国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脊柱椎弓根螺釘置釘技術(shù)研究進(jìn)展

2016-01-23 11:08劉運(yùn)潮侯樹勛張宇鵬
關(guān)鍵詞:導(dǎo)板徒手椎弓

劉運(yùn)潮 侯樹勛 張宇鵬

脊柱椎弓根螺釘置釘技術(shù)研究進(jìn)展

劉運(yùn)潮 侯樹勛 張宇鵬

脊柱;內(nèi)固定器;椎弓根釘;體層攝影術(shù),X 線;外科手術(shù),計(jì)算機(jī)輔助

自從 1959 年 Boucher[1]在脊柱融合手術(shù)中應(yīng)用椎弓根螺釘技術(shù)以來,由于其能夠?qū)崿F(xiàn)三柱固定、為脊柱提供即刻牢固固定、矯形力量強(qiáng)大、可大幅度提高融合率等優(yōu)勢(shì),在脊柱外科手術(shù)中的應(yīng)用日益廣泛,已先后用于脊柱創(chuàng)傷、炎癥、腫瘤、畸形和退變性疾病等的治療,取得公認(rèn)的良好效果[2],在脊柱外科手術(shù)中有著不可替代的作用。盡管置釘技術(shù)日益成熟,但對(duì)于經(jīng)驗(yàn)較少的年輕醫(yī)生來說,準(zhǔn)確置釘仍是一大挑戰(zhàn),置釘失誤及與其相關(guān)的并發(fā)癥仍時(shí)有發(fā)生,如內(nèi)固定失敗、硬膜撕裂、原有神經(jīng)癥狀加重或出現(xiàn)新的癥狀、內(nèi)臟損傷、血管損傷甚至主動(dòng)脈損傷等[2-3]。因此,準(zhǔn)確置釘對(duì)手術(shù)效果有至關(guān)重要的意義。為了提高置釘準(zhǔn)確率,脊柱外科醫(yī)生提出了各種不同的置釘方法,結(jié)合現(xiàn)代科技各個(gè)領(lǐng)域的進(jìn)展創(chuàng)造性地應(yīng)用了多種輔助方法,并進(jìn)行了大量的實(shí)驗(yàn)研究和臨床應(yīng)用。筆者綜合相關(guān)文獻(xiàn),將各種置釘方法,尤其是近年來廣泛應(yīng)用或較有前景的新技術(shù)進(jìn)行總結(jié),比較其實(shí)用性和優(yōu)缺點(diǎn),為脊柱外科醫(yī)生提供參考。

按照置釘輔助方法的不同分別總結(jié)各項(xiàng)技術(shù),主要包括徒手置釘技術(shù)、X 線輔助置釘技術(shù)、計(jì)算機(jī)導(dǎo)航技術(shù)和數(shù)字導(dǎo)航模板技術(shù),并對(duì)椎弓根螺釘準(zhǔn)確率的評(píng)價(jià)標(biāo)準(zhǔn)進(jìn)行討論。

一、徒手置釘技術(shù)

置釘技術(shù)包括確定螺釘進(jìn)釘點(diǎn)和螺釘在軸位和矢狀位上的傾斜角度。盡管不斷有新的輔助技術(shù)出現(xiàn),仍有相當(dāng)多的醫(yī)生傾向于采用徒手置釘技術(shù)。其中,最為關(guān)鍵的步驟是確定進(jìn)釘點(diǎn)[4]。但由于無法直接看到椎弓根從而在直視下操作,而不得不通過后方解剖標(biāo)志點(diǎn)進(jìn)行推斷。在早期,Roy-Camille 等[5-6]和 Krag 等[7]均總結(jié)了各自徒手置釘?shù)牟僮鞣椒?,并在臨床中被廣泛應(yīng)用,其中以橫突、峽部和關(guān)節(jié)突關(guān)節(jié)為進(jìn)釘點(diǎn)標(biāo)志的方法應(yīng)用最為廣泛。但由于解剖標(biāo)志有時(shí)不恒定,及在翻修和畸形的病例中解剖結(jié)構(gòu)不夠清晰,導(dǎo)致某些情況下尋找進(jìn)釘點(diǎn)存在困難。

近年來,有學(xué)者在努力尋找更可靠的方法來提高徒手置釘準(zhǔn)確率,但仍然高度依靠清晰的解剖標(biāo)志[4]。在瑞士一個(gè)神經(jīng)外科培訓(xùn)中心,17 名年輕醫(yī)生在 X 線透視輔助下為 273 例置釘 1236 枚,共有 247 枚(20%)螺釘穿破椎弓根,135 枚(10.9%)在 2 mm 以內(nèi),65 枚(5.3%)在2~4 mm,47 枚(3.8%)超出 4 mm,16 例(5.9%)術(shù)后出現(xiàn)神經(jīng)癥狀加重,且均與螺釘誤置有關(guān)[8]。另有學(xué)者針對(duì)16 名住院醫(yī)師的胸椎置釘情況進(jìn)行了研究,共包括患者 32 例(268 枚螺釘),均在上級(jí)醫(yī)師指導(dǎo)下操作,并有運(yùn)動(dòng)誘發(fā)電位和體感誘發(fā)電位監(jiān)測(cè),發(fā)現(xiàn)總體誤置率達(dá)15%,T5準(zhǔn)確率最低(69%),T5~8穿破數(shù)量占總數(shù)的近一半,且在部分節(jié)段,高年資醫(yī)生的誤置率甚至高于年輕醫(yī)生[9]。上述研究表明,隨著臨床經(jīng)驗(yàn)的增長(zhǎng),置釘準(zhǔn)確率提高,置釘相關(guān)并發(fā)癥減少;但即使是經(jīng)驗(yàn)豐富的醫(yī)生,仍有相當(dāng)比例的置釘位置不佳,從而對(duì)臨床效果產(chǎn)生影響。同時(shí),目前的徒手置釘技術(shù)存在較長(zhǎng)的學(xué)習(xí)曲線,且臨床經(jīng)驗(yàn)對(duì)置釘準(zhǔn)確率的提高有限。

