張峻 季欣然 唐佩福
綜述
脊髓損傷的影像學研究進展
張峻 季欣然 唐佩福
脊髓損傷;磁共振成像;彌散張量成像;超聲檢查
脊髓影像學檢查在脊髓損傷患者的診斷、治療和康復方面起著重要的作用。傳統(tǒng)的影像學檢查包括 X 線片、CT 和常規(guī) MRI,將這些檢查技術結合可以有效判斷脊柱脊髓損傷患者骨和韌帶損傷程度和范圍,結合神經查體從而指導臨床治療。但是,其對于脊髓細微結構損傷只能提供較少的信息。某種程度上講,它促進了更加注重于脊髓細微結構和生化功能的新的影像技術的發(fā)展,如磁共振彌散張量成像(diffusion tensor imaging,DTI),磁共振波譜(MR spectroscopy,MRS),正電子成像(positron emission tomography,PET),單光子發(fā)射斷層掃描(single photon emission computed tomography,SPECT),功能磁共振(functional MRI,fMRI)。這些技術發(fā)展水平各不相同,有的還處在實驗室研究階段,有的已經應用到了臨床診療中[1-4]。本綜述將傳統(tǒng)影像學技術在陳舊性脊髓損傷中的應用進展,新興影像學技術在脊髓診斷,療效判斷等方面的應用進展進行概述。
陳舊性脊髓損傷與急性損傷病理過程不同,主要表現(xiàn)為脊髓繼發(fā)性病變與晚期后遺癥,包括繼發(fā)于晚期的脊髓液化、壞死或腦脊液壓力梯度破壞后脊髓囊性變及上、下行傳導束損害所導致脊髓解剖形態(tài)萎縮、受壓、變細、結構紊亂等,同時還可伴有髓內囊腫、纖維化、瘢痕組織的形成等。嚴重者脊髓的完整性與連續(xù)性消失,為神經膠質所代替,并可出現(xiàn)蛛網膜粘連及脊髓橫斷。常規(guī) MRI 檢查是目前顯示脊髓病變的最佳影像學檢查方法。不同作者在報道慢性脊髓損傷的常規(guī) MRI 表現(xiàn)時對其病理類型的描述各有不同。脊髓囊變常規(guī) MRI 序列表現(xiàn)為髓內局限性、邊緣銳利的囊性結構病灶,其內信號變化同腦脊液。脊髓軟化常規(guī) MRI 表現(xiàn)為病變段脊髓在 T1WI 上信號強度介于腦脊液和正常脊髓實質之間,T2WI 上信號強度等于或高于腦脊液并常較 T1WI 顯示的病變范圍要大。脊髓萎縮的常規(guī) MRI 診斷標準尚未統(tǒng)一,Herlihy 等[5]以脊髓前后徑<6 mm 視為萎縮,Nordqvist[6]把頸髓前后徑<7 mm,胸髓前后徑<6 mm 作為脊髓萎縮的標準。因正常脊髓前后徑在不同個體間及同一個體不同年齡、不同脊髓節(jié)段間均有差異,與自身正常脊髓比較才可發(fā)現(xiàn)脊髓是否變細。脊髓變細的范圍標準以往文獻未見報道,脊髓空洞的典型 MRI 表現(xiàn)為髓內帶狀或管狀長 T1、長 T2信號,其信號強度與腦脊液相似。脊髓空洞使脊髓外形增粗,空洞內壁呈結腸袢樣。脊髓空洞可延及 3.6~10.1 個脊髓節(jié)段。外傷性脊髓空洞的發(fā)生率文獻報道不一,Kerslake 等[7]在傷后 3 周至 30 年后行常規(guī) MRI 復查的 71 例慢性脊髓外傷中,發(fā)現(xiàn)空洞癥 10 例,占 14.08%,Herlihy 等[5]報道為 40%。有作者把空洞描述為瘺管,Tsai 等[8]認為只有當空洞壁存有腦脊液信號時才可以認為空洞與蛛網膜下腔相通而稱之為瘺管。脊髓栓系是少見的慢性期外傷表現(xiàn),脊髓與蛛網膜粘連固定于椎管壁使脊髓移位、緊張、變性、功能缺失。脊髓栓系常見于外傷減壓術后,屬于繼發(fā)性栓系。脊椎后移和外傷性椎間盤突出均能造成脊髓后移緊貼椎管壁,但這一改變不符合栓系的診斷,無脊髓受壓的脊髓粘連且伴脊髓功能缺失才可診斷為栓系。Yamashita 等[9]報道慢性脊髓受壓在慢性傷中的發(fā)生率為 53%。
傳統(tǒng)的 MRI 被認為是診斷脊髓損傷的金標準,但是還沒有證據證明影像學診斷和脊髓損傷后的臨床實際損傷結果相一致[10]。因此,找到一種能夠提供受損脊髓相關微結構和代謝信息的非侵襲性影像學診斷方法,并且構建理論體系從而提供更加精確的臨床決策顯得越來越有意義。這種影像診斷模式的潛在效用和對脊髓損傷患者的作用是多方面的:首先,進行脊髓受損平面結構完整性的評估,預測傷后神經功能恢復的能力,從而制訂康復策略。其次,對脊髓損傷患者神經損害的程度有更好的理解,對兒童神經受損程度進行可靠的評估,因為兒童的體格檢查往往是不可靠的[11]。再者,可以開展神經受損導致的細胞反應的測量或針對受損脊髓的生物學治療。
