孫祥耀 海涌
Risk factors and research progress in the treatment of incidental durotomy in anterior cervical spine surgery for the patients with ossification of the posterior longitudinal ligament
SUN Xiang-yao, HAI Yong. Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PRC
. 綜述 Review .
前路手術治療頸椎后縱韌帶骨化并發(fā)硬脊膜破裂的危險因素及治療進展
孫祥耀海涌
Risk factors and research progress in the treatment of incidental durotomy in anterior cervical spine surgery for the patients with ossification of the posterior longitudinal ligament
SUN Xiang-yao, HAI Yong. Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PRC
頸椎;后縱韌帶骨化;外科手術;腦脊液漏;危險因素;診斷
硬脊膜破裂 ( incidental durotomy,ID ) 在脊柱外科的整體發(fā)生率為 1%~17%[1]。頸椎手術硬脊膜破裂的整體發(fā)生率為 0.5%~3%[2-4],其中頸椎前路減壓手術引起硬脊膜破裂和腦脊液漏的發(fā)生率為 0.5%~3%[2,5-9],對于有后縱韌帶骨化的病例,發(fā)生率明顯增高,為 4.3%~32%[1,10-15]。與后路手術相比,前路手術可能出現的創(chuàng)傷性操作會增加腦脊液漏發(fā)生的風險,這是因為椎板成形術和椎板切除術避免了對骨化的后縱韌帶進行直接操作;因此,盡管在應用頸椎前路手術治療頸椎管狹窄等疾病時,通過切除骨化的后縱韌帶和前路融合對脊髓進行前方減壓能夠比后路手術取得更加滿意的治療效果,外科醫(yī)生必須考慮到硬脊膜破裂的風險[14,16]。
( 一 ) 頸椎特殊解剖結構
1. “過渡區(qū)” ( transitional zone ) 的概念:上位頸椎的穩(wěn)定結構十分復雜,在 C0~2層面的硬脊膜與周圍的韌帶粘連緊密,并通過多層結締組織進行加強;然而,C2椎體下1 / 3 平面以下對應的硬脊膜僅有后縱韌帶覆蓋,此結構延續(xù)到樞椎下節(jié)段直到脊髓全長[17]。Beretta 等[18]認為,“過渡區(qū)”位于上述 C0~2節(jié)段與樞椎下頸椎節(jié)段之間,為C2~3椎間盤平面與 C3椎體后壁上 1 / 3 之間的區(qū)域。
2. “過渡區(qū)”的意義:樞椎平面以下硬脊膜與上位頸椎平面與硬脊膜粘連的韌帶結構及堅韌的結締組織所形成的相反的彈性力,使“移行區(qū)”成了頸椎硬脊膜的薄弱區(qū)域,容易受到損傷出現硬脊膜破裂[18]。對于 C0~2復合體及其硬脊膜的分離,會引起“過渡區(qū)”C3水平硬脊膜薄弱處的破裂,從而將腦脊液引流入硬脊膜外間隙。由于上位頸椎的解剖特點以及“移行區(qū)”的存在,腦脊液漏引起的硬脊膜外間隙腦脊液積聚,較少出現在 C0~2水平,而較易從 C2~3層面向下蔓延,甚至可達上位胸椎水平硬脊膜外間隙[19]。
( 二 ) 頸椎前路手術硬脊膜破裂危險因素
Epstein 等[20]發(fā)現頸椎手術引起硬脊膜破裂的整體發(fā)生率為 1%;硬脊膜破裂的重要危險因素為老齡、風濕性關節(jié)炎、后縱韌帶骨化、手術時間較長、手術頸椎節(jié)段較多、神經功能較差、術式為椎體次全切除術以及再次手術;老齡及后縱韌帶骨化不僅是硬脊膜破裂的重要危險因素,也是硬脊膜破裂直接縫合修補失敗的重要危險因素。其中老齡患者因為硬膜變薄弱,容易出現硬脊膜破裂[19-21]。類風濕關節(jié)炎也是危險因素,可能原因是在炎癥狀態(tài)下會造成硬脊膜與周圍組織更嚴重的粘連以及使硬脊膜變得更加薄弱;術前神經功能較差也是重要危險因素,這可能是因為其需要進行更加復雜的手術才能達到治療目的,從而增加了硬脊膜破裂的風險[22]。Hannallah 等[8]報道后縱韌帶骨化是前路減壓手術后出現腦脊液漏的最重要的危險因素,并且患有后縱韌帶骨化的患者出現腦脊液漏的發(fā)生率是沒有后縱韌帶骨化患者的 13.7 倍。后縱韌帶骨化的病例中,硬脊膜經常發(fā)生骨化或鈣化,并與后縱韌帶融合在一起,因此增加了在進行去除后縱韌帶骨化塊的手術操作時出現腦脊液漏和脊髓或神經根損傷的可能性[23]。
