孫一宇 戴婷婷 綜述 李圣利 審校
·綜述·
淋巴管內(nèi)皮祖細(xì)胞標(biāo)志物的研究進(jìn)展
孫一宇戴婷婷綜述李圣利審校
【摘要】淋巴管內(nèi)皮祖細(xì)胞是淋巴管新生和再生的起點(diǎn),分化成的淋巴管內(nèi)皮細(xì)胞構(gòu)成了淋巴管網(wǎng)絡(luò)的基本框架。隨著淋巴管新生和再生研究的深入,淋巴管內(nèi)皮祖細(xì)胞在其中發(fā)揮的作用得到越來越多的關(guān)注。淋巴管內(nèi)皮祖細(xì)胞已成為當(dāng)前的研究熱點(diǎn)之一,我們就其標(biāo)志物的相關(guān)進(jìn)展進(jìn)行綜述。
【關(guān)鍵詞】淋巴管內(nèi)皮祖細(xì)胞標(biāo)志物分子機(jī)制
淋巴管內(nèi)皮祖細(xì)胞(LEPCs)或淋巴管內(nèi)皮前體細(xì)胞目前尚無明確定義,被認(rèn)可的LEPCs主要有兩種類型:一是在胚胎發(fā)育期(E9.5~E12.5),主靜脈內(nèi)皮上表達(dá)Prox1的內(nèi)皮細(xì)胞[1];二是出生后在骨髓、外周血、臍血中表達(dá)CD34+、CD133+和VEGFR3+的細(xì)胞[2]。在LEPCs向淋巴管內(nèi)皮細(xì)胞分化的過程中,其形態(tài)和標(biāo)志物變化很大,這些標(biāo)志物在不同部位、不同時(shí)間呈現(xiàn)強(qiáng)弱不同的表達(dá),介導(dǎo)著不同的信號(hào)傳導(dǎo),對(duì)LEPCs的分化和遷移起著重要作用?,F(xiàn)對(duì)一些主要的標(biāo)志物及其對(duì)LEPCs的影響進(jìn)行綜述。
Prox1(Prospero-related homeobox transcription factor 1,即果蠅prospero同源異形盒蛋白1)是一種同源轉(zhuǎn)錄因子,存在于細(xì)胞核內(nèi),由位于染色質(zhì)上q32.2~q32.3區(qū)域的Prox1基因編碼,分子量為83.2 KDa[3-4],在中樞神經(jīng)系統(tǒng)、晶狀體、心臟、肝臟、胰腺等組織中均有表達(dá),但在脈管系統(tǒng)中的表達(dá)僅限于淋巴管內(nèi)皮細(xì)胞[5]。在9.5 d的小鼠胚胎和6~7周的人胚胎內(nèi)的主靜脈前側(cè)內(nèi)皮細(xì)胞中Prox1開始表達(dá),并持續(xù)終生[6-7]。
Prox1是LEPCs分化的調(diào)控開關(guān)[6,8]。Wigle等[7]發(fā)現(xiàn),在敲
此外,Prox1對(duì)LEPCs的數(shù)量也具有調(diào)控作用。Srinivasan 等[11-12]的研究發(fā)現(xiàn),Prox1的數(shù)量對(duì)LEPCs的數(shù)量和淋巴靜脈瓣的形成都會(huì)產(chǎn)生影響。研究顯示,Prox1雜合的小鼠胚胎(Prox1+/-)中LEPCs的數(shù)量明顯少于野生基因型(Prox1+/+)的小鼠胚胎,且在胚胎中未見淋巴靜脈瓣的形成。其原因可能為某種轉(zhuǎn)錄因子以一種劑量依賴型的方式與Coup-TFⅡ/ Prox1復(fù)合體相競爭,從而實(shí)現(xiàn)對(duì)Prox1表達(dá)的負(fù)性調(diào)節(jié),進(jìn)而導(dǎo)致主靜脈內(nèi)產(chǎn)生的LEPCs數(shù)量減少。