二、X 線輔助置釘技術(shù)

脊柱外科醫(yī)生廣泛應(yīng)用術(shù)中 X 線透視輔助置釘。術(shù)中 X 線透視可以在二維圖像上顯示螺釘位置,然而,其無法提供三維立體圖像,致使準(zhǔn)確判斷螺釘位置較為困難。有研究表明,正側(cè)位透視優(yōu)于單純側(cè)位透視[10]。但反對(duì)者認(rèn)為,X 線輔助透視并不能提高徒手置釘準(zhǔn)確率,反而會(huì)增加放射線暴露[11-12]。尤其是長(zhǎng)節(jié)段脊柱畸形手術(shù),放射暴露甚至可能對(duì)醫(yī)患雙方帶來一定風(fēng)險(xiǎn)[13]。對(duì)于脊柱畸形病例,由于其解剖結(jié)構(gòu)變異較多,徒手置釘更顯復(fù)雜[14]。Rodrigues 等[15]在 29 例特發(fā)性脊柱側(cè)凸手術(shù)中徒手置釘78 枚,即使按照 2 mm 標(biāo)準(zhǔn)(將螺釘穿出椎弓根皮質(zhì) 2 mm以內(nèi)者視為置釘準(zhǔn)確),準(zhǔn)確率也僅為 76.9%,且誤差較大的螺釘均位于凹側(cè)。Baghdadi 等[16]的研究認(rèn)為,10 歲以下兒童病例超出皮質(zhì) 2 mm 的螺釘比例高達(dá) 30.7%。另外,多數(shù)研究認(rèn)為,較小的年齡對(duì)置釘準(zhǔn)確率并無負(fù)面影響,兒童脊柱畸形手術(shù)置釘準(zhǔn)確率甚至高于成人[17]。Baghdadi 等[16]認(rèn)為,10 歲以上和 10 歲以下脊柱畸形患者置釘準(zhǔn)確率無明顯差別。有趣的是,隨著術(shù)者經(jīng)驗(yàn)的增長(zhǎng),螺釘內(nèi)側(cè)穿破率降低,但外側(cè)穿破率有所提高[18]。但需要指出的是,作者采用的是 4 mm 標(biāo)準(zhǔn),即認(rèn)為穿破皮質(zhì) 4 mm 以內(nèi)的均視為置釘準(zhǔn)確,這與其它研究難以比較[19]。由于評(píng)價(jià)標(biāo)準(zhǔn)不盡一致,上述各研究的置釘準(zhǔn)確率很難進(jìn)行橫向比較,但多數(shù)研究表明,脊柱畸形病例的置釘準(zhǔn)確率明顯低于非畸形病例,說明 X 線輔助置釘技術(shù)在此類手術(shù)中效果不盡理想,必須尋找能夠進(jìn)一步提高置釘準(zhǔn)確率的輔助方法。

三、計(jì)算機(jī)導(dǎo)航輔助置釘

隨著現(xiàn)代影像技術(shù)和計(jì)算機(jī)技術(shù)的長(zhǎng)足發(fā)展,以及醫(yī)學(xué)對(duì)手術(shù)精準(zhǔn)度的更高要求,在脊柱手術(shù)中出現(xiàn)了計(jì)算機(jī)輔助外科(computer assisted surgery,CAS)技術(shù)。1998年,Merloz 等[20]較早將計(jì)算機(jī)輔助導(dǎo)航用于脊柱外科手術(shù),自此,各大學(xué)和研究機(jī)構(gòu)設(shè)計(jì)了數(shù)百種導(dǎo)航系統(tǒng),其中有些目前仍處于實(shí)驗(yàn)階段。目前應(yīng)用較為廣泛的是ARCADIS Orbic 3 D(Siemens,德國(guó))、Ziehm Imaging mobile C-arm technology(Ziehm Imaging,德國(guó))、StealthStation O-Arm(Medtronic,美國(guó))、eNLight and NavSuite(Stryker Corporation,德國(guó))和 VectorVision(Brainlab,德國(guó))[21]。計(jì)算機(jī)導(dǎo)航通過示蹤器來確定椎體和器械的位置關(guān)系,從而實(shí)現(xiàn)實(shí)時(shí)模擬成像,可以輔助術(shù)前規(guī)劃、術(shù)中置釘和截骨、置釘后驗(yàn)證等操作,從而提高手術(shù)效率、提高置釘準(zhǔn)確率、提高臨床效果。按照導(dǎo)航數(shù)據(jù)來源,導(dǎo)航系統(tǒng)可分為兩種:基于容積圖像的導(dǎo)航和 X 線透視導(dǎo)航。第一種導(dǎo)航系統(tǒng)基于容積圖像,比如 CT 和 MRI 圖像,并可進(jìn)一步分為基于術(shù)前 CT 的導(dǎo)航和基于術(shù)中 CT 的導(dǎo)航;第二種導(dǎo)航應(yīng)用術(shù)中 X 線透視圖像,并可進(jìn)一步分為二維 X 線透視導(dǎo)航和三維 X 線透視導(dǎo)航。

