?
連續(xù)泵浦摻銩雙包層光纖激光器的自脈沖現(xiàn)象
杜戈果1,2,宋玉立1,2,徐意1,2,王金章1,郭春雨1,曹文華2
1)深圳市激光工程重點實驗室,先進光學精密制造技術廣東普通高校重點實驗室,深圳518060;
2)深圳大學電子科學與技術學院,深圳518060
摘要:在2 μm波段運轉的摻銩雙包層光纖激光器中觀察到了自脈沖(類鎖模)現(xiàn)象.對單端和雙端泵浦方式以及不同腔長度下的輸出進行比較研究,認為這種現(xiàn)象的主要產(chǎn)生機制可能為摻銩光纖中的自相位調(diào)制和離子簇導致的可飽和吸收效應.
關鍵詞:光電子與激光技術;摻銩光纖;自脈沖;可飽和吸收;自相位調(diào)制;脈沖
Received: 2014-11-13; Revised: 2015-05-16; Accepted: 2015-05-20
Foundation: National Natural Science Foundation of China(61308049) ; Special Fund Project for Shenzhen Strategic New Industry(JCYJ20130329103035715 ) ; Shenzhen Fundamental Research Plan of Technology and Science Plan(JC201105170655A)
Corresponding author: Professor Du Geguo.E-mail: dugeguo@szu.edu.cn
光纖激光器以其轉換效率高、光束質量好、可調(diào)諧范圍大及結構緊湊等優(yōu)點,在光通信、激光醫(yī)療、工業(yè)加工及航空航天等諸多領域得到廣泛應用.實現(xiàn)脈沖光纖激光器的方法有多種,如調(diào)Q技術、增益開關和鎖模技術等[1-4].一般認為,沒有任何調(diào)制器件的連續(xù)泵浦光纖激光器的輸出都是連續(xù)的,但研究發(fā)現(xiàn),即使在連續(xù)抽運情況下,摻稀土元素的光纖激光器也會出現(xiàn)自鎖模導致的脈沖輸出現(xiàn)象,文獻報道較多的主要有摻鉺和摻鐿光纖激光器等.
有關摻鉺光纖激光器,Boudec等[5]在不同腔裝置下,利用不同泵浦波長進行了實驗.當泵浦功率超過激光閾值后,高損耗腔的輸出隨泵浦功率的增加從平穩(wěn)階段到脈沖序列連續(xù)變化.文獻[6-10]中,對摻鉺光纖激光器中的自脈沖現(xiàn)象提出了幾種假設,認為離子對效應為導致此現(xiàn)象的主要機制.離子對濃度對摻鉺光纖激光器的動態(tài)行為有影響,高摻雜光纖有更明顯的自脈沖現(xiàn)象.而且如果使用接近激光波長的激光來泵浦,輸出平穩(wěn)度也可得到明顯改善.
關于摻鐿光纖激光器,Hideu等[11]研究了腔損耗對脈沖動態(tài)行為的影響.結果表明,高損耗腔更容易出現(xiàn)非線性效應,如布里淵散射和拉曼散射,導致在很大泵浦功率范圍內(nèi)的不規(guī)律自脈沖現(xiàn)象.然而,低損耗腔在泵浦達到閾值時出現(xiàn)自脈沖輸出,當泵浦功率繼續(xù)增大時,輸出逐步變成準連續(xù).而且,在布里淵后向散射被抑制的單向環(huán)形腔里,輸出明顯平穩(wěn).文獻[12-13]進一步證實了布里淵后向散射的存在以及對自脈沖現(xiàn)象的影響.另外,單端和雙端泵浦的不同輸出也表明,增益光纖遠端的弱吸收導致的可飽和吸收效應也會導致自脈沖現(xiàn)象[14-15].還有其他摻雜光纖中關于自脈沖現(xiàn)象的報道,如摻釹光纖激光器[16-17]和摻釤光纖激光器[18]等.
摻銩光纖激光器以其發(fā)射的2 μm波段激光處于水分子吸收峰,且對人眼安全的獨特性能成為全球研究的熱點.關于摻銩光纖激光器的自脈沖現(xiàn)象,Jackson等[19-21]指出離子簇效應導致了自脈沖.與單向泵浦相比,雙向泵浦有更平穩(wěn)的激光輸出.Sherif等[22]展示了在1 319 nm泵浦的雙向泵浦線型腔中,不同泵浦功率下的自脈沖現(xiàn)象,他們認為是離子簇效應導致了這一現(xiàn)象.根據(jù)文獻[14,23],當脈沖周期與腔回程有特定對應關系時,稱這種脈沖為鎖模脈沖.本研究報道了單端和雙端泵浦摻銩光纖激光器中的自脈沖(類鎖模)現(xiàn)象,并探討其物理機制.迄今為止,有關雙包層摻銩光纖激光器中的調(diào)Q包絡中的自脈沖自鎖?,F(xiàn)象還鮮有報道.