( 三 ) 頸椎手術并發(fā)腦脊液漏的預后
既往文獻描述了多種與頸椎手術后腦脊液漏相關的并發(fā)癥,包括腦脊髓膜炎[24]、傷口延遲愈合、氣道阻塞[3-4]、腦脊液皮瘺[23]以及假性硬脊膜膨出[3,25-26]。術后立即出現的威脅生命的腦脊液漏并不常見,但是其需要早期診斷和迅速干預。處理得當的腦脊液漏預后較好,然而 Saxler 等[27]發(fā)現伴有硬脊膜破裂的患者預后較差 ( 他們會面臨更高的再手術風險,經受更嚴重的疼痛和疼痛相關的功能受限 ),其他作者報道腦脊液漏產生的長期有害作用有限[9-12]。
頸椎前路硬脊膜破裂的修補技術包括直接縫合修補,使用吸收性明膠海綿[1]、纖維蛋白膠[4,22,28]、膠原蛋白基質[29-30]、脂肪和筋膜移植[31-32]、生物型補片[33]、合成材料[34-35]以及使用硬膜外自體血填充技術[36]進行修補,放置腰部引流[8,37]或腰部-腹腔和傷口-腹腔分流術[3,33]、腦室引流術[24,26]、激光技術[38]和顯微硬脊膜縫合器縫合[15]。筆者將常用的術中處理方法和術后特殊處理方法分別進行闡述。
( 一 ) 術中處理策略
1. 硬脊膜直接縫合修補:盡管在整個脊柱區(qū)域,大多數的硬脊膜破裂引發(fā)腦脊液漏病例中直接縫合修補是最佳的處理方法[39-42],當其出現在頸椎前路手術治療后縱韌帶骨化時,通常會因為暴露不充分從而使直接縫合修補變得困難[43]。直接修補技術的主要目的是為硬脊膜破裂提供水密性封閉。如果技術上允許,提倡使用縫合的方法進行直接縫合修補。然而據報道,這種修補技術的失敗率為5%~10%[2,44]。當硬脊膜發(fā)生骨化并與后縱韌帶出現粘連并不易分離時,硬脊膜破裂將更易發(fā)生;這些硬脊膜破裂產生的組織缺口不適于進行直接縫合修補[16]。骨化的硬膜可以通過術前 CT 進行診斷,表現為硬脊膜上均質的骨化塊與后縱韌帶粘連或前方及后方骨化邊緣被肥厚的后縱韌帶的高密度區(qū)分開形成雙層征[45]??赡軐е轮苯涌p合修補失敗的另一個原因是縫合產生的針眼大小的硬脊膜破裂,使腦脊液從硬脊膜漏出[30,46-47]。對較小的硬脊膜破口進行一期縫合封閉的潛在風險在于,其將低壓力的破口轉變?yōu)橛煽p針引起的高壓力針眼[30]。
2. 化學密封劑和生物材料移植:常用的化學密封劑有吸收性明膠海綿[44]、纖維蛋白膠[48]、膠原蛋白基質[33],水明膠[68]等?;瘜W封閉劑可以被用來克服針眼處出現腦脊液漏的問題[30]。
吸收性明膠海綿為有孔材料,水密性差,但是可以與直接縫合相配合修補破口[44]。使用時可以使用甲潑尼龍浸泡防止與周圍組織粘連[25]。相關研究表明,頸椎前路手術致硬脊膜破裂腦脊液漏的患者,術中采用吸收性明膠海綿聯合縫合修補可以達到較好的療效,并且有效防止感染的發(fā)生[49]。
纖維蛋白膠被證明在防止直接修補引起的腦脊液漏方面有效[28]。實驗數據表明,經單純縫合的方法修補的硬脊膜破裂會在生理壓力下出現腦脊液漏,然而使用纖維蛋白膠等密封劑輔助修補后的硬脊膜破裂能在術后承受更高的壓力[28,31,48]。由于纖維蛋白密封劑在被吸收之前只能保持性狀 5~7 天,它應當與硬脊膜移植修補術合用,從而保證術后早期的水密性封閉。
Narotam 等[30]報道了在硬脊膜破裂修補中使用膠原蛋白基質外置非縫合移植物,并取得了成功。膠原蛋白基質不需要縫合固定,黏附能力較好,能降低局部反應,在2~3 個月被自身組織取代[20]。
水凝膠修補硬脊膜破口的成功率可達 98.2%[50]。水凝膠在使用后體積會增大 50%,因此其禁用于神經結構豐富的狹小骨性區(qū)域中,以避免對周圍結構造成壓迫[51]。國內報道了對無明顯硬脊膜缺損的患者,使用氰基丙烯酸酯醫(yī)用膠[52]和人工硬脊膜聯合生物蛋白膠[53]治療腦脊液漏,療效較好。
