費(fèi)強(qiáng) 封益飛 孫躍明
?
?綜述?
間質(zhì)化與結(jié)直腸癌相關(guān)性的研究進(jìn)展
費(fèi)強(qiáng) 封益飛 孫躍明
【摘要】上皮間質(zhì)化(epithelial-mesenchymal transition,EMT),指上皮細(xì)胞在某些特定因素下獲得間質(zhì)細(xì)胞表型的過(guò)程。在惡性腫瘤的發(fā)生和進(jìn)展過(guò)程中EMT發(fā)揮重要作用。結(jié)直腸癌細(xì)胞的侵襲運(yùn)動(dòng)和腫瘤遠(yuǎn)處轉(zhuǎn)移與EMT密切相關(guān),EMT可能成為未來(lái)抑制結(jié)直腸癌轉(zhuǎn)移的一個(gè)新的靶點(diǎn),為腫瘤治療開(kāi)辟一個(gè)新方向。
【關(guān)鍵詞】結(jié)直腸腫瘤; 研究; 進(jìn)展
上皮間質(zhì)化(epithelial mesenchymal transition,EMT)指上皮細(xì)胞在某些特定因素下獲得間質(zhì)細(xì)胞表型的過(guò)程,在惡性腫瘤的發(fā)生和進(jìn)展過(guò)程中EMT發(fā)揮重要作用。結(jié)直腸癌是常見(jiàn)的消化系統(tǒng)惡性腫瘤,起源于大腸粘膜上皮。結(jié)直腸癌細(xì)胞的侵襲運(yùn)動(dòng)和腫瘤遠(yuǎn)處轉(zhuǎn)移與EMT密切相關(guān)?,F(xiàn)就EMT和結(jié)直腸癌相關(guān)性的研究進(jìn)展予以闡述。
EMT是指上皮細(xì)胞在一定條件下獲得間質(zhì)細(xì)胞表型的過(guò)程,主要表現(xiàn)為細(xì)胞上皮特性減少,間質(zhì)特性增加,細(xì)胞骨架重塑和細(xì)胞基質(zhì)粘附消失。Greenburg觀察到晶狀體上皮細(xì)胞在三維凝膠中形成偽足并向間質(zhì)樣細(xì)胞形態(tài)轉(zhuǎn)變,首次提出EMT的概念[1]。脊椎動(dòng)物胚胎研究中發(fā)現(xiàn),心臟瓣膜形成過(guò)程中EMT發(fā)揮重要作用[2]。EMT也發(fā)生在組織損傷的修復(fù)過(guò)程中通過(guò)產(chǎn)生成纖維細(xì)胞來(lái)修復(fù)創(chuàng)傷或者炎癥造成的傷害。EMT參與腫瘤的發(fā)生、發(fā)展,上皮細(xì)胞來(lái)源的腫瘤細(xì)胞EMT后,獲得運(yùn)動(dòng)和侵襲的能力,并且具有干細(xì)胞的很多特性[3]。值得一提的是惡性腫瘤轉(zhuǎn)移過(guò)程中腫瘤芽殖概念的提出,腫瘤芽殖是指位于浸潤(rùn)前緣的孤立單個(gè)癌細(xì)胞或少于5個(gè)癌細(xì)胞的癌細(xì)胞簇,形成腫瘤芽殖是腫瘤浸潤(rùn)轉(zhuǎn)移過(guò)程的第一步,這類細(xì)胞具有極強(qiáng)的侵襲能力,與EMT有關(guān),且具有腫瘤干細(xì)胞特性[4]。
EMT特征包括細(xì)胞形態(tài)改變和分子標(biāo)志物改變:細(xì)胞形態(tài)由鵝卵石樣改變?yōu)榧忓N體樣,細(xì)胞極性消失,骨架改變;上皮化分子標(biāo)志物E-鈣黏蛋白等表達(dá)水平下降,間質(zhì)化分子標(biāo)志物波形蛋白等表達(dá)水平上升。