1. 基于術(shù)前 CT 的導(dǎo)航系統(tǒng):基于術(shù)前 CT 的導(dǎo)航系統(tǒng)工作原理是,通過將術(shù)前獲取的 CT 圖像傳輸至導(dǎo)航系統(tǒng),進(jìn)行匹配和注冊(cè),利用手術(shù)區(qū)域的解剖信息實(shí)時(shí)成像,從而輔助手術(shù)操作。一項(xiàng)大宗病例對(duì)照研究包括患者1006 例,共 4500 枚胸腰椎椎弓根螺釘,將 CT 導(dǎo)航與X 線透視輔助置釘對(duì)比,按照 2 mm 標(biāo)準(zhǔn),置釘準(zhǔn)確率在腰椎為 96.4% 和 93.9%,在胸椎為 95.5% 和 79.0%,均有明顯差異,且胸椎置釘準(zhǔn)確率相差更大[22]。Meta 分析顯示,導(dǎo)航置釘較徒手置釘皮質(zhì)穿破幾率明顯降低(6% vs. 15%)[23]。由于與傳統(tǒng)方法相比,導(dǎo)航置釘準(zhǔn)確率更高,可以使術(shù)者更有把握應(yīng)用直徑較大的螺釘,并且對(duì)于畸形、翻修和微創(chuàng)病例適用性較好。但是,一項(xiàng)前瞻性對(duì)照研究顯示,與傳統(tǒng) X 線透視輔助置釘相比,雖然基于術(shù)前 CT 的導(dǎo)航系統(tǒng)的應(yīng)用可以減少術(shù)者的放射線暴露量至9.96 倍,且術(shù)中患者的放射線暴露量可能降低一半,但為了采集導(dǎo)航數(shù)據(jù)而進(jìn)行的術(shù)前 CT 掃描則大大增加患者的放射線暴露量[24]。

2. 基于術(shù)中 CT 的導(dǎo)航系統(tǒng):術(shù)前 CT 的誤差問題促使臨床醫(yī)生尋找更加準(zhǔn)確、便捷的導(dǎo)航方法,基于術(shù)中 CT(intraoperative computed tomography,iCT)的導(dǎo)航系統(tǒng)可以較好地解決上述問題?;?iCT 的導(dǎo)航系統(tǒng)在胸腰椎置釘中顯示出了較基于術(shù)前 CT 的導(dǎo)航系統(tǒng)更好的實(shí)用性,且學(xué)習(xí)曲線平滑[25]。在脊柱畸形病例中,應(yīng)用 iCT 導(dǎo)航與術(shù)中 X 線透視輔助置釘?shù)恼`置率分別為1.2% 和 5.2%,說明 iCT 導(dǎo)航可顯著降低螺釘誤置率[26]。iCT 系統(tǒng)的典型代表為 O-arm。O-arm 的技術(shù)優(yōu)勢(shì)在于:(1)術(shù)中采集影像數(shù)據(jù);(2)自動(dòng)完成注冊(cè),縮短了注冊(cè)時(shí)間[27]。Ling 等[27]應(yīng)用 O-arm 在 92 例胸腰椎手術(shù)中共置釘 467 枚,平均每例患者置釘 5.11 枚,其中 95.3% 完全在椎弓根內(nèi),穿出 2 mm 的占 3.4%,與 X 線透視組相比,置釘準(zhǔn)確率大為提高,且手術(shù)時(shí)間無明顯差異(5.25 h vs. 4.75 h),僅有 2 枚骶骨螺釘穿出前方皮質(zhì) 1 cm,3 例硬膜囊撕裂,說明 O-arm 系統(tǒng)應(yīng)用中并發(fā)癥發(fā)生率較低。還有研究認(rèn)為,盡管基于術(shù)前 CT 的導(dǎo)航與 O-arm 對(duì)于脊柱畸形的置釘準(zhǔn)確率無顯著差異,但 O-arm 組手術(shù)時(shí)間縮短一半[28-30]。上述研究均顯示,基于 iCT 的導(dǎo)航系統(tǒng)實(shí)用性強(qiáng),置釘準(zhǔn)確率高,并發(fā)癥少,而且注冊(cè)時(shí)間短,注冊(cè)誤差較小。不僅如此,O-arm 還可以在置釘完成后對(duì)術(shù)區(qū)進(jìn)行再掃描,對(duì)于評(píng)價(jià)術(shù)中置釘準(zhǔn)確性,以便相應(yīng)調(diào)整螺釘位置有著不可替代的作用,其準(zhǔn)確度和特異度均較高[31]。雖然 iCT 顯示了巨大優(yōu)勢(shì),但仍有學(xué)者認(rèn)為其置釘準(zhǔn)確率并非如上述研究描述得那樣高。一項(xiàng)應(yīng)用 iCT 導(dǎo)航系統(tǒng)對(duì)包括 203 例、1148 枚螺釘?shù)难芯堪l(fā)現(xiàn),高達(dá) 8.97% 的螺釘需要調(diào)整,其中頸椎、胸椎及腰椎需調(diào)整螺釘?shù)谋壤謩e為 18.42%、7.25% 和 8.80%,說明置釘?shù)臏?zhǔn)確率有待提高;同時(shí),術(shù)中 CT 的應(yīng)用并未降低需要翻修的螺釘?shù)谋壤?9]。不僅如此,iCT 導(dǎo)航還會(huì)增加術(shù)中醫(yī)患雙方的放射線暴露量。