過去認(rèn)為,Prox1的活性對(duì)LEPCs的分化起調(diào)控作用,但對(duì)其遷移卻無影響[7]。而研究發(fā)現(xiàn),在Prox1-/-的小鼠胚胎內(nèi)LECPs沒有進(jìn)一步分化,而且也沒有定向的遷移和出芽,從反面證明了其對(duì)出芽有影響[6]?,F(xiàn)在有實(shí)驗(yàn)證實(shí),其對(duì)主靜脈和節(jié)間靜脈處的LEPCs的出芽都有影響[1,13]。最新發(fā)現(xiàn)的Prox1-Vegfr3反饋回路解釋了淋巴管內(nèi)皮細(xì)胞的定向遷移及數(shù)量調(diào)控的問題,顯示在胚胎前主靜脈的背外側(cè)間質(zhì)中,VEGF-C的分泌較其他地方更多,VEGF-C通過與VEGFR-3的結(jié)合觸發(fā)了反饋回路使得此處的Prox1的表達(dá)維持穩(wěn)定,進(jìn)而保證了LEPCs數(shù)量及其后的遷移[14]。
LYVE-1(Lymphatic vessel hyaluronan receptor-1,即淋巴管透明質(zhì)酸受體-1)是一種表達(dá)在細(xì)胞膜上的由322個(gè)氨基酸殘基組成的Ⅰ型完整跨膜糖蛋白受體[15-17]。LYVE-1被認(rèn)為是目前最特異的淋巴管內(nèi)皮細(xì)胞標(biāo)志[18-19],已有實(shí)驗(yàn)證實(shí)LYVE-1表達(dá)在多種不同組織來源的淋巴管內(nèi)皮細(xì)胞上[6,20-22],同時(shí)有研究發(fā)現(xiàn),LYVE-1亦表達(dá)于腫瘤、炎癥組織中巨噬細(xì)胞的一個(gè)亞群內(nèi)和肝臟、脾臟血管竇內(nèi)皮細(xì)胞內(nèi)[23-24]。LYVE-1是最早表達(dá)在LEPCs上的標(biāo)志物,在小鼠胚胎第9天即可檢測到其表達(dá)[9,25],其意義可能在于使 LEPCs接受誘導(dǎo)信號(hào)并向淋巴管內(nèi)皮方向分化[6],但具體功能目前尚未明確。因?yàn)樵谌鄙貺YVE-1的小鼠(LYVE-1-/-)身上并未發(fā)現(xiàn)任何有關(guān)淋巴管發(fā)育方面的異常[26],推測LYVE-1可能與透明質(zhì)酸的轉(zhuǎn)運(yùn)和細(xì)胞黏附相關(guān)[20,27]。
Podoplanin(腎小球祖細(xì)胞表面蛋白)是Ⅰ型跨膜唾液黏蛋白樣糖蛋白,分子量為38 KDa。Podoplanin并不是淋巴管內(nèi)皮細(xì)胞的專屬標(biāo)記物,在腎小球足突細(xì)胞、成骨細(xì)胞、骨細(xì)胞、基底角質(zhì)化細(xì)胞、脈絡(luò)叢上皮細(xì)胞、胸腺Ⅰ型上皮細(xì)胞、肌上皮細(xì)胞、皮脂腺貯備細(xì)胞、前列腺的成肌纖維細(xì)胞、卵巢粒層細(xì)胞、濾泡樹突狀細(xì)胞和肺泡Ⅰ型上皮細(xì)胞上均能見到局部表達(dá),但尚未發(fā)現(xiàn)在血管內(nèi)皮上的表達(dá)[28-30]。Podoplanin 在11.5 d的小鼠胚胎主靜脈內(nèi)皮細(xì)胞中開始表達(dá),隨后在Prox1+的LEPCs中表達(dá),且主要表達(dá)在腔內(nèi)壁,極少表達(dá)在腔外壁、腔側(cè)壁及胞質(zhì)細(xì)胞器內(nèi)[31-32]。
Podoplanin是一個(gè)區(qū)分LEPCs是否出芽的重要標(biāo)志,只有在Prox1+LEPCs完全離開主靜脈時(shí)才會(huì)表達(dá)[13,33],這部分細(xì)胞會(huì)進(jìn)一步形成淋巴囊,而留在原位的Prox1+Podoplanin--LEPCs則會(huì)形成淋巴靜脈瓣[11]。其表達(dá)機(jī)制尚未研究清楚。
Podoplanin在淋巴囊與主靜脈分離上起重要作用,能與血小板上的CLEC2受體結(jié)合,引起血小板的聚集和活化,進(jìn)而使得兩者分離[34-38]。實(shí)驗(yàn)發(fā)現(xiàn),LEPCs末期(約E12.5),在淋巴囊與主靜脈結(jié)合處表達(dá)Podoplanin的LEPCs會(huì)與血小板結(jié)合并引起血小板的聚集和活化,聚集的血小板直接封閉孔洞或是間接地釋放血管收縮物質(zhì)亦或是釋放生長因子產(chǎn)生壁細(xì)胞,從而實(shí)現(xiàn)淋巴囊與主靜脈的分離。