結(jié)直腸癌作為世界范圍內(nèi)最常見(jiàn)的惡性腫瘤之一,在癌癥相關(guān)死亡人數(shù)統(tǒng)計(jì)排名中占第四位,并且其發(fā)病率有逐年升高的趨勢(shì)[5]。肝臟作為結(jié)直腸癌最先和最易侵及的器官,大約25%的患者在初診時(shí)即發(fā)現(xiàn)結(jié)直腸癌肝轉(zhuǎn)移[6]。發(fā)達(dá)國(guó)家結(jié)直腸癌的5年生存率接近65%。美國(guó)的一項(xiàng)調(diào)查研究顯示,結(jié)直腸癌出現(xiàn)遠(yuǎn)處轉(zhuǎn)移,患者生存率驟降為11.7%[7]。
(一)E-鈣黏蛋白(E-cadherin)和波形蛋白(Vimentin)
E-鈣黏蛋白是一種鈣依賴性跨膜糖蛋白,在大多數(shù)上皮組織中均存在表達(dá)。E-鈣黏蛋白在胞外通過(guò)免疫球蛋白結(jié)構(gòu)域相互連接,在胞內(nèi)通過(guò)α、β連接蛋白與肌動(dòng)蛋白骨架相連接,使細(xì)胞與細(xì)胞之間形成緊密連接[8]。E-鈣黏蛋白同時(shí)也是維持上皮細(xì)胞特性的重要分子,丟失E-鈣黏蛋白的細(xì)胞呈現(xiàn)間質(zhì)細(xì)胞的特性。EMT過(guò)程中E-鈣黏蛋白表達(dá)水平下降,導(dǎo)致細(xì)胞粘附能力降低,易于移行,從而促進(jìn)腫瘤轉(zhuǎn)移[9]。E-鈣黏蛋白表達(dá)降低是腫瘤細(xì)胞發(fā)生EMT最重要的特征性表現(xiàn)之一。結(jié)直腸癌組織中E-鈣黏蛋白表達(dá)降低意味著可能存在淋巴轉(zhuǎn)移、腫瘤分化程度較差和患者預(yù)后不佳[10-11]。
波形蛋白也是細(xì)胞骨架蛋白之一,特異性分布于間質(zhì)細(xì)胞中,上皮細(xì)胞基本不表達(dá),波形蛋白表達(dá)增加使上皮源性細(xì)胞具有成纖維細(xì)胞特征[12]。波形蛋白在腫瘤中表達(dá)上調(diào)不僅與腫瘤分級(jí)有關(guān),而且可以促進(jìn)腫瘤的轉(zhuǎn)移[13]。
(二)轉(zhuǎn)錄因子
最初的研究表明,EMT過(guò)程主要由三類轉(zhuǎn)錄因子進(jìn)行調(diào)控,第一類轉(zhuǎn)錄因子為Snail鋅指蛋白,包括Snail1 和Snail2(SLUG),第二類轉(zhuǎn)錄因子為鋅指E盒結(jié)合蛋白,包括ZEB1和ZEB2(SIP1),最后一類為bHLH (basic Helix-loop-helix,堿性螺旋-環(huán)-螺旋)轉(zhuǎn)錄因子,包括TWIST1、TWIST2和E12/E47。最新研究結(jié)果顯示更多的轉(zhuǎn)錄因子參與EMT和結(jié)直腸癌進(jìn)展,包括:轉(zhuǎn)錄因子Brachyury、AP4、FOXC2、E2-2、SOX2、OCT4、胚胎干細(xì)胞關(guān)鍵蛋白Nanog、PROX1、同源盒蛋白SIX1、PRRX1、HMGA1、Fra-1和ZNF281/ZBP99等[14]。
(三)信號(hào)通路
TGF-β/Smad信號(hào)通路是誘發(fā)惡性腫瘤細(xì)胞發(fā)生EMT的重要信號(hào)通路之一,TGF-β引起細(xì)胞膜表面TβRⅠ和TβRⅡ二聚體化,進(jìn)而導(dǎo)致Smad蛋白磷酸化[15-16]。磷酸化的Smad2和Smad3與Smad4結(jié)合形成異源三聚體進(jìn)入細(xì)胞核[17],作為轉(zhuǎn)錄調(diào)控因子參與腫瘤細(xì)胞EMT調(diào)節(jié)。