3. 機(jī)器人系統(tǒng):近年來興起的機(jī)器人系統(tǒng)輔助置釘,為減少術(shù)中醫(yī)務(wù)人員的放射線暴露提供了新的解決思路。然而,一項(xiàng)隊(duì)列研究顯示,機(jī)器人輔助置釘未穿破皮質(zhì)的比例與傳統(tǒng)置釘方法相比差異較?。?3.6% vs. 79.8%),僅失血量降低,而手術(shù)時(shí)間無明顯差異[32]。最新的 Meta 分析顯示,機(jī)器人系統(tǒng)輔助置釘在臨床效果上并不優(yōu)于傳統(tǒng)置釘[33],甚至目前證據(jù)等級(jí)最高的臨床研究認(rèn)為,傳統(tǒng)置釘方法更優(yōu)(置釘準(zhǔn)確率 93% vs. 85%)[34]。上述研究表明,機(jī)器人系統(tǒng)輔助置釘雖然降低了術(shù)中放射線輻射量,但可能使置釘準(zhǔn)確率相應(yīng)下降,其實(shí)用性值得商榷。

4. 基于 X 線透視的導(dǎo)航系統(tǒng):基于 X 線透視的導(dǎo)航使脊柱外科醫(yī)生可以在術(shù)中二維圖像引導(dǎo)下進(jìn)行操作。隨著 3-D C-arm 技術(shù)的發(fā)展,三維 X 線透視導(dǎo)航逐漸獲得脊柱外科醫(yī)生的青睞,其可以通過球管的自動(dòng)連續(xù)旋轉(zhuǎn),獲得多個(gè)角度二維圖像,在導(dǎo)航工作站上進(jìn)行模擬三維重建,從而可實(shí)現(xiàn)類似于 CT 導(dǎo)航的功能。盡管圖像質(zhì)量不如 CT 導(dǎo)航,它仍然可以實(shí)現(xiàn)術(shù)中實(shí)時(shí)成像,且縮短術(shù)前準(zhǔn)備和術(shù)中操作時(shí)間,使患者接受的輻射量減少[36-37]。

5. 計(jì)算機(jī)導(dǎo)航的優(yōu)缺點(diǎn):目前,仍有研究認(rèn)為 CAS導(dǎo)航與傳統(tǒng)置釘方法相比無明顯優(yōu)勢(shì),而且由于人口統(tǒng)計(jì)學(xué)方面的差異和評(píng)價(jià)標(biāo)準(zhǔn)的不同,各研究數(shù)據(jù)不盡一致,為此,Tang 等[38]針對(duì)當(dāng)前的研究結(jié)果進(jìn)行了 Meta 分析,共包括 3 個(gè)隨機(jī)對(duì)照試驗(yàn)和 9 個(gè)回顧性對(duì)照研究,涉及 732 例 4953 枚椎弓根螺釘,結(jié)果顯示,導(dǎo)航系統(tǒng)在置釘準(zhǔn)確率和并發(fā)癥方面明顯優(yōu)于傳統(tǒng)置釘方法,其中僅有1.9% 的螺釘穿出皮質(zhì) 4 mm 以上。另一篇系統(tǒng)綜述認(rèn)為,徒手置釘、X 線透視輔助、三維 CT 導(dǎo)航和二維 X 線導(dǎo)航的置釘準(zhǔn)確率分別為 69%~94%、28%~85%、89%~ 100%、81%~92%[35]。綜合以上研究,可以認(rèn)為基于 CT的計(jì)算機(jī)導(dǎo)航系統(tǒng)準(zhǔn)確率最高。

盡管 CAS 明顯提高了置釘準(zhǔn)確率,得到了廣泛認(rèn)可,但其仍有諸多不足之處:(1)任何原因?qū)е碌臉?biāo)志物移動(dòng),均需進(jìn)行重新注冊(cè),從而導(dǎo)致手術(shù)時(shí)間延長(zhǎng);(2)術(shù)中注冊(cè)的精度問題。光學(xué)系統(tǒng)精度約 0.3 mm,電磁系統(tǒng)則為 0.5~0.9 mm,在一般節(jié)段可以接受,但在椎弓根直徑較小的節(jié)段則會(huì)造成較大誤差;(3)為了驗(yàn)證導(dǎo)航的精確度,進(jìn)行術(shù)中透視,增加了放射線暴露;(4)手術(shù)范圍受限。由于一次注冊(cè)最多可以保證 3~5 個(gè)椎體的應(yīng)用,在一些需要長(zhǎng)節(jié)段固定的手術(shù)中,需要多次注冊(cè),使得手術(shù)時(shí)間延長(zhǎng);(5)術(shù)中患者的呼吸運(yùn)動(dòng)會(huì)使示蹤器相對(duì)其它未注冊(cè)椎體產(chǎn)生移動(dòng),導(dǎo)致誤差;(6)成本效益問題。一套 CAS 系統(tǒng)花費(fèi)約 50 萬美元,并需要在設(shè)備維護(hù)和軟件升級(jí)方面持續(xù)投入,這對(duì)多數(shù)醫(yī)療機(jī)構(gòu)來說是一個(gè)不小的負(fù)擔(dān)[39]。盡管如此,CAS 導(dǎo)航仍然是脊柱手術(shù)便利和安全的輔助手段,相信隨著技術(shù)的進(jìn)步,上述狀況會(huì)逐漸得到改善。