常用于移植修補的生物材料包括脂肪組織[54]、肌肉組織[55]、自體筋膜[54]以及牛心包膜[44]等。脂肪移植是最早應用于硬脊膜破裂的移植物,其不透水,容易獲得,不易與周圍神經結構粘連,并且能夠有效預防瘢痕的產生;最常應用的筋膜移植物包括闊筋膜和切口周圍的筋膜[54]。最常用于頸椎前路手術的肌肉組織移植方法為帶蒂胸鎖乳突肌皮瓣移植[55-56]。該皮瓣用途極為廣泛,Benazzo 等[56]曾經使用這種皮瓣治療頸椎前路手術造成的食管破裂,并取得了成功。牛心包膜為常用的異體組織移植物,有相關研究表明,硬膜環(huán)形撕裂使用自體闊筋膜移植或牛心包膜進行聯合修補,治療效果較好[44]。Epstein[15,33]描述了一項使用縫合或顯微硬膜縫合器來確保心包膜移植到硬脊膜破口處的技術,均在應用中取得成功;這項技術通常需要使用纖維蛋白密封劑和硬膜基質移植以及傷口-腹腔或腰部-腹腔分流術進行輔助治療。
3. 傷口引流:使用筋膜下引流處理術中出現的腦脊液漏尚有爭議。采用這種引流方式能夠在術后早期將積聚的漿液性滲出液、創(chuàng)面出血或腦脊液引流出來,并消除無效腔;當患者術后活動時,腦脊液內靜水壓力的增加促進腦脊液在短時間內溢出到筋膜下的空隙;當使用如膠原蛋白基質等有孔的移植材料時,腦脊液的溢出風險會增加,這在術后化學封閉形成和移植物與周圍組織接合之前的幾天中尤為明顯[30]。盡管有學者不建議使用引流[25],大多數的研究表明,硬脊膜-皮膚瘺管的形成的發(fā)生率不會隨引流的使用而增加[5,57]。
( 二 ) 術后處理方法
術中修補硬脊膜破口雖然是首選方法,但是由于其操作難度大,往往不易完成,因此硬脊膜破裂引起腦脊液漏的術后處理十分重要[23]。筆者將其分為蛛網膜下腔閉式引流術、傷口-腹腔分流術或腰部-腹腔分流術、硬脊膜外間隙自體血填充技術等特殊治療方法分別進行闡述。
1. 蛛網膜下腔閉式引流術:采用將腦脊液進行分流的方法在治療腦脊液漏方面有較為全面的文獻記錄。據報道成功率為 83%~100%[12,37];將頸椎前路減壓治療后縱韌帶骨化引起腦脊液漏,在術中放置腰部蛛網膜下腔閉式引流或分流術,以及不作處理的患者進行治療效果的比較,發(fā)現采用腰部蛛網膜下腔閉式引流及或分流術的患者沒有出現腦脊液瘺管或假性脊膜膨出形成,也沒有出現需要再次手術治療的病例。采用腦脊液分流治療硬脊膜破裂的原理為通過將腦脊液優(yōu)先從引流管引出,降低破口處腦脊液的壓力差,或者通過降低硬脊膜破口邊緣的張力,促進破口的愈合[37,44]。
在放置引流管時,應當在無菌的條件下采用側臥位進行操作,在 L2及 L3之間進行穿針;在引流時可以預防性靜脈滴注頭孢類抗生素或哌拉西林;引流量控制在 5~15 ml / h 或 12~360 ml / 天;使用硅膠引流管防止引流管閉塞,保留引流管 5~10 天[44]。
對于在術后處理過程中診斷腦脊液漏的患者 ( 例如患者引流管流出腦脊液或出現腦脊液皮膚瘺管形成 ),單純的臥床休息往往療效不佳[25]。盡管直接縫合修補是有效的治療方法,但是其需要二次手術,從而使其應用受到限制。很多學者建議使用腰部蛛網膜下腔閉式引流術而不采用二次手術進行硬脊膜破口的直接修補[37]。其它的方法,如腦脊液漏區(qū)域直接持續(xù)加壓等方法療效較差[16]。盡管腰部蛛網膜下腔閉式引流在治療腦脊液漏的治療方面有效,但是據報道其感染的發(fā)生率為 5%[58-60]。除此之外,腰部蛛網膜下腔閉式引流是重力依賴型系統(tǒng),患者體位的改變會引起腦脊液的大量引出[61]。有報道指出引流后會出現顱內積氣伴腦干受壓;其它與過度引流相關的并發(fā)癥包括頭痛、惡心,嘔吐[62]。此外,為防止因患者體位變化出現過度引流而采取長期制動處理,會增加術后深靜脈血栓形成和肺栓塞的風險[63]。流量控制型腦脊液引流系統(tǒng)的應用可以克服以上所述的潛在問題,該系統(tǒng)使用一個容量泵設備控制腦脊液的引流速度[30,51-52,55,64-66],一個低壓力控制閥[29],或者聯合使用容量和壓力控制系統(tǒng)。
2. 傷口-腹腔分流術或腰部-腹腔分流術:很多復雜硬脊膜破裂需要進一步切除周圍骨質才能顯露破口、完成直接修補;這往往需要加用閉合的傷口-腹腔或腰部-腹腔分流系統(tǒng)[29]。Epstein[33]報道了對接受多節(jié)段頸椎前路椎體次全切除、椎間植骨融合術治療后縱韌帶骨化,術中出現腦脊液漏的患者采用一期硬脊膜修補,聯合傷口-腹腔分流和腰部-腹腔分流置入的復雜方法治療,最終表明放置腰部-腹腔分流能夠有效防止傷口-腹腔引流失敗或阻塞。