WNT/β-catenin信號(hào)通路也是結(jié)直腸癌進(jìn)展和EMT調(diào)節(jié)的重要因素[18]。WNT信號(hào)通路抑制糖原合成激酶3β(GSK3β)介導(dǎo)的磷酸化作用以及抑制胞質(zhì)中的β-連環(huán)蛋白(β-catenin)降解,β-catenin進(jìn)入細(xì)胞核內(nèi)與轉(zhuǎn)錄因子(lymphoid enhancer factor/T cell factor)共同作用,激活EMT相關(guān)靶基因,降低E鈣黏蛋白的表達(dá)[19-20]。Dickkopf-1(DKK1),一種WNT信號(hào)通路的抑制劑,可以通過(guò)抑制EMT來(lái)抑制結(jié)直腸癌進(jìn)展[21]。
RAS/ERK1/2在結(jié)直腸癌EMT 過(guò)程中發(fā)揮作用。SLUG受到RAS信號(hào)通路的調(diào)控,對(duì)于伴RAS突變的結(jié)直腸癌,SLUG可以作為治療靶點(diǎn)[22]。RKIP(RAF-1激酶抑制蛋白)的下調(diào)與E-鈣黏蛋白的下降有關(guān)。
PI3K/AKT信號(hào)通路參與EMT過(guò)程。體外和體內(nèi)試驗(yàn)均證實(shí)了PI3K/AKT信號(hào)通路通過(guò)轉(zhuǎn)錄因子SNAIL1和SLUG調(diào)節(jié)EMT[23],WNT信號(hào)通路和PI3K/AKT信號(hào)通路之間的交互作可以影響β-catenin和Snail和穩(wěn)定和聚集[24]。
miRNA是在真核生物中發(fā)現(xiàn)的一類內(nèi)源性的具有調(diào)控功能的非編碼RNA,對(duì)細(xì)胞EMT同樣具有調(diào)控作用。研究表明miRNA-145可以調(diào)節(jié)TGF-β通路,抑制EMT過(guò)程,進(jìn)而抑制腫瘤的侵襲和轉(zhuǎn)移[25]。miRNA200家族可以通過(guò)作用于E鈣黏蛋白ZEB1和ZEB2,促發(fā)EMT過(guò)程[26]。結(jié)直腸癌中,miRNA-34a表達(dá)水平下降與c-met、SNAI1 和β-catenin上調(diào)有關(guān)[27]。
腫瘤微環(huán)境是指腫瘤產(chǎn)生和生存的環(huán)境,由多種細(xì)胞(包括炎癥和免疫細(xì)胞、腫瘤相關(guān)成纖維細(xì)胞)、胞外基質(zhì)和信號(hào)分子以及酸性、低氧等理化環(huán)境組成。研究表明,腫瘤微環(huán)境可以誘導(dǎo)腫瘤細(xì)胞發(fā)生EMT。
腫瘤相關(guān)成纖維細(xì)胞(cancer-associated fibroblasts,CAFs)是指從患者的腫瘤組織中分離得到的活化的成纖維細(xì)胞。共培養(yǎng)實(shí)驗(yàn)結(jié)果顯示CAFs可以促進(jìn)結(jié)直腸癌細(xì)胞的遷移[28]。CAFs在腫瘤微環(huán)境中可能通過(guò)IL-6/STAT3/Snail通路誘導(dǎo)上皮細(xì)胞的EMT轉(zhuǎn)化[29]。
細(xì)胞外基質(zhì)(extracellular matrixc,ECM)是分布在細(xì)胞表面或細(xì)胞之間的大分子,主要是多糖和蛋白,構(gòu)成復(fù)雜的網(wǎng)架結(jié)構(gòu)。發(fā)生了EMT的細(xì)胞能夠分泌基質(zhì)金屬蛋白酶(MMP),造成ECM物理和化學(xué)結(jié)構(gòu)的改變,ECM的變化反過(guò)來(lái)可以誘導(dǎo)和加強(qiáng)EMT[30-31],增加腫瘤細(xì)胞浸潤(rùn)能力。
