国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

長(zhǎng)鏈非編碼 RNA:氣道變應(yīng)性疾病基因治療新靶點(diǎn)

2016-01-14 13:39馬志祺滕堯樹(shù)
關(guān)鍵詞:肥大細(xì)胞變應(yīng)性酸性

馬志祺,滕堯樹(shù),李 勇

(杭州市第一人民醫(yī)院耳鼻咽喉頭頸外科, 杭州 310006)

ChinJAllergyClinImmunol,2016,10(3):264- 268

長(zhǎng)鏈非編碼RNA(long non-codingRNA,lncRNA)作為新近發(fā)現(xiàn)的一類非編碼RNA,參與調(diào)控包括免疫細(xì)胞在內(nèi)的多種機(jī)體細(xì)胞的增殖、分化、凋亡及活化等一系列活動(dòng),其異常表達(dá)與疾病的發(fā)生、發(fā)展密切相關(guān)[1- 5]。氣道變應(yīng)性疾病是特應(yīng)性個(gè)體接觸變應(yīng)原后,主要由IgE介導(dǎo)肥大細(xì)胞釋放介質(zhì),并有嗜酸性粒細(xì)胞、淋巴細(xì)胞等多種免疫活性細(xì)胞及其炎性介質(zhì)共同參與的一類氣道慢性非感染性疾病,主要包括哮喘和變應(yīng)性鼻炎。發(fā)病過(guò)程涉及一系列免疫級(jí)聯(lián)反應(yīng),如T細(xì)胞亞群Th2、調(diào)節(jié)性T細(xì)胞(regulatory T lymphocytes,Treg)及Th17細(xì)胞的分化、活化,B細(xì)胞IgE合成,樹(shù)突狀細(xì)胞提呈抗原,肥大細(xì)胞脫顆粒及嗜酸性粒細(xì)胞浸潤(rùn)、活化等,從而引起氣道毛細(xì)血管通透性增加,炎性滲出增多,最終導(dǎo)致氣道黏液分泌增多、黏膜上皮炎性損傷及氣道高反應(yīng)性和重塑,但其發(fā)病機(jī)制相當(dāng)復(fù)雜,目前仍不清楚[6- 7]。近年來(lái),有學(xué)者正通過(guò)研究lncRNA在機(jī)體免疫系統(tǒng)發(fā)育及調(diào)節(jié)等領(lǐng)域中的作用,逐步探索氣道變應(yīng)性疾病的基因調(diào)控機(jī)制,以揭示其基因治療的新靶點(diǎn)。故本文將從免疫學(xué)層面綜述lncRNA在氣道變應(yīng)性疾病中的潛在生物學(xué)功能及其作用機(jī)制。

lncRNA概述

lncRNA是一類長(zhǎng)度大于200個(gè)核苷酸的內(nèi)源性非編碼RNA。以往一直認(rèn)為,非編碼RNA是機(jī)體內(nèi)沒(méi)有功能的基因“垃圾”,但近年來(lái),隨著miRNA轉(zhuǎn)錄后調(diào)節(jié)功能研究的深入開(kāi)展,非編碼RNA的作用日益受到國(guó)內(nèi)外學(xué)者的關(guān)注,與miRNA不同的是,lncRNA還可通過(guò)與DNA、RNA及蛋白質(zhì)等多種分子結(jié)合,從多個(gè)水平參與基因表達(dá)的調(diào)控。自20世紀(jì)90年代早期Brannan等(1990年)[8]和Brockdorff等(1992年)[9]首次提出lncRNA H19和Xist在表觀遺傳調(diào)控的作用以來(lái),關(guān)于lncRNA的功能一直備受爭(zhēng)論。隨著基因測(cè)序和lncRNA表達(dá)研究的不斷深入,越來(lái)越多的證據(jù)表明,諸多l(xiāng)ncRNA表達(dá)與機(jī)體發(fā)育和疾病進(jìn)程密切相關(guān)[2,10- 12]。功能學(xué)研究也提示,部分lncRNA在上述生理及病理過(guò)程中通過(guò)染色質(zhì)重塑、轉(zhuǎn)錄激活/抑制、miRNA競(jìng)爭(zhēng)、剪接、RNA運(yùn)輸、mRNA穩(wěn)定、印跡和翻譯等機(jī)制,調(diào)控相關(guān)基因表達(dá),從而在生物體內(nèi)發(fā)揮重要的調(diào)控作用[2,13- 16]。有研究發(fā)現(xiàn),諸多l(xiāng)ncRNA在機(jī)體發(fā)育特定階段或細(xì)胞命運(yùn)決定階段均發(fā)生顯著差異性表達(dá),且與干細(xì)胞多能和分化潛能的維持密切相關(guān)[17]。然而,仍有大量lncRNA的功能尚不清楚,有待進(jìn)一步研究。