分流術是一種有創(chuàng)性治療方法,會給患者帶來很多問題,如引流過度或不足,近端或遠端分流管道移位或阻塞,感染以及分流器故障,隨著時間的推移,這些問題需要翻修手術來解決[67]。因此,在其它方法都失敗的情況下才放置永久性分流進行治療。
3. 硬脊膜外間隙自體血填充技術:硬脊膜外間隙自體血填充技術通過自體血的填充作用可以降低硬脊膜破口處的壓力差,從而使腦脊液流入顱內,進而升高顱內腦脊液的壓力;同時腦脊液的移位改變了腦部血流狀態(tài),進而使靜脈擴張減輕;自體血能夠覆蓋在硬脊膜破口處,腦脊液漏停止,并且通過自身纖維化進行修復[49,68-74]。
應用于治療頸椎前路手術硬脊膜破裂引發(fā)腦脊液漏的硬脊膜外間隙自體血填充技術包括:徒手硬脊膜外間隙自體血填充技術[70]、X 線引導下硬脊膜外間隙自體血填充技術[71]、CT 引導下硬脊膜外間隙自體血填充技術[70]、超聲引導下硬脊膜外間隙自體血填充技術[72]。徒手硬膜外間隙自體血填充因為定位不準確,操作風險較大,現在已被影像學定位后穿刺自體血填充技術取代[70]。X 線引導下硬脊膜外間隙自體血填充技術可以通過局部麻醉,在 X 線引導下,使用 18-G 或 20-G 圖伊針經椎間孔入路到達脊髓前方的硬脊膜破口處,將與造影劑混合的自體靜脈血進行注入填充[71];其自體血使用劑量尚無標準,往往患者癥狀明顯緩解,注射局部稍有膨脹感即可,一般 10~35 ml[73]。CT 引導下硬脊膜外間隙自體血填充技術中可以應用 CT 脊髓造影技術,從而將穿刺針頭準確引導到硬脊膜破裂部位,從而減少了損傷脊髓的風險,并且可以在保證填充效果的前提下,適量減少自體血的注入量[70]。X 線等放射檢查方法在穿刺定位中發(fā)揮了重要的作用,但是這些方法會帶來輻射風險。隨著超聲檢查技術的發(fā)展,超聲引導下硬脊膜外間隙自體血填充技術已經開始應用,該技術通過在操作中觀察硬脊膜外間隙的空間變化從而確定進針部位以及自體血注入劑量[72]。
前路漂浮技術:“前路漂浮法”和它的改良技術已被用來降低后縱韌帶骨化患者進行前路手術時出現硬脊膜破裂的發(fā)生率[75-76]??偟膩碚f,這些方法保留了已經變薄的椎體后壁中部和骨化的后縱韌帶,而圍繞它進行側方減壓,因此骨化的后縱韌帶成為硬脊膜上“自由漂浮”的團塊。Epstein[77]指出,在使用磨鉆進行鉆削的過程中,應當保證后縱韌帶骨化塊與椎體次全切缺損的邊緣相連,從而保證骨化塊的穩(wěn)定,直到后縱韌帶的中部已被處理得足夠薄。當后縱韌帶骨化塊從骨性邊緣分離以后,必須小心謹慎地使后縱韌帶骨化塊進一步變薄。少數與硬脊膜粘連緊密的骨化塊保留在原處,從而降低了腦脊液漏的發(fā)生率[25]。一組研究報道了標準前路全切法治療后縱韌帶骨化出現術后腦脊液漏的發(fā)生率為 16%~25%[77],而與之相比前路漂浮法的發(fā)生率只有 5.1%[76]。
因為上位頸椎“過渡區(qū)”的存在,需要手術醫(yī)生在此區(qū)域進行頸椎前路手術操作時提高警惕,防止操作不當引起硬脊膜破裂。多節(jié)段、廣泛的后縱韌帶骨化增加了硬脊膜骨化的風險,因而增加了硬脊膜破裂的發(fā)生率。頸椎前路手術硬脊膜破裂診斷需根據術中及術后表現進行綜合評價。在治療過程中除非骨化的后縱韌帶能與下面的硬脊膜分離,否則應當采用術前放置腰部蛛網膜下腔閉式引流并在術中采取前路漂浮技術預防硬脊膜破裂。當發(fā)生硬脊膜破裂時,可以將多種輔助修補材料聯合使用進行直接修補。直接縫合修補適用于硬脊膜破口較小,破口顯露充分的病例。如果腦脊液漏無法在術中通過使用輔助修補材料進行有效控制,建議在手術結束之前放置腰部蛛網膜下腔閉式引流。在上述治療方法都失敗的情況下才放置永久性分流進行治療。
[1] Kalevski SK, Peev NA, Haritonov DG. Incidental Dural Tears in lumbar decompressive surgery: Incidence, causes, treatment, results. Asian J Neurosurg, 2010, 5(1):54-59.