某些病理?xiàng)l件下,由骨髓分化來的Pod+細(xì)胞通過轉(zhuǎn)分化而表達(dá)Prox1,且功能與LEPCs相同,并參與淋巴管的發(fā)育[39]。
VEGFR-3(Vascular endothelial growth factor receptor 3,即血管內(nèi)皮生長因子受體3)是VEGF受體家族成員,由一組結(jié)構(gòu)上相關(guān)的絡(luò)氨酸激酶構(gòu)成,包括了7個(gè)免疫球蛋樣結(jié)構(gòu)域(其中第五個(gè)Ig結(jié)構(gòu)域被二硫鍵所替代)、一個(gè)跨膜結(jié)構(gòu)域及一個(gè)中斷激酶結(jié)構(gòu)域。在小鼠胚胎E8.5,VEGFR-3開始表達(dá),且?guī)缀踉谒袃?nèi)皮細(xì)胞上都表達(dá),但當(dāng)淋巴系統(tǒng)開始分化時(shí),其表達(dá)就限制在了淋巴管內(nèi)皮細(xì)胞上了[1]。近年來發(fā)現(xiàn),在骨髓、肝竇等器官的有孔毛細(xì)血管內(nèi)皮及人惡性腫瘤的新生毛細(xì)血管內(nèi)皮上也有表達(dá)[40]。
VEGF-C在誘導(dǎo)淋巴管新生及再生方面的作用已得到廣泛證實(shí),作為其特異受體的VEGFR-3與VEGF-C間形成的信號(hào)傳導(dǎo)途徑對(duì)LEPCs的遷移至關(guān)重要[32,41]。在信號(hào)通路中,VEGFR3與下游的ERK與P13K結(jié)合,從而在指導(dǎo)LEPCs從受限制的主要靜脈區(qū)域出芽遷移發(fā)揮重要功能[42]。在VEGF-C-/-的小鼠胚胎內(nèi),LEPCs不能從主靜脈中分離,VEGF-C+/-的小鼠發(fā)生了淋巴管發(fā)育不良和淋巴水腫[43-44],而當(dāng)VEGFR-3過度表達(dá)時(shí)又會(huì)發(fā)生選擇性的淋巴管增生[45]。Srinivasan等[11]發(fā)現(xiàn),在淋巴靜脈瓣上的內(nèi)皮細(xì)胞不表達(dá)VEGFR3。另外,VEGFR-3與Prox1形成的反饋回路則對(duì)LEPCs的定向遷移起到調(diào)控作用[14]。
Li等[46]利用PEI-alginate(聚乙烯亞胺-海藻酸鈉)納米微粒攜帶VEGFR-3的siRNA,將其導(dǎo)入到CD34+、VEGFR3+的內(nèi)皮祖細(xì)胞中,從而抑制VEGFR-3 mRNA的表達(dá),結(jié)果發(fā)現(xiàn)細(xì)胞不能分化成淋巴管內(nèi)皮細(xì)胞,而且細(xì)胞的擴(kuò)增、遷移等都受到嚴(yán)重抑制。因此,VEGFR3可以作為LEPCs的一個(gè)標(biāo)志。研究顯示,在去除了配基結(jié)合區(qū)域(LBD)的VEGFR-3小鼠胚胎內(nèi),LEPCs可以形成淋巴囊但卻沒有進(jìn)一步的淋巴管新生,而在絡(luò)氨酸激酶失活的小鼠胚胎內(nèi)連淋巴囊都不能形成[47]。表示LEPCs形成淋巴囊主要是受VEGFR-3絡(luò)氨酸激酶的影響而非配基結(jié)合區(qū),推測VEGFR-3的絡(luò)氨酸激酶還可以被其他物質(zhì)激活,進(jìn)而形成淋巴囊。
CD34抗原是一種階段特異性白細(xì)胞分化抗原,是分子量為105~120 KDa的高度糖基化Ⅰ型跨膜蛋白,選擇性表達(dá)于人類造血干細(xì)胞(Human stem cell,HSC)、祖細(xì)胞(Progenitor cell,PC)和血管內(nèi)皮細(xì)胞表面。CD34+細(xì)胞是非均質(zhì)性的細(xì)胞群,既含有造血干細(xì)胞,也存在不同分化階段的各系造血祖細(xì)胞,并隨著造血細(xì)胞逐漸成熟,CD34的表達(dá)量逐漸減少,直至消失[48]。