lncRNA在免疫細(xì)胞分化、活化中的作用

非編碼RNA在機(jī)體免疫細(xì)胞分化、發(fā)育過(guò)程中的調(diào)控作用已普遍受到關(guān)注[18- 19]。Li等[20]研究發(fā)現(xiàn),成熟T細(xì)胞內(nèi)miR- 181a表達(dá)水平顯著上調(diào),其可提高磷酸中間產(chǎn)物水平和降低T細(xì)胞受體(T cell receptors,TCR)的閾值,進(jìn)而提高TCR對(duì)抗原肽的敏感性。miR- 155可通過(guò)下調(diào)巨噬細(xì)胞IL- 13R alpha1表達(dá)水平,調(diào)控IL- 13依賴基因的表達(dá)(SOCS1、DC-SIGN、CCL18、CD23和SERPINE),從而參與巨噬細(xì)胞M1/M2平衡的調(diào)節(jié)[21]。在關(guān)于lncRNA研究方面,有學(xué)者發(fā)現(xiàn),lncRNA Tmevpg1在外周血淋巴細(xì)胞激活中表達(dá)明顯下調(diào),且其表達(dá)依賴于Th1細(xì)胞分化程序相關(guān)轉(zhuǎn)錄因子Stat4和T-bet,與T-bet共表達(dá)則可部分恢復(fù)Th1依賴的 Ifng基因表達(dá)水平[22]。Pang等[23]通過(guò)芯片篩查方法也發(fā)現(xiàn),數(shù)百個(gè)lncRNA在幼稚及記憶CD8+T細(xì)胞中發(fā)生差異性表達(dá),與淋巴細(xì)胞分化、激活顯著相關(guān),且許多l(xiāng)ncRNA與重要免疫蛋白編碼基因、miRNA和小干擾RNA發(fā)生纏繞、重疊,進(jìn)一步研究發(fā)現(xiàn),部分lncRNA具有進(jìn)化保守、二級(jí)結(jié)構(gòu)和受調(diào)控啟動(dòng)子等結(jié)構(gòu)特點(diǎn),該研究提示lncRNA作為功能性調(diào)控分子,在機(jī)體適應(yīng)性免疫反應(yīng)中發(fā)揮重要的調(diào)控作用。Pagani等[24]通過(guò)大規(guī)模RNA測(cè)序方法對(duì)63例人外周血和淋巴組織中的13個(gè)原代T細(xì)胞和B細(xì)胞亞群進(jìn)行測(cè)序分析發(fā)現(xiàn),有些lncRNA對(duì)于保持淋巴細(xì)胞亞群穩(wěn)定性具有重要意義。在lncRNA與Treg研究方面,國(guó)內(nèi)有學(xué)者發(fā)現(xiàn),lncRNA DQ786243通過(guò)調(diào)節(jié)CREB和Foxp3表達(dá),進(jìn)而影響Treg細(xì)胞活性,參與克羅恩病的病理進(jìn)程[25]。上述這些研究表明,lncRNA參與了機(jī)體免疫細(xì)胞的分化、活化過(guò)程,但其在氣道變應(yīng)性疾病相關(guān)免疫細(xì)胞中的作用及其機(jī)制,尚待進(jìn)一步研究。