DTI 已經被證明是脊髓損傷后的一種比標準 T2加權像還要靈敏的生物指標[12-15]。Chang 等[12]使用 DTI 和 MRI評估了 10 例慢性脊髓損傷患者和對照組的 10 名健康者。DTI 的定量參數(shù)計算出了頸髓每個水平的指標,DTI 示蹤成像參數(shù)用來測量軸下指標(3 個不同平面下的指標),包括通過損傷平面的神經束的數(shù)量和連接率。神經功能的評估采用脊髓損傷神經分類國際標準。結果證明 MRI 得出的異常影像學表現(xiàn)與脊髓損傷患者的臨床表現(xiàn)不一致。然而,DTI 部分各向異性與運動功能相關,正如 DTI 示蹤成像的纖維數(shù)量和通過受損病灶神經連接率相關。DTI 神經纖維示蹤成像表明在運動功能喪失感覺功能殘存的患者中沒有明顯的神經連接通過病灶。Petersen 等[14]使用 DTI,電生理檢查評估了 19 例慢性頸脊髓損傷患者,使用 ASIA評分標準進行神經學檢查。他們發(fā)現(xiàn)與健康對照組相比,部分各向異性評估價值被減弱,DTI 價值的減弱與體感誘發(fā)電位的振幅和脊髓損傷后的完整性相關。
另外一種新的診斷脊髓損傷技術是脊髓 fMRI。這種非侵襲性檢查模式依靠受檢新陳代謝活躍的神經組織血流和氧氣含量的變化[16]。信號的變化根據血氧水平的依賴對比和所選區(qū)域水內容物增加引起的細胞外水質子信號強化。脊髓 fMRI 能夠標出運功和感覺的功能區(qū)域。Kornelsen 等[17]通過隊列研究主動和被動活動 12 例脊髓損傷患者下肢完成了脊髓 fMRI 檢查。他們發(fā)現(xiàn),不管損傷的程度如何,所有的患者的神經元都表現(xiàn)出活躍度,并且主動和被動活動肢體引出了受損水平以下的神經元的活動。
再者,脊髓損傷后缺血是創(chuàng)傷性脊髓損傷病理生理過程的重要環(huán)節(jié),并且可作為神經保護性治療的重要靶點?,F(xiàn)有的評估脊髓內血流量的檢查方法有明顯的不足。Dubory 等[18]利用實時對比增強超聲成像(real-time contrast enhanced ultrasound imaging,CEU)觀察小鼠脊髓挫傷模型的髓內血流變化。需要在小鼠頸靜脈置管重復注射對比劑,在造模成功后 15 min,CEU 觀察到在損傷水平及鄰近水平有明顯的缺血,這項技術為評估限制缺血的導致組織壞死的臨床治療效果提供了新方法。
在脊髓損傷的動物模型中,檢驗細胞治療效果的實驗性研究隨著越來越多,先進的脊髓影像技術將有助于判斷這些實驗性治療方法是否有效[19-22]。連續(xù) DTI 可以評估傷后脊髓完整性,治療期間監(jiān)測脊髓細微結構的變化。灌注MRI 有助于判斷治療后脊髓血流灌注是否重新建立。PET有助于監(jiān)測神經修復過程,局部葡萄糖吸收的增加意味著脊髓組織正在愈合。上述都是有臨床應用潛力和發(fā)展前景的影像學技術。
在評估細胞療法治療脊髓損傷的效果中,一些實驗性研究驗證了先進脊髓影像技術的潛在作用。Schwartz 等[23]破壞小鼠的紅核髓束,植入成纖維細胞到損傷部位。DTI不僅可以鑒別正常和受損神經束,還可以分辨膠質瘢痕和對瘢痕形成過程定位。膠質瘢痕是脊髓損傷后神經軸突再生的物理屏障和細胞屏障。所以,DTI 在評價減輕或抑制瘢痕形成的細胞療法療效方面具有潛在的優(yōu)勢。Ellington 等[24]進行表皮神經干細胞移植后,使用 DTI 監(jiān)測脊髓再生效應發(fā)現(xiàn)其增加了各向異性、并且減少了損傷部位細胞生長的平均擴散率,提示受損脊髓結構和功能都得到了良好的恢復。雖然這些技術還處在早期臨床實施和研發(fā)階段,脊髓 DTI 和 fMRI 對儀器硬件和軟件要求都非常高,目前難以普及,但是這些先進的脊髓成像技術將在提供脊髓傷后完整性,細微結構變化等生理信息方面展示出巨大的潛力[4,25-26]。
[1] Vilchez C, Gonzalez-Reinoso M, Cubbison C, et al. Atrophy,focal spinal cord lesions and alterations of diffusion tensorimaging(DTI)parameters in asymptomaticvirus carriers and patients suffering from human T-lymphotrophic virus type 1(HTLV-1)-associated myelopathy/tropical spastic paraparesis(HAM/TSP). J Neurovirol, 2014, 20(6):583-590.