CD34是一種造血干細(xì)胞的標(biāo)志,大量研究顯示CD34+細(xì)胞中包含能分化成內(nèi)皮細(xì)胞的祖細(xì)胞[49-52],VEGFR3可以作為淋巴管內(nèi)皮細(xì)胞的主要標(biāo)志,CD133也是造血干細(xì)胞或祖細(xì)胞的一種標(biāo)志,因?yàn)槌墒斓膬?nèi)皮細(xì)胞不表達(dá)CD133。所以,CD34+共表達(dá)VEGFR-3和CD133的細(xì)胞中很有可能就包含了LEPCs。Salven等[2]將CD34+、VEGFR-3+的胎肝和臍帶血細(xì)胞在內(nèi)皮細(xì)胞培養(yǎng)基中培養(yǎng),產(chǎn)生了單層內(nèi)皮細(xì)胞,這些細(xì)胞表達(dá)了多種淋巴管內(nèi)皮細(xì)胞的表面標(biāo)志,如LYVE1和Podoplanin。相關(guān)研究也進(jìn)一步證實(shí)了這群細(xì)胞參與了淋巴管新生[53-54]。在骨髓及外周血中也分離出了同樣的細(xì)胞,并且都具有淋巴管內(nèi)皮細(xì)胞相同的功能[2,55]。Tan等[56]利用人臍帶血細(xì)胞得到了同樣的結(jié)果,并且發(fā)現(xiàn)VEFGC/VEGFR-3信號(hào)通路介導(dǎo)了這群細(xì)胞的分化。Nguyen等[57]通過培養(yǎng)人臍帶靜脈內(nèi)皮細(xì)胞中CD34+、CD133+的祖細(xì)胞,并與人真皮淋巴管內(nèi)皮細(xì)胞相比較,發(fā)現(xiàn)兩者在基因與功能上有許多相似之處,即CD34+、CD133+的細(xì)胞很有可能就是LEPCs。眼部的大部分組織中均表達(dá)LYVE1,其中約有30%的細(xì)胞同時(shí)表達(dá)CD34 和Sca1,這部分細(xì)胞被認(rèn)為可能是眼部的LEPCs[58]。
Schoppmann等[59]發(fā)現(xiàn),CD14+、VEGFR3+、CD31+、VEGFR-2+的單核細(xì)胞,在淋巴管新生的過程中具有高度發(fā)育可塑性,推測其可能為LEPCs。
單克隆抗體D2-40是淋巴管標(biāo)志物,是一種相對(duì)分子質(zhì)量為40 KDa的氧連接型唾液酸糖蛋白,經(jīng)過組織超微結(jié)構(gòu)和其他淋巴管標(biāo)志物證實(shí),只存在于淋巴管內(nèi)皮細(xì)胞上。但目前文獻(xiàn)較少,其特異性尚需進(jìn)一步證實(shí)[60-61]。
CD133屬于細(xì)胞膜蛋白超家族成員,為一個(gè)含有865個(gè)氨基酸的糖蛋白。研究顯示,CD133是干細(xì)胞的特異標(biāo)記分子,作為干細(xì)胞和前體細(xì)胞表面特征分子被廣泛報(bào)道,如內(nèi)皮前體細(xì)胞[62]。已經(jīng)有許多實(shí)驗(yàn)從CD133+的細(xì)胞中分離培養(yǎng)出了LEPCs[2,56,63-64]。
NRP-2(Neuropilin-2,即神經(jīng)纖毛蛋白-2)是一種跨膜非酪氨酸激酶的糖蛋白,其短胞質(zhì)域限制了信號(hào)傳導(dǎo)能力。在脈管系統(tǒng)中,NRP-2的表達(dá)限定在淋巴系統(tǒng),在靜脈只有微量的表達(dá)。在LEPCs上,NRP-2作為VEGFR-3的協(xié)同受體調(diào)控LEPCs的正常出芽,但具體機(jī)制不明[65]。