lncRNA對(duì)氣道的免疫調(diào)控作用

氣道上皮細(xì)胞作為局部免疫的第一道防線,在氣道變應(yīng)性疾病發(fā)生、發(fā)展過(guò)程中發(fā)揮著重要的作用。Zhang等[26]通過(guò)研究慢性鼻竇炎不伴鼻息肉和嗜酸性粒細(xì)胞型慢性鼻竇炎伴鼻息肉患者的鼻黏膜miRNA表達(dá)譜,發(fā)現(xiàn)miR- 125b在后者鼻黏膜組織中表達(dá)明顯上調(diào),且上調(diào)的miR- 125b可能通過(guò)抑制氣道上皮細(xì)胞EIF4E-binding protein 1(4E-BP1)表達(dá),促進(jìn)鼻黏膜內(nèi)嗜酸性粒細(xì)胞浸潤(rùn),該研究提示,非編碼RNA參與了氣道上皮細(xì)胞的病理?yè)p傷過(guò)程。Mckiernan等[27]通過(guò)lncRNA芯片檢測(cè)肺囊性纖維化患者的氣道上皮lncRNA表達(dá)譜研究也發(fā)現(xiàn),在肺囊性纖維化患者中有1 063個(gè)lncRNA表達(dá)存在統(tǒng)計(jì)學(xué)差異,且這些lncRNA的調(diào)控異??赡芘c肺部的慢性感染和炎癥相關(guān)。Thai等[28]通過(guò)體內(nèi)外實(shí)驗(yàn)觀察煙草提取物對(duì)人氣道上皮細(xì)胞內(nèi)一新型lncRNA SCAL1的影響,發(fā)現(xiàn)其能誘導(dǎo)SCAL1表達(dá)升高,且在肺癌細(xì)胞株中也發(fā)現(xiàn)其表達(dá)顯著升高,功能實(shí)驗(yàn)研究證實(shí),下調(diào)SCAL1表達(dá)水平則加重?zé)煵萏崛∥飳?duì)氣道上皮細(xì)胞的毒性反應(yīng),由此可見(jiàn),SCAL1參與了煙草提取物對(duì)人氣道上皮細(xì)胞氧化應(yīng)激損傷的保護(hù)機(jī)制。

在氣道變應(yīng)性疾病中,氣道平滑肌細(xì)胞病理異常與氣道高反應(yīng)性、氣道重塑密切相關(guān)。Perry等[29]通過(guò)微陣列及實(shí)時(shí)定量PCR檢測(cè)地塞米松對(duì)原代氣道平滑肌細(xì)胞中mRNA、miRNA和lncRNA表達(dá)的影響,結(jié)果發(fā)現(xiàn)包括miR- 150在內(nèi)的小部分miRNA表達(dá)降低,其靶基因mRNA表達(dá)則升高,這些mRNA與氣道平滑肌細(xì)胞內(nèi)肌原蛋白支架形成有關(guān);此外,諸如LINC00882、LINC00883和PVT等lncRNA表達(dá)也發(fā)生顯著異常,由此認(rèn)為,哮喘等氣道疾病中,非編碼RNA表達(dá)異常可能是形成平滑肌細(xì)胞各種表型的原因之一。