[2] Middleton DM, Mohamed FB, Barakat N, et al. An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury. Magn Reson Imaging, 2014, 32(5):433-439.
[3] Bazley FA, Pourmorteza A, Gupta S, et al. DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells. Conf Proc IEEE Eng Med Biol Soc, 2012, 2012:82-85.
[4] Boelmans K, Kaufmann J, Schmelzer S, et al. Hirayama disease is a pure spinal motor neuron disorder--a combined DTI and transcranial magnetic stimulation study. J Neurol, 2013,260(2):540-548.
[5] Herlihy AH, Oatridge A, Curati WL, et al. FLAIR imaging using nonselective inversion pulses combined with slice excitation order cycling and k-space reordering to reduce flow artifacts. Magn Reson Med, 2001, 46(2):354-364.
[6] Nordqvist L. The sagittal diameter of the spinal cord and subarachnoid space in different age groups. A roentgenographic post-mortem study. Acta Radiol Diagn, 1964, 227:1-96.
[7] Kerslake RW, Jaspan T, Worthington BS. Magnetic resonance imaging of spinal trauma. Br J Radiol, 1991, 64(761):386-402.
[8] Tsai JC, Petrovich MS, Sadun AA. Histopathological and ultrastructural examination of optic nerve sheath decompression. Br J Ophthalmol, 1995, 79(2):182-185.
[9] Yamashita Y, Takahashi M, Matsuno Y, et al. Chronic injuries of the spinal cord: assessment with MR imaging. Radiology,1990, 175(3):849-854.
[10] Chafetz RS, Gaughan JP, Vogel LC, et al. The international standards for neurological classification of spinal cord injury:intra-rater agreement of total motor and sensory scores in the pediatric population. J Spinal Cord Med, 2009, 32(2):157-161.
[11] Demir A, Ries M, Moonen CT, et al. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology, 2003, 229(1):37-43.
[12] Chang Y, Jung TD, Yoo DS, et al. Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. J Neurotrauma, 2010, 27(11):2033-2040.
[13] Facon D, Ozanne A, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol, 2005, 26(6):1587-1594.