近年來,越來越多關(guān)于LEPCs的研究已應(yīng)用到了上述標(biāo)志物,但各種標(biāo)記物仍有許多局限和不足,比如Prox-1因表達(dá)在細(xì)胞核,所以并不能成為研究LEPCs理想的標(biāo)記物,目前是將它和其他標(biāo)記物聯(lián)合作免疫組織化學(xué)雙染來提高識(shí)別LEPCs的特異性。但卻存在著耗時(shí)、耗力、耗經(jīng)費(fèi),相互影響,可能出現(xiàn)人為誤差等缺點(diǎn);而VEGFR-3特異性不夠強(qiáng),其在創(chuàng)傷愈合后新生毛細(xì)血管內(nèi)皮也出現(xiàn)表達(dá)。介于現(xiàn)階段實(shí)驗(yàn)條件及理論的限制應(yīng)用,比較可靠的標(biāo)志物主要為Prox1、Podoplanin和LYVE-1。在應(yīng)用特異性標(biāo)志物的基礎(chǔ)上,與其他內(nèi)皮標(biāo)記因子協(xié)同作用,根據(jù)表達(dá)的強(qiáng)弱及LEPCs的形態(tài)學(xué)特點(diǎn)來確定LEPCs才是真正可靠的。
參考文獻(xiàn)
[1]Yang Y,Oliver G.Development of the mammalian lymphatic vasculature[J].J Clin Invest,2014,124(3):888-897.
[2]Salven P,Mustjoki S,Alitalo R,et al.VEGFR-3 and CD133 identify a population of CD34+lymphatic/vascular endothelial precursor cells[J].Blood,2003,101(1):168-172.
[3]Zinovieva RD,Duncan MK,Johnson TR,et al.Structure and chromosomal localization of the human homeobox gene Prox 1[J]. Genomics,1996,35(3):517-522.
[4]Wilting J,Papoutsi M,Christ B,et al.The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues[J].FASEB J,2002,16(10):1271-1273.
[5]Oliver G,Sosa-Pineda B,Geisendorf S,et al.Prox 1,a prosperorelated homeobox gene expressed during mouse development[J]. Mech Dev,1993,44(1):3-16.
[6]Wigle JT,Harvey N,Detmar M,et al.An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype[J]. EMBO J,2002,21(7):1505-1513.
[7]Wigle JT,Oliver G.Prox1 function is required for the development of the murine lymphatic system[J].Cell,1999,98(6):769-778.
[8]Hong YK,Harvey N,Noh YH,et al.Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate[J]. Dev Dyn,2002,225(3):351-357.
[9]Oliver G.Lymphatic vasculature development[J].Nat Rev Immunol, 2004,4(1):35-45.
[10]Petrova TV,Makinen T,Makela TP,et al.Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor[J].EMBO J,2002,21(17):4593-4599.