[2] Nandyala SV, Elboghdady IM, Marquez-Lara A, et al. Cost analysis of incidental durotomy in spine surgery. Spine, 2014, 39(17):E1042-1051.
[3] Andrew SA, Sidhu KS. Cervical-peritoneal shunt placement for postoperative cervical pseudomeningocele. J Spinal Disord Tech, 2005, 18(3):290-292.
[4] Chang HS, Kondo S, Mizuno J, et al. Airway obstruction caused by cerebrospinal fluid leakage after anterior cervical spine surgery. Areport of two cases. J Bone Joint Surg Am, 2004, 86-A(2):370-372.
[5] Gruskay JA, Fu M, Basques BA, et al. Factors affecting length of stay and complications after elective anterior cervical discectomy and fusion: A study of 2164 patients from The American College of Surgeons National Surgical Quality Improvement Project Database (ACS NSQIP). Clin Spine Surg, 2016, 29(1):E34-42.
[6] Heidari Pahlavian S, Bunck AC, Thyagaraj S, et al. Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation. Ann Biomed Eng, 2016.
[7] Kasimatis GB, Panagiotopoulos E, Gliatis J, et al. Complications of anterior surgery in cervical spine trauma: an overview. Clin Neurol Neurosurg, 2009, 111(1):18-27.
[8] Hannallah D, Lee J, Khan M, et al. Cerebrospinal fluid leaks following cervical spine surgery. J Bone Joint Surg Am, 2008, 90(5):1101-1105.
[9] Hida K, Yano S, Iwasaki Y. Considerations in the treatment of cervical ossification of the posterior longitudinal ligament. Clin Neurosurg, 2008, 55:126-132.
[10] Chen Y, Guo Y, Chen D, et al. Diagnosis and surgery of ossification of posterior longitudinal ligament associated with dural ossification in the cervical spine. Eur Spine J, 2009, 18(10):1541-1547.
[11] Joseph V, Kumar GS, Rajshekhar V. Cerebrospinal fluid leak during cervical corpectomy for ossified posterior longitudinal ligament: incidence, management, and outcome. Spine, 2009, 34(5):491-494.
[12] Min JH, Jang JS, Lee SH. Clinical results of ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine treated by anterior decompression. J Spinal Disord Tech, 2008, 21(2):116-119.
[13] Choi S, Lee SH, Lee JY, et al. Factors affecting prognosis of patients who underwent corpectomy and fusion for treatment of cervical ossification of the posterior longitudinal ligament: analysis of 47 patients. J Spinal Disord Tech, 2005, 18(4):309-314.
[14] Mizuno J, Nakagawa H, Matsuo N, et al. Dural ossification associated with cervical ossification of the posterior longitudinal ligament: frequency of dural ossification and comparison of neuroimaging modalities in ability to identify the disease. J Neurosurg Spine, 2005, 2(4):425-430.
[15] Epstein N. Anterior approaches to cervical spondylosis and ossification of the posterior longitudinal ligament: review of operative technique and assessment of 65 multilevel circumferential procedures. Surg Neurol, 2001, 55(6):313-324.
[16] Tani T, Ushida T, Ishida K, et al. Relative safety of anterior microsurgical decompression versus laminoplasty for cervical myelopathy with a massive ossified posterior longitudinal ligament. Spine, 2002, 27(22):2491-2498.
[17] Debernardi A, D’Aliberti G, Talamonti G, et al. The craniovertebral junction area and the role of the ligaments and membranes. Neurosurgery, 2015, 76(Suppl 1):S22-32.