[14] Petersen JA, Wilm BJ, von Meyenburg J, et al. Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma, 2012, 29(8):1556-1566.
[15] Shanmuganathan K, Gullapalli RP, Zhuo J, et al. Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol, 2008, 29(4):655-659.
[16] Kornelsen J, Stroman PW. Detection of the neuronal activity occurring caudal to the site of spinal cord injury that is elicited during lower limb movement tasks. Spinal Cord, 2007, 45(7):485-490.
[17] Kornelsen J, Mackey S. Potential clinical applications for spinal functional MRI. Curr Pain Headache Rep, 2007, 11(3):165-170.
[18] Dubory A, Laemmel E, Badner A, et al. Contrast enhanced ultrasound imaging for assessment of spinal cord blood flow in experimental spinal cord injury. J Vis Exp, 2015,(99):e52536.
[19] Taso M, Girard OM, Duhamel G, et al. Tract-specific and agerelated variations of the spinal cord microstructure: a multiparametric MRI study using diffusion tensor imaging(DTI)and inhomogeneous magnetization transfer(ihMT). NMR Biomed,2016, 29(6):817-832.
[20] Morozova SN, Bryukhov VV, Trifonova OV, et al. A DTI study of the spinal cord lesion in patients with multiple sclerosis during the follow-up after relapse. Zh Nevrol Psikhiatr Im S S Korsakova, 2016, 116:21-26.
[21] Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF,MRS, and fMRI. Neuroimage Clin, 2015, 10:192-238.
[22] Lindberg PG, Sanchez K, Ozcan F, et al. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur Radiol, 2016, 26(3):733-742.
[23] Schwartz ED, Duda J, Shumsky JS, et al. Spinal cord diffusion tensor imaging and fiber tracking can identify white matter tract disruption and glial scar orientation following lateral funiculotomy. J Neurotrauma, 2005, 22(12):1388-1398.
[24] Ellington BM, Schmit BD, Gourab K, et al. Diffusion heterogeneity tensor MRI(?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009. Biomed Sci Instrum, 2009, 45:167-172.
[25] Hodel J, Besson P, Outteryck O, et al. Pulse-triggered DTI sequence with reduced FOV and coronal acquisition at 3T for the assessment of the cervical spinal cord in patients with myelitis. AJNR Am J Neuroradiol, 2013, 34(3):676-682.
[26] S?siadek MJ, Szewczyk P, Bladowska J. Application of diffusion tensor imaging(DTI)in pathological changes of the spinal cord. Med Sci Monit, 2012, 18(6):RA73-79.
(本文編輯:王萌)
Advances in imaging studies of spinal cord injury
ZHANG Jun, JI Xin-ran, TANG Pei-fu. Department of Orthopaedics, PLA General Hospital, Beijing, 100853, PRC
TANG Pei-fu, Email: pftang301@163.com
Intramedullary hemorrhage, loss of blood spinal cord barrier integrity, perilesional ischemia,microvascular damage and subtle structural changes happen after spinal cord injury, but a safe and effective imaging examination technology to discover series of microstructural changes after the trauma of the spinal cord is lacking. Traditional imaging techniques can effectively determine the level and range of bone and ligament damage in patients with spinal cord injury. However, regarding to the fine structure of the spinal cord, it can only provide insufficient information. To some extent, it promotes the development of new imaging technology on the spinal fine structure and biochemical functions. But the development levels are not identical, some are still in the laboratory, and some are applied to the clinical diagnosis and treatment. In this paper, the application of traditional imaging technology in the old spinal cord injury, the application of new imaging technology in the diagnosis of spinal cord, curative effects and so on are summarized.
Spinal cord injuries; Magnetic resonance imaging; Diffusion tensor imaging; Ultrasonography
10.3969/j.issn.2095-252X.2016.08.008 中圖分類號:R683.2, R445
北京市科委重大項目(D161100002816005);博士后基金(2014M562548、2015T81100)
100853 北京,解放軍總醫(yī)院骨科(張峻、季欣然、唐佩福);010010 呼和浩特,內蒙古醫(yī)科大學附屬醫(yī)院骨科(張峻)
唐佩福,Email: pftang301@163.com
(2016-06-11)