[11]Srinivasan RS,Oliver G.Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves[J].Genes Dev,2011,25(20):2187-2197.
[12]Srinivasan RS,Escobedo N,Yang Y,et al.The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors[J].Genes Dev,2014,28(19):2175-2187. [13]Yang Y,Oliver G.Transcriptional control of lymphatic endothelial cell type specification[J].Adv Anat Embryol Cell Biol,2014,214: 5-22.
[14]Yang Y,Garcia-Verdugo JM,Soriano-Navarro M,et al.Lymphatic endothelialprogenitorsbudfromthecardinalveinand intersomitic vessels in mammalian embryos[J].Blood,2012,120 (11):2340-2348.
[15]Jackson DG.Biology of the lymphatic marker LYVE-1 and applicationsinresearchintolymphatictraffickingand lymphangiogenesis[J].Apmis,2004,112(7-8):526-538.
[16]Jain RK,Padera TP.Development.Lymphatics make the break [J].Science,2003,299(5604):209-210.
[17]Yamashita JK.Differentiation of arterial,venous,and lymphatic endothelial cells from vascular progenitors[J].Trends Cardiovasc Med,2007,17(2):59-63.
[18]Jackson DG.The lymphatics revisited:new perspectives from the hyaluronan receptor LYVE-1[J].Trends Cardiovasc Med,2003, 13(1):1-7.
[19]Jackson DG.New molecular markers for the study of tumour lymphangiogenesis[J].Anticancer Res,2001,21(6B):4279-4283.
[20]Prevo R,Banerji S,Ferguson DJ,et al.Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium[J].J Biol Chem,2001,276(22):19420-19430.
[21]Haak MC,Bartelings MM,Jackson DG,et al.Increased nuchal translucency is associated with jugular lymphatic distension[J]. Hum Reprod,2002,17(4):1086-1092.
[22]Cursiefen C,Schlotzer-Schrehardt U,Kuchle M,et al.Lymphatic vessels in vascularized human corneas:immunohistochemical investigation using LYVE-1 and podoplanin[J].Invest Ophthalmol Vis Sci,2002,43(7):2127-2135.
[23]Mouta Carreira C,Nasser SM,di Tomaso E,et al.LYVE-1 is not restricted to the lymph vessels:expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis [J].Cancer Res,2001,61(22):8079-8084.
[24]Grant AJ,Goddard S,Ahmed-Choudhury J,et al.Hepatic expression of secondary lymphoid chemokine(CCL21)promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease[J].Am J Pathol,2002,160(4):1445-1455.
[25]Alitalo K,Tammela T,Petrova TV.Lymphangiogenesisin development and human disease[J].Nature,2005,438(7070):946-953.
[26]Gale NW,Prevo R,Espinosa J,et al.Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1[J].Mol Cell Biol,2007,27(2):595-604.
[27]Nandi A,Estess P,Siegelman MH.Hyaluronan anchoring andregulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44[J].J Biol Chem, 2000,275(20):14939-14948.
[28]Raica M,Cimpean AM,Ribatti D.The role of podoplanin in tumor progression and metastasis[J].Anticancer Res,2008,28 (5B):2997-3006.
[29]Wicki A,Christofori G.The potential role of podoplanin in tumour invasion[J].Br J Cancer,2007,96(1):1-5.
[30]Schacht V,Dadras SS,Johnson LA,et al.Up-regulation of the lymphatic marker podoplanin,a mucin-type transmembrane glycoprotein,in human squamous cell carcinomas and germ cell tumors[J].Am J Pathol,2005,166(3):913-921.
[31]Ji RC.Lymphatic endothelial cells,tumor lymphangiogenesis and metastasis:Newinsightsintointratumoralandperitumoral lymphatics[J].Cancer Metastasis Rev,2006,25(4):677-694.
[32]Tammela T,Alitalo K.Lymphangiogenesis:Molecular mechanisms and future promise[J].Cell,2010,140(4):460-476.
[33]Francois M,Short K,Secker GA,et al.Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice[J].Dev Biol,2012,364(2):89-98.