炎性因子在腫瘤微環(huán)境中具有重要作用。TNF-α是巨噬細(xì)胞分泌的一種炎性因子,TNF-α可以通過(guò)激活A(yù)kt或者抑制Snail與糖原合成酶3β的結(jié)合來(lái)上調(diào)Snail的表達(dá),從而誘導(dǎo)EMT[32]。IL-8與EMT有關(guān)并且可以與Snail共同激活結(jié)腸癌干細(xì)胞[33]。
研究表明,包括干細(xì)胞生長(zhǎng)因子(HGF)、表皮生長(zhǎng)因子(EGF)和成纖維細(xì)胞生長(zhǎng)因子在內(nèi)的胞外信號(hào)分子,通過(guò)自分泌或旁分泌的方式,激活和維持EMT[34]。在這個(gè)過(guò)程中主要是PI3K/Akt/mTOR和Ras通路發(fā)揮信號(hào)傳遞作用。
缺氧誘導(dǎo)因子HIF-1在缺氧條件下穩(wěn)定表達(dá)。HIF-1α可以引起EMT和腫瘤干細(xì)胞的自我更新,并且促進(jìn)腫瘤轉(zhuǎn)移,下調(diào)HIF-1α可以抑制甚至逆轉(zhuǎn)EMT過(guò)程[35-36]。缺氧誘導(dǎo)結(jié)直腸癌細(xì)胞發(fā)生EMT,通過(guò)上調(diào)整聯(lián)蛋白α2和α5、膠原蛋白及纖維連接蛋白的表達(dá),癌細(xì)胞進(jìn)入周圍組織的脈管系統(tǒng)[37]。
研究表明,對(duì)奧沙利鉑、吉西他濱、紫杉醇等化療藥物耐藥的惡性腫瘤細(xì)胞可以發(fā)生EMT[38-39],分子機(jī)制的進(jìn)一步研究證實(shí)Snail可以提高結(jié)直腸癌癌細(xì)胞對(duì)5-FU的耐藥性[40],骨化三醇可以提高結(jié)直腸癌對(duì)放療的敏感性,但SLUG卻可以減弱這個(gè)作用[41]。EMT導(dǎo)致的腫瘤耐藥性可能與腫瘤干細(xì)胞有關(guān)。腫瘤干細(xì)胞同樣具有耐藥性和抗放療性,而發(fā)生EMT的腫瘤細(xì)胞具有自我更新和分化的干細(xì)胞特性[42]。EMT與結(jié)直腸癌細(xì)胞耐藥性之間的關(guān)系需要進(jìn)一步研究。
EMT在結(jié)直腸癌進(jìn)展過(guò)程發(fā)揮重要作用,抑制或逆轉(zhuǎn)EMT過(guò)程可以考慮作為結(jié)直腸癌治療的一種方法。蛋白結(jié)合多糖(PSK)可以調(diào)節(jié)TGF-β1和TGFβ2的生物活性[43],抑制EMT過(guò)程。隨機(jī)臨床實(shí)驗(yàn)表明PSK在結(jié)直腸癌的輔助治療中發(fā)揮有效做用[44]。ShRNA沉默Snail蛋白可以逆轉(zhuǎn)EMT過(guò)程,抑制腫瘤生長(zhǎng)[45]。
綜上,結(jié)直腸癌的發(fā)生、進(jìn)展和轉(zhuǎn)移過(guò)程中,EMT是關(guān)鍵因素之一。隨著分子生物學(xué)的研究發(fā)展,對(duì)EMT的機(jī)制將有更深入的了解。EMT可能成為未來(lái)抑制結(jié)直腸癌轉(zhuǎn)移的一個(gè)新的靶點(diǎn),為腫瘤治療開(kāi)辟一個(gè)新方向。
參 考 文 獻(xiàn)
[ 1 ] Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol, 1982, 95(1): 333-339.