四、數(shù)字導(dǎo)航模板技術(shù)

由于徒手置釘準(zhǔn)確率較低,多數(shù)導(dǎo)航設(shè)備價(jià)格昂貴且存在不同程度的注冊(cè)誤差,其它新興技術(shù)多數(shù)仍處于實(shí)驗(yàn)階段,部分臨床醫(yī)生開始將注意力轉(zhuǎn)向數(shù)字導(dǎo)航模板技術(shù)(以下簡(jiǎn)稱導(dǎo)板技術(shù))上。所謂導(dǎo)板技術(shù),即應(yīng)用現(xiàn)代計(jì)算機(jī)三維重建技術(shù)、逆向工程技術(shù)和快速成形技術(shù),術(shù)前采集患者 CT 數(shù)據(jù),應(yīng)用計(jì)算機(jī)進(jìn)行三維重建、模擬置釘,并在脊椎模型上圍繞虛擬螺釘生成進(jìn)釘引導(dǎo)通道,在脊椎后方骨性結(jié)構(gòu)上生成與之相匹配的模板,將上述通道和模板聯(lián)合,形成虛擬導(dǎo)板,將數(shù)據(jù)導(dǎo)入快速成型機(jī)進(jìn)行生產(chǎn),獲得手術(shù)導(dǎo)板。在術(shù)中,將導(dǎo)板置于相應(yīng)脊椎后方并與骨性結(jié)構(gòu)形成“鎖扣”匹配,緊密結(jié)合,最后沿相應(yīng)的進(jìn)釘通道完成置釘操作[40-44]。

Radermacher 等[45]最早報(bào)道了導(dǎo)板技術(shù),他們于 1998年以聚碳酸酯為原料,用銑床制造出導(dǎo)板,并首次將個(gè)體化導(dǎo)板技術(shù)應(yīng)用于腰椎操作。2001 年,Goffin 等[46]將導(dǎo)板應(yīng)用于寰樞椎置釘。2005 年報(bào)道了多節(jié)段聯(lián)合導(dǎo)板,即將不同節(jié)段的脊椎導(dǎo)板合成一體進(jìn)行制造,但精度不佳[47]。近年來,導(dǎo)板設(shè)計(jì)上增加了鉆孔通道,并且導(dǎo)板與脊椎后方充分接觸,增加了穩(wěn)定性[48]。上述均是以尸體標(biāo)本為對(duì)象進(jìn)行的初步嘗試,其進(jìn)展預(yù)示著導(dǎo)板技術(shù)日益完善。Lu 等[41]于 2009 年應(yīng)用光固化技術(shù)制造了腰椎導(dǎo)板,并首次應(yīng)用于臨床,同年進(jìn)行了 C2椎板螺釘?shù)膰L試[42],取得良好效果。2011 年,在頸椎置釘中應(yīng)用導(dǎo)板技術(shù),置釘 84 枚,其中 82 枚完全在椎弓根內(nèi)[49]。

但導(dǎo)板技術(shù)是基于脊椎后方無軟組織的假定情況,與實(shí)際情況不盡相符。而且,導(dǎo)板技術(shù)面臨的另一大挑戰(zhàn)是穩(wěn)定性問題,即在術(shù)中放置導(dǎo)板時(shí),其在人體 3 個(gè)坐標(biāo)軸上的平移和旋轉(zhuǎn)等 6 個(gè)自由度的穩(wěn)定性。為了解決導(dǎo)板穩(wěn)定性問題,最大限度避免殘留軟組織的影響,Merc 等[50]設(shè)計(jì)了多節(jié)段聯(lián)合導(dǎo)板用于腰骶椎螺釘置入,并將導(dǎo)板支點(diǎn)僅置于小關(guān)節(jié)上,避開過多的軟組織干擾,然后把多個(gè)導(dǎo)向孔橋接起來,大大提高了置釘準(zhǔn)確率。作者為了降低多節(jié)段聯(lián)合導(dǎo)板受體位的影響,術(shù)前采集 CT 數(shù)據(jù)時(shí)使患者俯臥位,理論上講在提高精度方面會(huì)起到一定作用。

從上述研究可以看出,應(yīng)用導(dǎo)板置釘有很高的準(zhǔn)確率,還可以減少或避免術(shù)中透視相關(guān)的放射線暴露,同時(shí)相對(duì)于大型導(dǎo)航設(shè)備數(shù)百萬元的造價(jià),導(dǎo)板材料成本低廉,適合多數(shù)醫(yī)療機(jī)構(gòu)應(yīng)用。但其術(shù)前投入的人力成本較高,使其應(yīng)用受到一定程度的限制。

五、置釘準(zhǔn)確度評(píng)價(jià)標(biāo)準(zhǔn)

