會。塞來昔布作為一種糖皮質(zhì)激素,在臨床上得到廣泛應(yīng)用,近來研究發(fā)現(xiàn)塞來昔布聯(lián)合應(yīng)用雙醋瑞因,可以抑制 JNK 信號通路的激活,IL-1β、NO 等細(xì)胞因子表達(dá)降低,從而對 OA 具有明顯的治療作用[44]。Ho 等[45]研究發(fā)現(xiàn)在由 IL-1 或 TNF-α 誘導(dǎo)的 MMP-1 和 MMP-13 mRNA 表達(dá)會被反式維甲酸 (t-RA) 或其它不同類型的維甲酸所抑制,t-RA 是通過阻滯 p38 激酶和 JNK 信號通路而抑制 MMP 的表達(dá)。Yu 等[46]研究發(fā)現(xiàn)醉茄素 A (WFA)可誘導(dǎo)活性氧簇 (ROS) 的產(chǎn)生,而 ROS 的產(chǎn)生會激活PI3K / AKt,MAPKs,p38 與 JNK,并且 WFA 誘導(dǎo)的 PI3K / AKt 的激活需要 JNK 與 p38 的調(diào)節(jié),進(jìn)而引起軟骨基質(zhì)中膠原的消耗與炎癥反應(yīng)。當(dāng)事先應(yīng)用 PI3K / AKt,MAPKs,p38 與 JNK 的抑制劑處理軟骨細(xì)胞后,再應(yīng)用 WFA,會使得 ROS 的表達(dá)上調(diào),這說明 PI3K / AKt,MAPKs,p38 與 JNK 是 ROS 的下游調(diào)節(jié)分子。綠茶中含有一種叫多元酚的化學(xué)物質(zhì),研究發(fā)現(xiàn)其具有抑制炎癥反應(yīng)及緩解軟骨損傷的作用[47]。表焙兒茶素 -3- 五倍子酸鹽 (EGCG) 是多元酚的一種,可以抑制 IL-1β 誘導(dǎo)的 JNK的磷酸化以及 c-Jun 的表達(dá)增加,因而可抑制軟骨基質(zhì)的分解代謝。銀杏提取物 (EGb) 可以通過抑制 JNK 激活以及誘導(dǎo)依賴泛素化的 c-Jun 降解來延緩關(guān)節(jié)軟骨退化[48]。許多炎癥因子可誘導(dǎo)軟骨細(xì)胞的凋亡,有研究證實(shí)多種中藥制劑可通過調(diào)節(jié) JNK 信號通路的磷酸化過程抑制炎癥因子誘導(dǎo)的軟骨基質(zhì)降解與軟骨細(xì)胞凋亡[49-51],具有潛在的OA 治療作用。
JNK 除促進(jìn)軟骨細(xì)胞凋亡外,還可以使軟骨細(xì)胞蛋白多糖的合成增加[52]。在關(guān)節(jié)軟骨的組織分離塊或者在瓊脂糖培養(yǎng)的軟骨細(xì)胞中給予周期性的機(jī)械性刺激,會使組織或細(xì)胞中蛋白多糖的合成增加。近來研究發(fā)現(xiàn)前列腺素 E2 在 OA 的發(fā)生發(fā)展中具有重要作用。PGE2 可以抑制MKK4 (但不能抑制 MKK7)、JNK 與 c-Jun 的磷酸化以降低基質(zhì)金屬蛋白酶 MMP-1 與 MMP-13 的表達(dá)水平[53]。而Tsutsumi 等[54]研究發(fā)現(xiàn)塞來昔布以一種不依賴 PGE2 的方式通過下調(diào) JNK 與 NF-κB 的表達(dá)來抑制 MMP 與 NO 的產(chǎn)生。以上研究雖然針對的具體目標(biāo)分子不同,但是都證明了 JNK 與 OA 軟骨細(xì)胞凋亡之間的重要關(guān)系,為在臨床上提供延緩 OA 病情進(jìn)展的治療方法提供了新思路。
綜上所述,醫(yī)學(xué)領(lǐng)域隨著研究的深入,人們對 JNK信號通路的研究已經(jīng)取得了長足的進(jìn)步,相當(dāng)數(shù)量的 JNK底物及調(diào)節(jié)分子被發(fā)現(xiàn),它們之間的調(diào)節(jié)關(guān)系也使人們逐步的了解。JNK 通路在糖尿病、阿爾茨海默病、帕金森病等疾病中的作用機(jī)制已做了許多相關(guān)研究,為在骨關(guān)節(jié)炎方面研究 JNK 信號通路在軟骨細(xì)胞凋亡過程中的機(jī)制打下了堅(jiān)實(shí)的理論基礎(chǔ)。盡管 JNK 信號通路針對 OA 的確切作用機(jī)制有待深一步研究,但是 JNK 信號通路在介導(dǎo)軟骨細(xì)胞凋亡中發(fā)揮重要作用已無可爭議,因而,有望成為治療OA 軟骨細(xì)胞凋亡的一個(gè)新分子治療靶點(diǎn),而且對治療 OA尋找新的藥物靶點(diǎn)和篩選新藥與臨床應(yīng)用有著重要的理論意義和廣泛的應(yīng)用前景。
[1] 謝功華, 唐宇. 骨關(guān)節(jié)炎發(fā)病相關(guān)因素與護(hù)理對策. 內(nèi)蒙古中醫(yī)藥, 2012, 31(20):51.