[34]Uhrin P,Zaujec J,Breuss JM,et al.Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation[J].Blood,2010,115(19):3997-4005.
[35]Suzuki-Inoue K,Inoue O,Ding G,et al.Essential in vivo roles of the C-type lectin receptor CLEC-2:embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets[J].J Biol Chem,2010,285(32):24494-24507.
[36]Kato Y,Fujita N,Kunita A,et al.Molecular identification of Aggrus/T1alphaasaplateletaggregation-inducingfactor expressed in colorectal tumors[J].J Biol Chem,2003,278(51): 51599-51605.
[37]Bertozzi CC,Schmaier AA,Mericko P,et al.Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling[J].Blood,2010,116(4):661-670.
[38]Watson SP,Lowe K,Finney BA.Platelets in lymph vessel development and integrity[J].Adv Anat Embryol Cell Biol, 2014,214:93-105.
[39]Lee JY,Park C,Cho YP,et al.Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization[J].Circulation,2010,122(14):1413-1425.
[40]Tammela T,Saaristo A,Lohela M,et al.Angiopoietin-1 promotes lymphatic sprouting and hyperplasia[J].Blood,2005,105(12): 4642-4648.
[41]Norrmen C,Tammela T,Petrova TV,et al.Biological basis of therapeuticlymphangiogenesis[J].Circulation,2011,123(12): 1335-1351.
[42]Makinen T,Veikkola T,Mustjoki S,et al.Isolated lymphatic endothelial cells transduce growth,survival and migratory signals via the VEGF-C/D receptor VEGFR-3[J].EMBO J,2001,20(17): 4762-4773.
[43]Karkkainen MJ,Haiko P,Sainio K,et al.Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins[J].Nat Immunol,2004,5(1):74-80.
[44]Kuchler AM,Gjini E,Peterson-Maduro J,et al.Development of the zebrafish lymphatic system requires VEGFC signaling[J]. Curr Biol,2006,16(12):1244-1248.
[45]Jeltsch M,Kaipainen A,Joukov V,et al.Hyperplasia of lymphatic vessels in VEGF-C transgenic mice[J].Science,1997,276(5317): 1423-1425.
[46]Li T,Wang GD,Tan YZ,et al.Inhibition of lymphangiogenesis of endothelial progenitor cells with VEGFR-3 siRNA delivered with PEI-alginate nanoparticles[J].Int J Biol Sci,2014,10(2): 160-170.
[47]Zhang L,Zhou F,Han W,et al.VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis[J].Cell Res,2010,20(12):1319-1331.
[48]Osawa M,Hanada K,Hamada H,et al.Long-term lymphohematopoieticreconstitutionbyasingleCD34-low/negative hematopoietic stem cell[J].Science,1996,273(5272):242-245.
[49]Schmeisser A,Garlichs CD,Zhang H,et al.Monocytes coexpress endothelial and macrophagocytic lineage markers and form cordlike structures in Matrigel under angiogenic conditions[J]. Cardiovasc Res,2001,49(3):671-680.
[50]Hildbrand P,Cirulli V,Prinsen RC,et al.The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors[J].Blood,2004,104(7):2010-2019.
[51]Chavakis E,Aicher A,Heeschen C,et al.Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells[J].J Exp Med,2005,201(1):63-72.
[52]Asahara T,Murohara T,Sullivan A,et al.Isolation of putative progenitor endothelial cells for angiogenesis[J].Science,1997,275 (5302):964-967.
[53]Religa P,Cao R,Bjorndahl M,et al.Presence of bone marrowderived circulating progenitor endothelial cells in the newly formed lymphatic vessels[J].Blood,2005,106(13):4184-4190.
[54]Kerjaschki D,Huttary N,Raab I,et al.Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants[J].Nat Med,2006,12(2):230-234.
[55]Ingram DA,Mead LE,Tanaka H,et al.Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood[J].Blood,2004,104(9):2752-2760.
[56]Tan YZ,Wang HJ,Zhang MH,et al.CD34+VEGFR-3+progenitor cells have a potential to differentiate towards lymphatic endothelial cells[J].J Cell Mol Med,2014,18(3):422-433.