對(duì)置釘準(zhǔn)確度的評(píng)價(jià)目前尚無金標(biāo)準(zhǔn),各研究所采用的評(píng)價(jià)方法也不同,這就造成了各個(gè)研究間難以進(jìn)行橫向比較,從而無法準(zhǔn)確了解各種技術(shù)的優(yōu)劣。目前應(yīng)用最多的評(píng)價(jià)方法是基于術(shù)后 CT 掃描的 2 mm 穿破標(biāo)準(zhǔn),即認(rèn)為穿破 2 mm 以內(nèi)是可以接受的,2 mm 以上則是不安全的,但其評(píng)分者內(nèi)信度(intra-rater reliability)有的為一致性差(κ=0.35)[51],有的為一致性好(κ= 0.66~0.83)[52-53],評(píng)分者間信度為一致性可(κ=0.45)[51]和一致性好(κ=0.65~0.85,ICC=0.62~0.69)(κ=0.66~0.83)[52,54-55]。最近的一項(xiàng)研究亦顯示,“2 mm 標(biāo)準(zhǔn)”信度較差[56],而且在脊柱側(cè)凸病例中,由于胸椎側(cè)凸弧頂凹側(cè)硬膜外間隙較正常值更小,所謂 2 mm 安全區(qū)域并不完全適用。目前報(bào)道信度最好的是 Bai 等[40]的方法,即:0 級(jí),椎弓根無破損;1 級(jí),椎弓根穿破 2 mm 以內(nèi),或穿出 1 個(gè)螺紋以內(nèi);2 級(jí),穿破 2~4 mm,或穿出螺釘直徑的一半以內(nèi);3 級(jí),穿破 4 mm 以上,或完全穿出椎弓根,但除了作者自己外,其它研究并未引用。值得注意的是,為了評(píng)價(jià)螺釘準(zhǔn)確度而進(jìn)行的常規(guī)術(shù)后 CT 掃描輻射劑量較大,因此,有學(xué)者應(yīng)用低劑量 CT 進(jìn)行螺釘位置評(píng)價(jià),認(rèn)為圖像效果良好,并且放射線暴露量?jī)H為0.37 mSv,比一般 CT 掃描低至少 20 倍[28]。

六、總結(jié)

(1)脊柱椎弓根螺釘?shù)闹萌爰夹g(shù)包括徒手置釘技術(shù)(包括解剖標(biāo)志點(diǎn)技術(shù)、X 線透視技術(shù))、計(jì)算機(jī)導(dǎo)航技術(shù)(包括二維 X 線導(dǎo)航、三維 X 線導(dǎo)航、基于術(shù)前 CT 的導(dǎo)航、基于術(shù)中 CT 的導(dǎo)航)和數(shù)字導(dǎo)航模板技術(shù)等;(2)在各種輔助技術(shù)中,應(yīng)用最廣泛的是 X 線透視輔助置釘技術(shù),但其效果并不可靠;置釘準(zhǔn)確率最高的是基于術(shù)中 CT 的導(dǎo)航和數(shù)字導(dǎo)板技術(shù),但前者設(shè)備昂貴,后者術(shù)前準(zhǔn)備時(shí)間較長(zhǎng);(3)目前螺釘準(zhǔn)確率的評(píng)價(jià)標(biāo)準(zhǔn)并不統(tǒng)一,各研究難以進(jìn)行橫向比較,尚需進(jìn)一步完善目前的評(píng)價(jià)方法;(4)術(shù)前檢查、術(shù)中操作及術(shù)后復(fù)查相關(guān)的放射線暴露量需要引起臨床醫(yī)生高度關(guān)注,可以通過一定方法降低射線劑量。相信隨著技術(shù)的進(jìn)步和設(shè)備的改進(jìn),上述各置釘輔助方法的缺陷會(huì)得到進(jìn)一步改善。

[1] Boucher HH. A method of spinal fusion. J Bone Joint Surg Br,1959, 41-B(2):248-259.

[2] Gautschi OP, Schatlo B, Schaller K, et al. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus, 2011,31(4):E8.

[3] Soultanis KC, Sakellariou VI, Starantzis KA, et al. Late diagnosis of perforation of the aorta by a pedicle screw. Acta Orthop Belg, 2013, 79(4):361-367.

[4] Fennell VS, Palejwala S, Skoch J, et al. Freehand thoracic pedicle screw technique using a uniform entry point and sagittal trajectory for all levels: preliminary clinical experience. J Neurosurg Spine, 2014, 21(5):778-784.

[5] Roy-Camille R, Saillant G, Mazel C. Plating of thoracic,thoracolumbar, and lumbar injuries with pedicle screw plates. Orthop Clin North Am, 1986, 17(1):147-159.

[6] Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res, 1986,(203):7-17.

[7] Krag MH, Weaver DL, Beynnon BD, et al. Morphometry of the thoracic and lumbar spine related to transpedicular screw placement for surgical spinal fixation. Spine, 1988, 13(1):27-32.

[8] Nevzati E, Marbacher S, Soleman J, et al. Accuracy of pedicle screw placement in the thoracic and lumbosacral spine using a conventional intraoperative fluoroscopy-guided technique: a national neurosurgical education and training center analysis of 1236 consecutive screws. World Neurosurg, 2014, 82(5):866-871.

[9] Wang VY, Chin CT, Lu DC, et al. Free-hand thoracic pedicle screws placed by neurosurgery residents: a CT analysis. Eur Spine J, 2010, 19(5):821-827.