肥大細(xì)胞和嗜酸性粒細(xì)胞是變應(yīng)性鼻炎、哮喘等氣道變應(yīng)性疾病重要的靶細(xì)胞。近年來(lái),非編碼RNA成員之一——iRNA在肥大細(xì)胞和嗜酸性粒細(xì)胞分化、活化中的作用已獲得不少發(fā)現(xiàn)。Xiang等[30]通過(guò)分析肥大細(xì)胞早期分化階段miRNA表達(dá)譜發(fā)現(xiàn)45個(gè)miRNA表達(dá)上調(diào)和41個(gè)miRNA表達(dá)下調(diào),其中7個(gè)miRNA可能參與調(diào)控c-kit和FcεRIα的表達(dá),18個(gè)miRNA可能調(diào)控肥大細(xì)胞分化相關(guān)轉(zhuǎn)錄因子表達(dá),從而在肥大細(xì)胞分化發(fā)育過(guò)程中扮演著重要的調(diào)控角色。此外,miRNA在調(diào)節(jié)肥大細(xì)胞激活中也發(fā)揮重要調(diào)控作用。Mayoral等[31]發(fā)現(xiàn)miR- 221- 22在活化的肥大細(xì)胞中表達(dá)明顯升高,通過(guò)部分抑制急性刺激期肥大細(xì)胞內(nèi)p27kip1基因表達(dá),從而調(diào)節(jié)肥大細(xì)胞的增殖周期。另有研究發(fā)現(xiàn),上調(diào)miR- 142- 3p和降低miR- 155表達(dá)均有助于促進(jìn)IgE介導(dǎo)的肥大細(xì)胞脫顆粒,由此可見(jiàn),miRNA有可能成為氣道變應(yīng)性疾病基因治療的新靶點(diǎn)[32- 33]。miRNA在嗜酸性粒細(xì)胞分化、增殖及激活中的作用研究方面,Yang等[34]篩查了嗜酸性粒細(xì)胞分化、成熟過(guò)程中miRNA表達(dá)譜的變化,發(fā)現(xiàn)68個(gè)miRNA發(fā)生顯著異常表達(dá),這提示miRNA可能參與了嗜酸性粒細(xì)胞的分化進(jìn)程。關(guān)于miRNA調(diào)控嗜酸性粒細(xì)胞生長(zhǎng)及凋亡的功能研究方面,上調(diào)人嗜酸性粒細(xì)胞內(nèi)miR- 21*表達(dá)水平能增強(qiáng)粒細(xì)胞-巨噬細(xì)胞集落刺激因子激活的ERK信號(hào)通路,延緩細(xì)胞的凋亡[35]。Lu等[36]研究也發(fā)現(xiàn),敲除miR- 21將抑制嗜酸性粒細(xì)胞前體細(xì)胞生長(zhǎng),促進(jìn)其凋亡,且miR- 21-/-小鼠體內(nèi)骨髓嗜酸性粒細(xì)胞克隆形成能力和外周血嗜酸性粒細(xì)胞數(shù)量均明顯降低。作者還發(fā)現(xiàn),敲除miR- 223能促進(jìn)嗜酸性粒細(xì)胞前體細(xì)胞增殖,這可能與其靶向胰島素樣生長(zhǎng)因子1受體表達(dá)有關(guān)[37]。由此可見(jiàn),非編碼RNA參與了肥大細(xì)胞和嗜酸性粒細(xì)胞的分化、增殖及活化過(guò)程,然而,lncRNA是否參與調(diào)控氣道變應(yīng)性疾病中肥大細(xì)胞和嗜酸性粒細(xì)胞,目前國(guó)內(nèi)外尚未見(jiàn)研究報(bào)道。

lncRNA在氣道變應(yīng)性疾病發(fā)病中的作用

目前研究已證實(shí),miRNA通過(guò)轉(zhuǎn)錄后調(diào)控機(jī)制,靶向調(diào)控變應(yīng)性鼻炎、哮喘等氣道變應(yīng)性疾病相關(guān)基因mRNA的表達(dá)水平,進(jìn)而參與此類疾病的發(fā)生、發(fā)展,但lncRNA在氣道變應(yīng)性疾病中的作用及其調(diào)控機(jī)制,目前研究甚少[38- 39]。在哮喘研究方面,Tsitsiou等[40]通過(guò)對(duì)重癥哮喘患者外周血中CD4+T細(xì)胞和CD8+T細(xì)胞轉(zhuǎn)錄研究發(fā)現(xiàn),CD4+T細(xì)胞和CD8+T細(xì)胞內(nèi)多個(gè)lncRNA表達(dá)顯著異常,提示lncRNA可能參與重癥哮喘發(fā)病。然而,lncRNA在變應(yīng)性鼻炎發(fā)病中的作用及其機(jī)制,目前尚未引起國(guó)內(nèi)外學(xué)者的關(guān)注。