[18] Beretta F, Bernucci C, D’Aliberti G. Anterior spinal pseudomeningocele after C0-C2 traumatic injuries: role of the“dural transitional zone” in the etiopathogenesis. Eur Spine J, 2013, 22(Suppl 6):S889-893.
[19] Sin AH, Caldito G, Smith D, et al. Predictive factors for duraltear and cerebrospinal fluid leakage in patients undergoing lumbar surgery. J Neurosurg Spine, 2006, 5(3):224-227.
[20] Epstein NE. The frequency and etiology of intraoperative dural tears in 110 predominantly geriatric patients undergoing multilevel laminectomy with noninstrumented fusions. J Spinal Disord Tech, 2007, 20(5):380-386.
[21] Takahashi Y, Sato T, Hyodo H, et al. Incidental durotomy during lumbar spine surgery: risk factors and anatomic locations: clinical article. J Neurosurg Spine, 2013, 18(2):165-169.
[22] Nakajima S, Fukuda T, Hasue M, et al. New technique for application of fibrin sealant: rubbing method devised to prevent cerebrospinal fluid leakage from dura mater sites repaired with expanded polytetrafluoroethylene surgical membranes. Neurosurgery, 2001, 49(1):117-123.
[23] Mazur M, Jost GF, Schmidt MH, et al. Management of cerebrospinal fluid leaks after anterior decompression for ossification of the posterior longitudinal ligament: a review of the literature. Neurosurg Focus, 2011, 30(3):E13.
[24] McCallum J, Maroon JC, Jannetta PJ. Treatment of postoperative cerebrospinal fluid fistulas by subarachnoid drainage. J Neurosurg, 1975, 42(4):434-437.
[25] Eismont FJ, Wiesel SW, Rothman RH. Treatment of dural tears associated with spinal surgery. J Bone Joint Surg Am, 1981, 63(7):1132-1136.
[26] Kala M. Cerebrospinal fluid pseudocyst after anterior stabilization for cervical spine injury treated by ventricular drainage: case report. Surg Neurol, 1996, 45(3):293-295.
[27] Saxler G, Kr?mer J, Barden B, et al. The long-term clinical sequelae of incidental durotomy in lumbar disc surgery. Spine, 2005, 30(20):2298-2302.
[28] Shaffrey CI, Spotnitz WD, Shaffrey ME, et al. Neurosurgical applications of fibrin glue: augmentation of dural closure in 134 patients. Neurosurgery, 1990, 26(2):207-210.
[29] Epstein NE, Hollingsworth R. Anterior cervical micro-dural repair of cerebrospinal fluid fistula after surgery for ossification of the posterior longitudinal ligament. Technical note. Surg Neurol, 1999, 52(5):511-514.
[30] Narotam PK, José S, Nathoo N, et al. Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine, 2004, 29(24):2861-2867.
[31] Cain JE Jr, Rosenthal HG, Broom MJ, et al. Quantification of leakage pressures after durotomy repairs in the canine. Spine, 1990, 15(9):969-970.
[32] Parízek J, M?ricka P, Husek Z, et al. Detailed evaluation of 2959 allogeneic and xenogeneic dense connective tissue grafts (fascia lata, pericardium, and dura mater) used in the course of 20 years for duraplasty in neurosurgery. Acta Neurochir (Wien), 1997, 139(9):827-838.
[33] Epstein NE. Wound-peritoneal shunts: part of the complex management of anterior dural lacerations in patients with ossification of the posterior longitudinal ligament. Surg Neurol, 2009, 72(6):630-634.
[34] DiFazio FA, Nichols JB, Pope MH, et al. The use of expanded polytetrafluoroethylene as an interpositional membrane after lumbar laminectomy. Spine, 1995, 20(9):986-991.
[35] Yuguchi T, Kohmura E, Yoshimine T. PTFE-fascia patch inlay method for the anterior approach for cervical intradural spinal lesion. Spinal Cord, 2002, 40(11):601-603.
[36] Longmire S, Joyce TH 3rd. Treatment of a duro-cutaneous fistula secondary to attempted epidural anesthesia with an epidural autologous blood patch. Anesthesiology, 1984, 60(1):63-64.
[37] Kitchel SH, Eismont FJ, Green BA. Closed subarachnoid drainage for management of cerebrospinal fluid leakage after an operation on the spine. J Bone Joint Surg Am, 1989, 71(7):984-987.
[38] Foyt D, Johnson JP, Kirsch AJ, et al. Dural closure with laser tissue welding. Otolaryngol Head Neck Surg, 1996, 115(6):513-518.
[39] 龔少峰, 齊理華. 脊柱手術后腦脊液漏的治療體會. 中國保健營養(yǎng), 2016, 26(10):132.