[ 2 ] Mjaatvedt C H, Markwald RR. Induction of an epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol, 1989,136(1): 118-128.
[ 3 ] Li L, Li W. Epithelial-mesenchymal transition in human cancer:comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther, 2015, 150: 33-46.
[ 4 ] Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
[ 5 ] Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010, 127(12):2893-2917.
[ 6 ] Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol, 2009, 20(11): 1842-1847.
[ 7 ] Brenner H, Kloor M, Pox C P. Colorectal cancer. Lancet, 2014,383(9927): 1490-1502.
[ 8 ] Tepass U, Truong K, Godt D, et al. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol, 2000, 1(2): 91-100.
[ 9 ] Shargh S A, Sakizli M, Khalaj V, et al. Downregulation of E-cadherin expression in breast cancer by promoter hypermethylation and its relation with progression and prognosis of tumor. Med Oncol, 2014,31(11): 250.
[ 10 ] Pena C, Garcia J M, Silva J, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet, 2005, 14(22): 3361-3370.
[ 11 ] He X, Chen Z, Jia M, et al. Downregulated E-cadherin expression indicates worse prognosis in Asian patients with colorectal cancer:evidence from meta-analysis. PLoS One, 2013, 8(7): e70858.
[ 12 ] 韓婧, 潘燕, 李學(xué)軍. 波形蛋白的結(jié)構(gòu)、功能和與腫瘤的關(guān)系.醫(yī)學(xué)分子生物學(xué)雜志, 2011, 08(3): 265-268.
[ 13 ] Singh S, Sadacharan S, Su S, et al. Overexpression of vimentin:role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res, 2003, 63(9): 2306-2311.
[ 14 ] Cao H, Xu E, Liu H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract,2015, 211(8): 557-569.
[ 15 ] Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000, 1(3): 169-178.
[ 16 ] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700.
[ 17 ] Brown K A, Pietenpol J A, Moses H L. A tale of two proteins:differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem, 2007, 101(1): 9-33.
[ 18 ] Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis, 2008, 25(6): 657-663.
[ 19 ] Arend R C, Londono-Joshi A I, Straughn J J, et al. The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol, 2013, 131(3):772-779.
[ 20 ] Cho S W, Kim Y A, Sun H J, et al. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of beta-catenin/E-cadherin signaling. J Clin Endocrinol Metab, 2014, 99(9): E1641-E1649.
[ 21 ] Qi L, Sun B, Liu Z, et al. Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression. Cancer Sci, 2012, 103(4): 828-835.
[ 22 ] Wang Y, Ngo V N, Marani M, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene, 2010, 29(33): 4658-4670.
[ 23 ] Suman S, Kurisetty V, Das T P, et al. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog, 2014, 53(Suppl 1):E151-E160.
[ 24 ] Katoh M, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther, 2006, 5(9): 1059-1064.
[ 25 ] 全天一, 李偉明, 朱秋玲, 等. miR-145下調(diào)與結(jié)直腸癌上皮間葉轉(zhuǎn)化的分子機(jī)制探討. 中國(guó)現(xiàn)代普通外科進(jìn)展, 2013, 16(8):589-593.
[ 26 ] Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008, 22(7):894-907.