展  望

lncRNA曾被認(rèn)為是“轉(zhuǎn)錄噪音”或者“轉(zhuǎn)錄垃圾”,是不具有功能的基因碎片,但目前已有大量的研究證明,lncRNA具有表達(dá)調(diào)控作用,并與人類許多疾病的發(fā)生、發(fā)展有關(guān)。lncRNA調(diào)控機(jī)制極其復(fù)雜,與各種分子之間存在交互作用,構(gòu)成了復(fù)雜的基因調(diào)控網(wǎng)絡(luò)。研究lncRNA在氣道變應(yīng)性疾病中的作用及其機(jī)制,將為其基因靶向治療提供新的視角。另外,篩查氣道變應(yīng)性疾病特異性lncRNA,也有助于該疾病的診斷和預(yù)后判斷,這些均將是今后lncRNA在氣道變應(yīng)性疾病研究領(lǐng)域的研究目標(biāo)和重點(diǎn)。

[1]Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future[J]. Genetics, 2013, 193: 651- 669.

[2]Kazemzadeh M, Safaralizadeh R, Orang AV. LncRNAs:emerging players in gene regulation and disease patho-genesis[J]. J Genet, 2015, 94: 771- 784.

[3]Booton R, Lindsay MA. Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease[J]. Chest, 2014, 146: 193- 204.

[4]Li J, Meng H, Bai Y, et al. Regulation of lncRNA and Its Role in Cancer Metastasis[J]. Oncol Res, 2016, 23: 205- 217.

[5]Luo S, Lu J Y, Liu L, et al. Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells[J]. Cell Stem Cell, 2016, 18: 637- 652.

[6]Steinsvaag SK. Allergic rhinitis: an updated overview[J]. Curr Allergy Asthma Rep, 2012, 12: 99- 103.

[7]Vocca L, Di Sano C, Uasuf CG, et al. IL- 33/ST2 axis controls Th2/IL-31 and Th17 immune response in allergic airway diseases[J]. Immunobiology, 2015, 220: 954- 963.

[8]Brannan CI, Dees EC, Ingram RS, et al. The product of the H19 gene may function as an RNA[J]. Mol Cell Biol, 1990, 10: 28- 36.

[9]Brockdorff N, Ashworth A, Kay GF, et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus[J]. Cell, 1992, 71: 515- 526.

[10] Li F, Hu CP. Long Non-Coding RNA Urothelial Carcinoma Associated 1 (UCA1): Insight into Its Role in Human Diseases[J]. Crit Rev Eukaryot Gene Expr, 2015, 25: 191- 197.

[11] Taylor DH, Chu ET, Spektor R, et al. Long non-coding RNA regulation of reproduction and development[J]. Mol Reprod Dev, 2015, 82: 932- 956.

[12] Marques-Rocha JL, Samblas M, Milagro FI, et al. Noncoding RNAs, cytokines, and inflammation-related diseases[J]. FASEB J, 2015, 29: 3595- 3611.

[13] Mcpherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease[J]. Science, 2007, 316: 1488- 1491.

[14] Spizzo R, Almeida MI, Colombatti A, et al. Long non-coding RNAs and cancer: a new frontier of translational research?[J]. Oncogene, 2012, 31: 4577- 4587.

[15] Schmidt LH, Spieker T, Koschmieder S, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth[J]. J Thorac Oncol, 2011, 6: 1984- 1992.

[16] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136: 629- 641.

[17] Deuve JL, Avner P. The coupling of X-chromosome inactivation to pluripotency[J]. Annu Rev Cell Dev Biol, 2011, 27: 611- 629.

[18] Aune TM, Crooke PR, Spurlock CR. Long noncoding RNAs in T lymphocytes[J]. J Leukoc Biol, 2016, 99: 31- 44.

[19] Zhang Y, Zhang Y, Gu W, et al. TH1/TH2 cell differentiation and molecular signals[J]. Adv Exp Med Biol, 2014, 841: 15- 44.

[20] Li QJ, Chau J, Ebert PJ, et al. miR- 181a is an intrinsic modulator of T cell sensitivity and selection[J]. Cell, 2007, 129: 147- 161.

[21] Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL- 13) pathway in human macrophages is modulated by microRNA- 155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1)[J]. J Biol Chem, 2011, 286: 1786- 1794.

[22] Collier SP, Collins PL, Williams CL, et al. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells[J]. J Immunol, 2012, 189: 2084- 2088.