[40] 賀愛軍. 脊柱手術后腦脊液漏的治療. 當代醫(yī)學, 2015, 21(5): 36-37.
[41] 于濱生, 鄭召民, 莊新明, 等. 脊柱手術后腦脊液漏的治療. 中國脊柱脊髓雜志, 2009, 19(2):113-116.
[42] 張昌茂, 陳祖星, 劉國銘. 41例脊柱手術后腦脊液漏的治療.醫(yī)藥前沿, 2014, (2):185.
[43] 于鳳賓, 陳德玉, 王新偉, 等. 頸前路后縱韌帶骨化切除術并發(fā)腦脊液漏的處理及療效分析. 中國脊柱脊髓雜志, 2012, 22(10):889-893.
[44] Bosacco SJ, Gardner MJ, Guille JT. Evaluation and treatment of dural tears in lumbar spine surgery: a review. Clin Orthop Relat Res, 2001, (389):238-247.
[45] Graham JJ. Complications of cervical spine surgery. A five-year report on a survey of the membership of the Cervical Spine Research Society by the Morbidity and Mortality Committee. Spine, 1989, 14(10):1046-1050.
[46] Hodges SD, Humphreys SC, Eck JC, et al. Management of incidental durotomy without mandatory bed rest. A retrospective review of 20 cases. Spine, 1999, 24(19):2062-2064.
[47] Kogias E, Klingler JH, Franco Jimenez P, et al. Incidental durotomy in open vs. tubular revision microdiscectomy: a retrospective controlled study on incidence, management and outcome. Clin Spine Surg, 2016.
[48] Cain JE Jr, Dryer RF, Barton BR. Evaluation of dural closure techniques. Suture methods, fibrin adhesive sealant, and cyanoacrylate polymer. Spine, 1988, 13(7):720-725.
[49] Vakharia SB, Thomas PS, Rosenbaum AE, et al. Magnetic resonance imaging of cerebrospinal fluid leak and tamponade effect of blood patch in postdural puncture headache. Anesth Analg, 1997, 84(3):585-590.
[50] 彭立軍, 羊明智, 陳偉. 頸椎前路手術致腦脊液漏的處理及療效觀察. 山東醫(yī)藥, 2014, 54(40):60-61.
[51] Biroli F, Esposito F, Fusco M, et al. Novel equine collagen-only dural substitute. Neurosurgery, 2008, 62(3 Suppl 1):273-274.
[52] Kim KD, Wright NM. Polyethylene glycol hydrogel spinal sealant (DuraSeal Spinal Sealant) as an adjunct to sutured duralrepair in the spine: results of a prospective, multicenter, randomized controlled study. Spine, 2011, 36(23):1906-1912.
[53] 于淼, 江曉兵, 姚珍松, 等. 氰基丙烯酸酯醫(yī)用膠預防腦脊液漏的療效觀察. 中國修復重建外科雜志, 2013, 27(12):1471-1474.
[54] 廖暉, 徐衛(wèi)國, 李鋒, 等. 人工硬脊膜聯合生物蛋白膠修復頸椎術中硬脊膜損傷. 生物骨科材料與臨床研究, 2012, 9(4):17-19.
[55] Mayfield FH, Kurokawa K. Watertight closure of spinal dura mater. Technical note. J Neurosurg, 1975, 43(5):639-640.
[56] Benazzo M, Spasiano R, Bertino G, et al. Sternocleidomastoid muscle flap in esophageal perforation repair after cervical spine surgery: concepts, techniques, and personal experience. J Spinal Disord Tech, 2008, 21(8):597-605.
[57] Lien JR, Patel RD, Graziano GP. Sternocleidomastoid muscular flap: treatment of persistent cerebrospinal fluid leak after anterior cervical spine surgery. J Spinal Disord Tech, 2013, 26(8):449-453.
[58] Harsh GR 4th, Sypert GW, Weinstein PR, et al. Cervical spine stenosis secondary to ossification of the posterior longitudinal ligament. J Neurosurg, 1987, 67(3):349-357.
[59] Shapiro SA, Scully T. Closed continuous drainage of cerebrospinal fluid via a lumbar subarachnoid catheter for treatmentor prevention of cranial/spinal cerebrospinal fluid fistula. Neurosurgery, 1992, 30(2):241-245.
[60] Coplin WM, Avellino AM, Kim DK, et al. Bacterial meningitis associated with lumbar drains: a retrospective cohort study. J Neurol Neurosurg Psychiatry, 1999, 67(4):468-473.
[61] Houle PJ, Vender JR, Fountas K, et al. Pump-regulated lumbar subarachnoid drainage. Neurosurgery, 2000, 46(4):929-932.
[62] Graf CJ, Gross CE, Beck DW. Complications of spinal drainage in the management of cerebrospinal fluid fistula. J Neurosurg, 1981, 54(3):392-395.