[57]Nguyen VA,Furhapter C,Obexer P,et al.Endothelial cells from cordbloodCD133+CD34+progenitorssharephenotypic, functional and gene expression profile similarities with lymphatics [J].J Cell Mol Med,2009,13(3):522-534.
[58]Xu H,Chen M,Reid DM,et al.LYVE-1-positive macrophages are present in normal murine eyes[J].Invest Ophthalmol Vis Sci, 2007,48(5):2162-2171.
[59]Schoppmann SF,Birner P,Stockl J,et al.Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis[J].Am J Pathol,2002, 161(3):947-956.
[60]Yonemura Y,Endou Y,Tabachi K,et al.Evaluation of lymphatic invasion in primary gastric cancer by a new monoclonal antibody, D2-40[J].Hum Pathol,2006,37(9):1193-1199.
[61]Kahn HJ,Bailey D,Marks A.Monoclonal antibody D2-40,a new marker of lymphatic endothelium,reacts with Kaposi's sarcoma and a subset of angiosarcomas[J].Mod Pathol,2002,15(4):434-440.
[62]Peichev M,Naiyer AJ,Pereira D,et al.Expression of VEGFR-2 and AC133 by circulating human CD34(+)cells identifies a population of functional endothelial precursors[J].Blood,2000,95 (3):952-958.
[63]Ieni A,Giuffre G,Adamo V,et al.Prognostic impact of CD133 immunoexpression in node-negative invasive breast carcinomas [J].Anticancer Res,2011,31(4):1315-1320.
[64]張美華,王海杰.人臍帶血淋巴管內(nèi)皮祖細(xì)胞的分化及其生物學(xué)特征[J].解剖學(xué)報(bào),2006,37(4):473-478.
[65]Xu Y,Yuan L,Mak J,et al.Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3[J].J Cell Biol,2010,188(1):115-130.
【中圖分類號(hào)】R551.2
【文獻(xiàn)標(biāo)識(shí)碼】B
【文章編號(hào)】1673-0364(2016)03-0195-04
doi:10.3969/j.issn.1673-0364.2016.03.015
作者單位:200011上海市上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院整復(fù)外科。
通訊作者:李圣利(E-mail:drlishengli@sina.com)。除Prox1基因的小鼠胚胎中淋巴管完全缺失,而且胚胎在14.5 d時(shí)全部死亡;同時(shí)還發(fā)現(xiàn),其內(nèi)皮細(xì)胞沒有表達(dá)淋巴管內(nèi)皮特異性標(biāo)志,而是維持血管內(nèi)皮的表型[9]。另有研究顯示,Prox1的過度表達(dá)使其他血管內(nèi)皮細(xì)胞的標(biāo)志物表達(dá)受到抑制,而淋巴管內(nèi)皮細(xì)胞特異標(biāo)志物 (如VEGFR-3和Podoplanin)的表達(dá)卻被上調(diào),表明在正常情況下Prox1使LEPCs得以維持其特異性,并防止其向其他細(xì)胞類型分化[8,10]。
收稿日期:(2016年2月3日;修回日期:2016年3月25日)
Advances in Lymphatic Endothelial Progenitor Cell Markers
SUN YiYu,DAI Tingting,LI Shengli.Department of Plastic and Reconstructive Surgery,Shanghai Ninth People's Hospital,Shanghai Jiaotong University School of Medicine, Shanghai 200011,China.Corresponding author:LI Shengli(E-mail:drlishengli@sina.com).
【Summary】Lymphatic endothelial progenitor cell(LEPC)is the origin of lymph-vasculogenesis and lymph-angiogenesis. Lymphatic endothelial cell differentiated from LEPC constructed the framework of the lymphatic network.With the deepening of lymph-angiogenesis and lymph-vasculogenesis research,the role of lymphatic endothelial progenitor cell has attracted more and more attention.How to identify lymphatic endothelial progenitor cell has become one of the research focus.In this paper,the research progress of cell markers on LEPCs was reviewed.
【Key words】Lymphatic endothelial progenitor cell;Markers;Molecular mechanism