[23] Pang KC, Dinger ME, Mercer TR, et al. Genome-wide identification of long noncoding RNAs in CD8+T cells[J]. J Immunol, 2009, 182: 7738- 7748.

[24] Pagani M, Rossetti G, Panzeri I, et al. Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation[J]. Immunol Rev, 2013, 253: 82- 96.

[25] Qiao YQ, Huang ML, Xu AT, et al. LncRNA DQ786243 affects Treg related CREB and Foxp3 expression in Crohn’s disease[J]. J Biomed Sci, 2013, 20: 87.

[26] Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR- 125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2012, 185: 140- 151.

[27] Mckiernan PJ, Molloy K, Cryan SA, et al. Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium[J]. Int J Biochem Cell Biol, 2014, 52: 184- 191.

[28] Thai P, Statt S, Chen CH, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines[J]. Am J Respir Cell Mol Biol, 2013, 49: 204- 211.

[29] Perry MM, Tsitsiou E, Austin PJ, et al. Role of non-coding RNAs in maintaining primary airway smooth muscle cells[J]. Respir Res, 2014, 15: 58.

[30] Xiang Y, Eyers F, Young IG, et al. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells[J]. PLoS One, 2014, 9: e98139.

[31] Mayoral RJ, Pipkin ME, Pachkov M, et al. MicroRNA- 221- 222 regulate the cell cycle in mast cells[J]. J Immunol, 2009, 182: 433- 445.

[32] Yamada Y, Kosaka K, Miyazawa T, et al. miR- 142- 3p enhances FcepsilonRI-mediated degranulation in mast cells[J]. Biochem Biophys Res Commun, 2014, 443: 980- 986.

[33] Biethahn K, Orinska Z, Vigorito E, et al. miRNA- 155 controls mast cell activation by regulating the PI3Kgamma pathway and anaphylaxis in a mouse model[J]. Allergy, 2014, 69: 752- 762.

[34] Yang M, Eyers F, Xiang Y, et al. Expression profiling of differentiating eosinophils in bone marrow cultures predicts functional links between microRNAs and their target mRNAs[J]. PLoS One, 2014, 9: e97537.

[35] Wong CK, Lau KM, Chan IH, et al. MicroRNA- 21*regulates the prosurvival effect of GM-CSF on human eosinophils[J]. Immunobiology, 2013, 218: 255- 262.

[36] Lu TX, Lim EJ, Itskovich S, et al. Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth[J]. PLoS One, 2013, 8: e59397.

[37] Lu TX, Lim EJ, Besse JA, et al. miR- 223 deficiency increases eosinophil progenitor proliferation[J]. J Immunol, 2013, 190: 1576- 1582.

[38] Greene CM, Gaughan KP. microRNAs in asthma: potential therapeutic targets[J]. Curr Opin Pulm Med, 2013, 19: 66- 72.

[39] Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases[J]. J Allergy Clin Immunol, 2013, 132: 3- 13, 14.

[40] Tsitsiou E, Williams AE, Moschos SA, et al. Transcriptome analysis shows activation of circulating CD8+T cells in patients with severe asthma[J]. J Allergy Clin Immunol, 2012, 129: 95- 103.

猜你喜歡
肥大細(xì)胞變應(yīng)性酸性
生物制劑治療變應(yīng)性支氣管肺曲霉菌病的研究進(jìn)展
腦梗死合并變應(yīng)性支氣管肺曲霉病行呼吸康復(fù)的探討
兒童嗜酸性粒細(xì)胞增多相關(guān)疾病研究
自發(fā)性腦脊液鼻漏誤診變應(yīng)性鼻炎一例
針灸配合中藥治療變應(yīng)性鼻炎臨床療效分析
論證NO3-在酸性條件下的氧化性
肥大細(xì)胞活化綜合征
Masitinib用于惰性系統(tǒng)性肥大細(xì)胞增多癥有效且耐受良好
烴的含氧衍生物知識(shí)測(cè)試題
肥大細(xì)胞在IgA 腎病中的表達(dá)及致病機(jī)制