[2] Wei L, Sun XJ, Wang Z, et al. CD95-induced osteoarthritic chondrocyte apoptosis and necrosis: dependency on p38 mitogen-activatedprotein kinase. Arthritis Res Ther, 2006,8(2):37.
[3] Pennock AT, Roberts CM, Emmerson BC, et al. Role of apoptotic and matrix-degrading genes in articular cartilage and meniscus of mature and aged rabbits during development of osteoarthritis. Arthritis Rheum, 2007, 56(5):1529-1536.
[4] Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta, 2016, 1862(4): 576-591.
[5] Wang Y, Xu Z, Wang J, et al. DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis. Mol Biosyst, 2016,12(3):721-728.
[6] Lee SW, Lee HJ, Moon JB, et al. Purifed extract from Clematis mandshurica prevents adenoviral-TRAIL induced apoptosis on rat articular chondrocytes. Am J Chin Med, 2008, 36(2): 399-410.
[7] Takada K, Hirose J, Yamabe S, et al. Endoplasmic reticulum stress mediates nitric oxide-induced chondrocyte apoptosis. Biomed Rep, 2013, 1(2):315-319.
[8] Watanabe Y, Suzuki O, Haruyama T, et al. Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem, 2003, 89(2): 244-253.
[9] Hetz C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol,2012, 13(2):89-102.
[10] Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334(6059): 1081-1086.
[11] Nundlall S, Rajpar MH, Bell PA, et al. An unfolded protein response is the initial cellular response to the expression of mutant matrilin-3 in a mouse model of multiple epiphyseal dysplasia. Cell Stress Chaperones, 2010, 15(6):835-849.
[12] Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci,2015, 40(3):141-148.
[13] Guo FJ, Xiong Z, Lu X, et al. ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. Cell Signal, 2014, 26(2):332-342.
[14] Husa M, Petursson F, Lotz M, et al. C/EBP homologous protein drives pro-catabolic responses in chondrocytes. Arthritis Res Ther, 2013, 15(6):218.
[15] Uehara Y, Hirose J, Yamabe S, et al. Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthritis Cartilage, 2014, 22(7):1007-1017.
[16] Yamabe S, Hirose J, Uehara Y, et al. Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes. FEBS J, 2013,280(7):1617-1629.
[17] Rasheed Z, Haqqi TM. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2α, p38-MAPK and NF-κB in advanced glycation end products stimulated human chondrocytes. Biochim Biophys Acta, 2012,1823(12):2179-2189.
[18] Yang Q, Chen C, Wu S, et al. Advanced glycation end products downregulates peroxisome proliferator-activated receptor γ expression in cultured rabbit chondrocyte through MAPK pathway. Eur J Pharmacol, 2010, 649(1-3):108-114.
[19] Ma C, Zhang Y, Li YQ, et al. The role of PPARγ in advanced glycation end products-induced inflammatory response in human chondrocytes. PLoS One, 2015, 10(5):e0125776.
[20] Takada K, Hirose J, Senba K, et al. Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int J Exp Pathol, 2011, 92(4):232-242.