[10] Koktekir E, Ceylan D, Tatarli N, et al. Accuracy of fluoroscopically-assisted pedicle screw placement: analysis of 1,218 screws in 198 patients. Spine J, 2014, 14(8):1702-1708.

[11] Kim YJ, Lenke LG, Bridwell KH, et al. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine, 2004,29(3):333-342.

[12] Kim YW, Lenke LG, Kim YJ, et al. Free-hand pedicle screw placement during revision spinal surgery: analysis of 552 screws. Spine, 2008, 33(10):1141-1148.

[13] Parker SL, McGirt MJ, Farber SH, et al. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery, 2011, 68(1):170-178.

[14] Sarlak AY, Tosun B, Atmaca H, et al. Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis. Eur Spine J, 2009, 18(12):1892-1897.

[15] Rodrigues LM, Nicolau RJ, Milani C. Computed tomographic evaluation of thoracic pedicle screw placement in idiopathic scoliosis. J Pediatr Orthop B, 2011, 20(4):195-198.

[16] Baghdadi YM, Larson AN, McIntosh AL, et al. Complications of pedicle screws in children 10 years or younger: a casecontrol study. Spine, 2013, 38(7):E386-393.

[17] Ledonio CG, Polly DW Jr, Vitale MG, et al. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the Pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am, 2011, 93(13):1227-1234.

[18] Samdani AF, Ranade A, Saldanha V, et al. Learning curve for placement of thoracic pedicle screws in the deformed spine. Neurosurgery, 2010, 66(2):290-294.

[19] Wu ZX, Huang LY, Sang HX, et al. Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech, 2011, 24(7):444-450.

[20] Merloz P, Tonetti J, Pittet L, et al. Pedicle screw placement using image guided techniques. Clin Orthop Relat Res, 1998,(354):39-48.

[21] Manbachi A, Cobbold RS, Ginsberg HJ. Guided pedicle screw insertion: techniques and training. Spine J, 2014, 14(1):165-179.

[22] Waschke A, Walter J, Duenisch P, et al. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J, 2013, 22(3):654-660.

[23] Shin BJ, James AR, Njoku IU, et al. Pedicle screw navigation:a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine, 2012, 17(2):113-122.

[24] Villard J, Ryang YM, Demetriades AK, et al. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine,2014, 39(13):1004-1009.

[25] Lee MH, Lin MH, Weng HH, et al. Feasibility of intraoperative computed tomography navigation system for pedicle screw insertion of the thoraco-lumbar spine. J Spinal Disord Tech, 2012.

[26] Tormenti MJ, Kostov DB, Gardner PA, et al. Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus, 2010, 28(3):E11.

[27] Ling JM, Dinesh SK, Pang BC, et al. Routine spinal navigation for thoraco-lumbar pedicle screw insertion using the O-arm three-dimensional imaging system improves placement accuracy. J Clin Neurosci, 2014, 21(3):493-498.

[28] Abul-Kasim K, Str?mbeck A, Ohlin A, et al. Reliability of low-radiation dose CT in the assessment of screw placement after posterior scoliosis surgery, evaluated with a new grading system. Spine, 2009, 34(9):941-948.

[29] Bydon M, Xu R, Amin AG, et al. Safety and efficacy of pedicle screw placement using intraoperative computed tomography:consecutive series of 1148 pedicle screws. J Neurosurg Spine,2014, 21(3):320-328.

[30] Kotani T, Akazawa T, Sakuma T, et al. Accuracy of pedicle screw placement in scoliosis surgery: A comparison between conventional computed tomography-based and O-arm-based navigation techniques. Asian Spine J, 2014, 8(3):331-338.

[31] Santos ER, Ledonio CG, Castro CA, et al. The accuracy of intraoperative O-arm images for the assessment of pedicle screw postion. Spine, 2012, 37(2):E119-125.

[32] Schatlo B, Molliqaj G, Cuvinciuc V, et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine, 2014, 20(6):636-643.

[33] Marcus HJ, Cundy TP, Nandi D, et al. Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J, 2014, 23(2):291-297.

[34] Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine, 2012, 37(8):E496-501.

[35] Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J, 2012, 21(2):247-255.

[36] Tian NF, Huang QS, Zhou P, et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J, 2011,20(6):846-859.

[37] Smith HE, Welsch MD, Sasso RC, et al. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med,2008, 31(5):532-537.

[38] Tang J, Zhu Z, Sui T, et al. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies. J Biomed Res, 2014, 28(3):228-239.

[39] Manbachi A, Cobbold RS, Ginsberg HJ. Guided pedicle screw insertion: techniques and training. Spine J, 2014, 14(1):165-179.

[40] Bai YS, Niu YF, Chen ZQ, et al. Comparison of the pedicle screws placement between electronic conductivity device and normal pedicle finder in posterior surgery of scoliosis. J Spinal Disord Tech, 2013, 26(6):316-320.

[41] Lu S, Xu YQ, Zhang YZ, et al. A novel computer-assisted drill guide template for lumbar pedicle screw placement: a cadaveric and clinical study. Int J Med Robot, 2009, 5(2):184-191.

[42] Lu S, Xu YQ, Zhang YZ, et al. A novel computer-assisted drill guide template for placement of C2 laminar screws. Eur Spine J,2009, 18(9):1379-1385.

[43] Lu S, Xu YQ, Chen GP, et al. Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement. Comput Aided Surg, 2011, 16(5):240-248.