[63] Weill-Engerer S, Meaume S, Lahlou A, et al. Risk factors for deep vein thrombosis in inpatients aged 65 and older: a case-control multicenter study. J Am Geriatr Soc, 2004, 52(8):1299-1304.
[64] Fountas KN, Kapsalaki EZ, Johnston KW. Cerebrospinal fluid fistula secondary to dural tear in anterior cervical discectomy and fusion: case report. Spine, 2005, 30(10):E277-280.
[65] Hershman S, Cuellar VG, Bendo JA. Delayed presentation of incidental durotomy. Bull Hosp Jt Dis (2013), 2013, 71(3): 231-234.
[66] Narotam PK, Reddy K, Fewer D, et al. Collagen matrix duraplasty for cranial and spinal surgery: a clinical and imaging study. J Neurosurg, 2007, 106(1):45-51.
[67] Lehman RM. Complications of lumboperitoneal shunts. Neurosurgery, 2008, 63(2):E376.
[68] Franzini A, Messina G, Nazzi V, et al. Spontaneous intracranial hypotension syndrome: a novel speculative physiopathological hypothesis and a novel patch method in a series of 28 consecutive patients. J Neurosurg, 2010, 112(2):300-306.
[69] Harrington BE. Postdural puncture headache and the development of the epidural blood patch. Reg Anesth Pain Med, 2004, 29(2):136-163.
[70] Wendl CM, Schambach F, Zimmer C, et al. CT myelography for the planning and guidance of targeted epidural blood patches in patients with persistent spinal CSF leakage. AJNR Am J Neuroradiol, 2012, 33(3):541-544.
[71] Walega D, McComb E, Rosenow J. Bilateral cervicothoracic transforaminal blood patches for persistent headache from spontaneous intracranial hypotension: a case report and review. Clin J Pain, 2011, 27(4):357-364.
[72] Karmakar MK, Li X, Ho AM, et al. Real-time ultrasoundguided paramedian epidural access: evaluation of a novel inplane technique. Br J Anaesth, 2009, 102(6):845-854.
[73] Hannerz J, Dahlgren G, Irestedt L, et al. Treatment of idiopathic intracranial hypotension: cervicothoracic and lumbar blood patch and peroral steroid treatment. Headache, 2006, 46(3):508-511.
[74] Ferrante E, Arpino I, Citterio A, et al. Epidural blood patch in Trendelenburg position pre-medicated with acetazolamide to treat spontaneous intracranial hypotension. Eur J Neurol, 2010, 17(5):715-719.
[75] Matsuoka T, Yamaura I, Kurosa Y, et al. Long-term results of the anterior floating method for cervical myelopathy caused by ossification of the posterior longitudinal ligament. Spine, 2001, 26(3):241-248.
[76] Sakai K, Okawa A, Takahashi M, et al. Five-year followup evaluation of surgical treatment for cervical myelopathy caused by ossification of the posterior longitudinal ligament: a prospective comparative study of anterior decompression and fusion with floating method versus laminoplasty. Spine, 2012, 37(5):367-376.
[77] Epstein N. The surgical management of ossification of the posterior longitudinal ligament in 51 patients. J Spinal Disord, 1993, 6(5):432-454.
( 本文編輯:王萌 )
Anterior cervical spine surgery is commonly performed with low complication rates. One potentially serious complication is incidental durotomy ( ID ), which may cause cerebrospinal fluid ( CSF ) leak. Compared with posterior cervical spine surgery, anterior cervical spine surgery may increase the risk of ID by traumatic procedures. Direct operation on ossificated longitudinal ligament can be avoided due to posterior laminoplasty or laminectomy. The risk factors for ID in anterior cervical spine surgery include peculiar anatomical structure, transitional zone, old age, rheumatoid arthritis, longer operative time and so on. The complications related to CSF leak after cervical spine surgery include cerebrospinal meningitis, delayed wound healing, airway obstruction, cerebrospinal fluid fistula and pseudomeningocele. There is no consensus on the treatment principle of ID in anterior cervical spine surgery. The treatment methods include intraoperative suture technique without adjuncts, implantation with chemical sealants and biological materials, intraoperative wound drainage, lumbar subarachnoid drainage, wound-enterocoelia shunt or lumbar-enterocoelia shunt, epidural blood patch and general symptom management in the postoperative period. Simultaneously, anterior floating method can also help to prevent the appearance of ID in the operation.
Cervical vertebrae; Ossification of posterior longitudinal ligament; Surgical procedures, operative; Cerebrospinal fluid leak; Risk factors; Diagnosis
10.3969/j.issn.2095-252X.2016.11.009
R681.5
100020 北京,首都醫(yī)科大學附屬北京朝陽醫(yī)院骨科
2016-04-11 )