[21] Linz A, Knieper Y, Gronau T, et al. ER stress during the pubertal growth spurt results in impaired long-bone growth in chondrocyte-specifc ERp57 knockout mice. J Bone Miner Res,2015, 30(8):1481-1493.
[22] Hino K, Saito A, Kido M, et al. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem, 2014, 289(20):13810-1320.
[23] Huang J, Viswakarma N, Yu S, et al. Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-defcient mice. Am J Pathol, 2011, 179(2): 703-713.
[24] Yammani RR, Loeser RF. Brief report: stress-inducible nuclear protein 1 regulates matrix metalloproteinase 13 expression in human articular chondrocytes. Arthritis Rheumatol, 2014,66(5):1266-1271.
[25] Goruppi S, Bonventre JV, Kyriakis JM. Signaling pathways andlate-onset gene induction associated with renal mesangial cell hypertrophy. EMBO J, 2002, 21(20):5427-5436.
[26] Puthalakath H, O'Reilly LA, Gunn P, et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell, 2007,129(7):1337-1349.
[27] Yang Q, Kim YS, Lin Y, et al. Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK. EMBO Rep, 2006, 7(6):622-627.
[28] Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep,2006, 7(9):880-885.
[29] Lin P, Weng X, Liu F, et al. Bushen zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress. Int J Mol Med, 2015, 36(6):1519-1528.
[30] Liu F, Weng X, Lin P, et al. Duhuo jisheng decoction inhibits endoplasmic reticulum stress in cho ndrocytes induced by tunicamycin through the downregulation of miR-34a =. Int J Mol Med, 2015, 36(5):1311-1318.
[31] Liu C, Cao Y, Yang X, et al. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis. Int J Mol Med, 2015, 36(4): 1081-1087.
[32] Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol, 2007, 19(2):142-149.
[33] Gupta S, Barrett T, Whitmarsh AJ, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J, 1996, 15(11):2760-2770.
[34] Bogoyevitch MA, Kobe B. Uses for JNK: The many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev, 2006, 70(4):1061-1095.
[35] Sundarrajan M, Boyle DL, Chabaud-Riou M, et al. Expression of the MAPK kinases MKK-4 and MKK-7 in rheumatoid arthritis and their role as key regulators of JNK. Arthritis Rheum, 2003, 48(9):2450-2460.
[36] Patterson KI, Brummer T, O'Brien PM, et al. Dual-specifcity phosphatases: critical regulators with diverse cellular targets. Biochem J, 2009, 418(3):475-489.
[37] 黎增輝, 廖愛軍. JNK信號通路. 國際病理科學(xué)與臨床雜志,2010, 30(3):273-276.
[38] Lu H, Hou G, Zhang Y, et al. C-Jun transactivates Puma gene expression to promote osteoarthritis. Mol Med Rep, 2014,9(5):1606-1612.
[39] Zhang L, Lopez H, George NM, et al. Selective involvement of BH3-only proteins and differential targets of Noxa in diverse apoptotic pathways. Cell Death Differ, 2011, 18(5):864-873.
[40] Ye Z, Chen Y, Zhang R, et al. C-Jun N-terminal kinase-c-Jun pathway transactivates Bim to promote osteoarthritis. Can J Physiol Pharmacol, 2014, 92(2):132-139.
[41] Zayed N, Li X, Chabane N, et al. Increased expression of lipocalin-type prostaglandin D2 synthase in osteoarthritic cartilage. Arthritis Res Ther, 2008, 10(6):R146.
[42] Alper M, Aydemir AT, K??kar F. Induction of human ADAMTS-2 gene expression by IL-1α is mediated by a multiple crosstalk of MEK/JNK and PI3K pathways in osteoblast like cells. Gene, 2015, 573(2):321-327.
[43] Ismail HM, Yamamoto K, Vincent TL, et al. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes. Arthritis Rheumatol,2015, 67(7):1826-1836.
[44] Li Z, Meng D, Li G, et al. Celecoxib combined with diacerein effectively alleviates osteoarthritis in rats via regulating JNK and p38MAPK signaling pathways. Inflammation, 2015,38(4):1563-1572.
[45] Ho LJ, Lin LC, Hung LF, et al. Retinoic acid blocks proinflammatory cytokine-induced matrix metalloproteinase production by down-regulating JNK-AP-1 signaling in human chondrocytes. Biochem Pharmacol, 2005, 70(2):200-208.