[44] Ma T, Xu YQ, Cheng YB, et al. A novel computer-assisted drill guide template for thoracic pedicle screw placement: a cadaveric study. Arch Orthop Trauma Surg, 2012, 132(1):65-72.

[45] Radermacher K, Portheine F, Anton M, et al. Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res, 1998,(354):28-38.

[46] Goffin J, Van Brussel K, Martens K, et al. Three-dimensionalcomputed tomography-based, personalized drill guide for posterior cervical stabilization at C1-C2. Spine, 2001, 26(12):1343-1347.

[47] Berry E, Cuppone M, Porada S, et al. Personalised image-based templates for intra-operative guidance. Proc Inst Mech Eng H,2005, 219(2):111-118.

[48] Owen BD, Christensen GE, Reinhardt JM, et al. Rapid prototype patient-specific drill template for cervical pedicle screw placement. Comput Aided Surg, 2007, 12(5):303-308.

[49] Lu S, Xu YQ, Chen GP, et al. Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement. Comput Aided Surg, 2011, 16(5):240-248.

[50] Merc M, Drstvensek I, Vogrin M, et al. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg, 2013, 133(7):893-899.

[51] Schizas C, Thein E, Kwiatkowski B, et al. Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg, 2012, 78(2):240-245.

[52] Bai YS, Niu YF, Chen ZQ, et al. Comparison of the pedicle screws placement between electronic conductivity device and normal pedicle finder in posterior surgery of scoliosis. J Spinal Disord Tech, 2013, 26(6):316-320.

[53] Amato V, Giannachi L, Irace C, et al. Accuracy of pedicle screw placement in the lumbosacral spine using conventional technique: computed tomography postoperative assessment in 102 consecutive patients. J Neurosurg Spine, 2010, 12(3):306-313.

[54] Cho JY, Chan CK, Lee SH, et al. The accuracy of 3D image navigation with a cutaneously fixed dynamic reference frame in minimally invasive transforaminal lumbar interbody fusion. Comput Aided Surg, 2012, 17(6):300-309.

[55] Kim MC, Chung HT, Cho JL, et al. Factors affecting the accurate placement of percutaneous pedicle screws during minimally invasive transforaminal lumbar interbody fusion. Eur Spine J, 2011, 20(10):1635-1643.

[56] Lavelle WF, Ranade A, Samdani AF, et al. Inter- and intraobserver reliability of measurement of pedicle screw breach assessed by postoperative CT scans. Int J Spine Surg, 2014, 8:11.

(本文編輯:王萌)

Progress on spinal pedicle screw placement

LIU Yun-chao, HOU Shu-xun, ZHANG Yu-peng. Department of Orthopaedics, Xijing Hospital, the fourth Military Medical University, Xi'an, Shaanxi, 710032, PRC

HOU Shu-xun, Email: hsxortho@hotmail.com

Pedicle screw technology has been increasingly common in spinal surgery due to its advantages of three-column fixation, immediate fixation to the spine, strong orthopedic force, and significant improvement in fusion rate. To improve the insertion accuracy, a variety of screw systems have been proposed. The traditional freehand insertion has a rather long learning curve, and the contribution of clinical experience to the improvement of the insertion accuracy is limited. However, guided by imaging technologies, insertion accuracy is improved significantly. X-ray assisted screw insertion is the most common technology due to its lower economic cost and easier operation of the assisted equipment, but its accuracy in more complex cases like scoliosis needs to be improved. The new computeraided screw technology can provide accurate navigation in the surgery, but it is not common now due to high costs. Combined with 3 D printing technology, the digital navigation templates assisted technology can set tailored navigation template for each patient by accurate pedicle screw placement at an inexpensive price. However, this technique has not been widely used since it costs much time for preoperative designing. In this paper, the research development of freehand(unassisted)fixation, fixation by computer assisted navigation, fixation assisted by X-ray, and digital navigation template technique are summarized. Evaluation standards on fixation accuracy of pedicle screws are discussed to show the whole picture of pedicle screw placement for spine fusion.

Spine; Internal fixators; Pedicle screws; Tomography, X-ray; Surgery, computer-assisted

10.3969/j.issn.2095-252X.2016.08.009 中圖分類號(hào):R687.3

710032 西安,第四軍醫(yī)大學(xué)西京醫(yī)院骨科(劉運(yùn)潮);100048 北京,解放軍總醫(yī)院第一附屬醫(yī)院全軍骨科研究所(侯樹勛、張宇鵬)

侯樹勛,Email: hsxortho@hotmail.com

(2016-03-17)

猜你喜歡
導(dǎo)板徒手椎弓
基于釘孔共用理念的數(shù)字化導(dǎo)板在口腔頜面外科中的應(yīng)用
公安民警徒手抓捕技能淺論
柳鋼2032 mm熱連軋線卷取側(cè)導(dǎo)板控制策略優(yōu)化及設(shè)備管控
切開減壓椎弓根內(nèi)固定治療急性脊柱創(chuàng)傷患者的臨床效果
徒手攀巖
楔橫軋制導(dǎo)板粘料影響因素分析探究
徒手“撕開”原子彈
種植外科導(dǎo)板的設(shè)計(jì)及制作研究進(jìn)展
徒手深蹲,練練你的臀部
椎體強(qiáng)化椎弓根螺釘固定與單純椎弓根螺釘固定治療老年性胸腰段椎體骨折的遠(yuǎn)期療效比較