[ 27 ] Siemens H, Neumann J, Jac kstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res, 2013, 19(3): 710-720.
[ 28 ] Herrera M, Islam A B, Herrera A, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res,2013, 19(21): 5914-5926.
[ 29 ] 任春霞, 趙敏, 徐娜, 等. 癌相關(guān)成纖維細(xì)胞通過(guò)IL-6誘導(dǎo)的 ?上皮-間質(zhì)? 轉(zhuǎn)換促進(jìn)宮頸癌細(xì)胞的遷移和侵襲. 中國(guó)癌癥雜志, 2014(4): 252-257.
[ 30 ] Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004, 90(6): 1265-1273.
[ 31 ] Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 2001,23(10): 912-923.
[ 32 ] Wang H, Wang H S, Zhou B H, et al. Epithelial-mesenchymal transition(EMT) induced by TNF-alpha requires AKT/GSK-3 beta-mediated stabilization of snail in colorectal cancer. PLoS One, 2013, 8(2):e56664.
[ 33 ] Hwang W L, Yang M H, Tsai M L, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology, 2011,141(1): 279-291.
[ 34 ] Tam W L, Weinberg R A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med, 2013, 19(11): 1438-1449.
[ 35 ] Moen I, Oyan A M, Kalland K H, et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One, 2009, 4(7): e6381.
[ 36 ] Zeisberg M, Neilson E G. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009, 119(6): 1429-1437.
[ 37 ] Hongo K, Tsuno N H, Kawai K, et al. Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J Surg Res, 2013, 182(1): 75-84.
[ 38 ] Yang A D, Fan F, Camp E R, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res, 2006, 12(14 Pt 1): 4147-4153.
[ 39 ] Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol, 2007, 31(2): 277-283.
[ 40 ] Hoshino H, Miyoshi N, Nagai K, et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem Biophys Res Commun, 2009, 390(3):1061-1065.
[ 41 ] Findlay V J, Moretz R E, Wang C, et al. Slug expression inhibits calcitriol-mediated sensitivity to radiation in colorectal cancer. Mol Carcinog, 2014, 53(Suppl 1): E130-E139.
[ 42 ] Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
[ 43 ] Matsunaga K, Hosokawa A, Oohara M, et al. Direct action of a protein-bound polysaccharide, PSK, on transforming growth factor-beta. Immunopharmacology, 1998, 40(3): 219-230.
[ 44 ] Sakamoto J, Morita S, Oba K, et al. Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother,2006, 55(4): 404-411.
[ 45 ] Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene, 2007,26(13): 1862-1874.
(本文編輯:楊明)
費(fèi)強(qiáng), 封益飛, 孫躍明. 間質(zhì)化與結(jié)直腸癌相關(guān)性的研究進(jìn)展[J/CD].中華結(jié)直腸疾病電子雜志, 2016, 5(1): 64-67.
Research progression of the relativity between epithelial-mesenchymal transition and colorectal cancer
Fei Qiang, Feng Yifei, Sun Yueming. Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
Corresponding author: Sun Yueming, Email: jssym@vip.sina.com
【Abstract】Epithelial mesenchymal transition (EMT), refers to the epithelial cells obtained interstitial cell phenotype under some specific factors, EMT play an important role in the process of malignant tumor occurrence and progress. The invasion and distant metastasis of colorectal cancer cell is closely related to the EMT, EMT may become a new target for inhibiting metastasis of colorectal cancer, and be a new field for tumor treatment.
【Key words】Colorectal neoplasms; Research; Progress
DOI:10.3877/cma.j.issn.2095-3224.2016.01.13
基金項(xiàng)目:教育部基金項(xiàng)目(2012YQ030261)
作者單位:210000,南京醫(yī)科大學(xué)第一附屬醫(yī)院結(jié)直腸外科
通信作者:孫躍明,Email:jssym@vip.sina.com
收稿日期:(2015-12-18)