[46] Yu SM, Kim SJ. Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3K/Akt, p38, and JNK pathways in rabbit articular chondrocytes. Exp Cell Res, 2013, 319(18): 2822-2834.
[47] Singh R, Ahmed S, Malemud CJ, et al. Epigallocatechin-3-gallate selectively inhibits interleukin-1beta-induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes. J Orthop Res,2003, 21(1):102-109.
[48] Ho LJ, Hung LF, Liu FC, et al. Ginkgo biloba extract individually inhibits JNK activation and induces c-Jun degradation in human chondrocytes: potential therapeutics for osteoarthritis. PloS One, 2013, 8(12):e82033.
[49] Lu S, Xiao X, Cheng M. Matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro. Int J Clin Exp Pathol, 2015, 8(5):4764-4772.
[50] Jeong JH, Moon SJ, Jhun JY, et al. Eupatilin exerts antinociceptive and chondroprotective properties in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. PloS One, 2015,10(6):e0130882.
[51] Ma Z, Wang Y, Piao T, et al. Echinocystic Acid Inhibits IL-1β-Induced COX-2 and iNOS Expression in Human Osteoarthritis Chondrocytes. Infammation, 2016, 39(2):543-549.
[52] Zhou Y, Millward-Sadler SJ, Lin H, et al. Evidence for JNK-dependent up-regulation of proteoglycan synthesis and for activation of JNK1 following cyclical mechanical stimulation in a human chondrocyte culture model. Osteoarthritis Cartilage,2007, 15(8):884-893.
[53] Nishitani K, Ito H, Hiramitsu T, et al. PGE2 inhibits MMP expression by suppressing MKK4-JNK MAP kinase-c-JUN pathway via EP4 in human articular chondrocytes. J Cell Biochem, 2010, 109(2):425-433.
[54] Tsutsumi R, Ito H, Hiramitsu T, et al. Celecoxib inhibits production of MMP and NO via down-regulation of NF-kappaB and JNK in a PGE2 independent manner in human articular chondrocytes. Rheumatol Int, 2008, 28(8):727-736.
(本文編輯:裴艷宏 李貴存)
Roles of the endoplasmic reticulum stress and JNK signaling pathway in osteoarthritis
LI Xiao-dong, YAO Xiao,WANG Xiao-qing. Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PRC
WANG Xiao-qing, Email: osteoclast@163.com
Osteoarthritis (OA), the most common type of osteoarthrosis, is a leading cause of disability in the elderly. Although a number of studies have shown that predispositions include aging, obesity, joint injury,congenital anomalies, joint deformities etc., but the exact etiology and pathogenesis are not fully understood and there is currently no effective disease-modifying treatment. Under the comprehensive effects of systemic and local factors,changes in the structure and metabolism of the articular cartilage occur progressively, culminating in articular cartilage softening, ulceration, local stripping and joint edge of the bone and cartilage excrescence formation etc. The initiation and progression of OA subtypes is a complex process that at the molecular level probably involves many cell types and signaling pathways. Increasing evidence implicates that the endoplasmic reticulum stress (ERS) and c-Jun N-terminal kinase (JNK) signaling pathway are probably involved to some degree in OA etiology and pathogenesis. Endoplasmic reticulum is an important organelle in cells, which is easy to cause the endoplasmic reticulum stress, leading to the endoplasmic reticulum related death, while the apoptosis of chondrocytes is one of the important pathological manifestations of osteoarthritis. C-Jun N-terminal kinase signal pathway was discovered in the past 20 years which was related to the cell differentiation, apoptosis, stress response and a variety of diseases occurrence and development. This review summarized the current knowledge of ERS as well as the JNK signaling pathway and their interactions regulating OA progression.
Osteoarthritis; Signal transduction; Endoplasmic reticulum stress; Apoptosis; Review
10.3969/j.issn.2095-252X.2016.07.010中圖分類號:R684
國家自然科學(xué)基金 (81272036)
200011 上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院骨科,上海市骨科內(nèi)植物重點(diǎn)實(shí)驗(yàn)室 (李曉東、王曉慶);200433 上海張江普匯轉(zhuǎn)化醫(yī)學(xué)研究院,上海恒健生物技術(shù)有限公司 (姚曉)
王曉慶,Email: osteoclast@163.com
2016-02-27)