實驗裝置如圖1.其中,圖1(a)為單端泵浦實驗裝置.泵浦源為半導體激光器,最大輸出功率為20 W,工作中心波長為790 nm.泵浦光經(jīng)由一個雙透鏡耦合系統(tǒng)聚焦至摻銩光纖.激光諧振腔則為兩面二色鏡形成的法布里—珀羅(Fabry-Pérot,F(xiàn)-P)腔,其中,M1對790 nm附近的光高透,對2 μm附近的光高反; M2對790 nm附近的光高反,對2 μm附近的光透過率為50%.所用光纖為進口D型雙包層摻銩光纖,纖芯直徑為20 μm,數(shù)值孔徑(numerical aperture,NA)為0.17;內(nèi)包層直徑為300 μm,NA為0.4;外包層和涂覆層直徑分別為353 μm和459 μm;對790 nm泵浦光的吸收系數(shù)為2.2 dB/m.
圖1 實驗裝置Fig.1 Experimental setups
除單端泵浦,還進行了雙端泵浦的實驗.圖1(b)為雙端泵浦實驗裝置,兩個泵浦源和增益光纖與單端泵浦情況一致,M3和M1一致,M4為45°入射工作,對790 nm光高透、2 μm光高反,此端利用光纖端面本身的菲涅爾反射構成一個諧振腔鏡(另一個腔鏡為M3).對雙端泵浦,在探測輸出功率時,為了濾去未吸收的泵浦光,在功率計前加了一個對790 nm高反的平面鏡.
實驗所用的測量儀器有:功率計、示波器(Tektronix,型號為DPO 7104C)、InGaAs探測器(Electronic-optics technology,型號為ET-5000)和光譜儀(Yokogawa,型號為AQ-6375).
2.1不同長度光纖中的自脈沖現(xiàn)象
分別對長度為1.0、2.6、3.1、5.0和10.0 m的摻銩光纖進行實驗,在單端泵浦和雙端泵浦的兩種實驗條件下,均觀察到具有一定鎖模特征的自脈沖現(xiàn)象,脈沖規(guī)律呈現(xiàn)一致性,如圖2.脈沖周期T由腔長(本實驗中即為光纖長度)決定,可表示為其中,L為腔長; n為增益介質的折射率; c為真空中的光速.
圖2 不同長度光纖下的自脈沖(類鎖模)輸出Fig.2(Color online) Self-pulses(self-mode-locking-like pulses) with different fiber lengths
圖3 脈沖的典型演化Fig.3(Color online) Typical evolution of pulses
圖3和圖4分別為L =3.1 m,泵浦功率依次為1.7、5.1及7.5 W時的時域圖和頻域圖.實驗發(fā)現(xiàn),更高的泵浦(以實驗室可得最高功率來看)功率不會給鎖模脈沖帶來本質上的改變,只會在主脈沖之間引入更多競爭性的小脈沖,見圖3(均在10 ns/div下).此外,由圖2可見,更長的光纖長度也會給脈沖帶來這種改變.同時,泵浦功率增加時光譜向長波方向移動.纖芯中形成的熱聚集使基態(tài)各子能級上的玻爾茲曼粒子增加,受激輻射向基態(tài)的更高子能級躍遷,從而改變了發(fā)射波長,造成光譜紅移,并出現(xiàn)更多相互競爭的縱模,如圖4.
圖4 不同泵浦功率下的光譜(L = 3.1 m)Fig.4(Color online) Spectra evolution with different pump power(L = 3.1 m)
實驗中,當改變泵浦功率或光纖長度時,脈寬始終維持在2 ns左右.當然,由于實驗設備所限(示波器帶寬為1 GHz),測量只能精確到ns量級,真實值可能更窄或在不同狀況下有所改變.單脈沖能量E和峰值功率P的關系為其中,Pav為平均功率; f為重復頻率;τ為脈沖寬度.對光纖長度為3.1 m的單端泵浦,實驗可得最大輸出功率為2.5 W,對應單脈沖能量約為80 nJ,峰值功率約為50 W.
2.2調(diào)Q脈沖包絡
通過調(diào)節(jié)示波器的時域范圍,發(fā)現(xiàn)輸出并不是穩(wěn)定的連續(xù)鎖模,而是調(diào)Q鎖模,如圖5所示.圖5為光纖長度為10.0 m時,激光器剛過閾值的典型時域圖.當泵浦功率逐漸增大時,調(diào)Q脈沖頻率越來越大,脈寬越來越窄,出現(xiàn)了調(diào)Q脈沖的典型特征.圖5(d)中的小圖為相同時域下泵浦功率增加1 W時的調(diào)Q脈沖圖.然而,進一步增大泵浦功率時,脈沖變得不穩(wěn)定,這種結果表明了腔內(nèi)可能存在較弱的可飽和吸收效應.這種輸出特征與典型的鎖模激光不同,典型鎖模脈沖在所有時域下所有單脈沖的幅值一致[24],而這里則是以調(diào)Q包絡脈沖形式存在.
圖5 不同時域下的脈沖演化(L = 10.0 m)Fig.5(Color online) Typical evolution of pulses with different time spans(L = 10.0 m)
迄今為止,對稀土摻雜光纖激光器中的自脈沖自鎖?,F(xiàn)象已經(jīng)有較多的實驗和理論研究,但是對此現(xiàn)象的解釋尚未達到共識.一個可能的解釋是由于光纖未泵浦端基態(tài)重吸收導致的可飽和吸收效應.在本實驗中,當采用更高泵浦功率、更短光纖長度以及雙端泵浦這些措施來更充分地泵浦整根光纖時,并未發(fā)現(xiàn)脈沖的消失,因此,可以否定未泵浦端可能導致的可飽和吸收效應所產(chǎn)生自脈沖現(xiàn)象的解釋.文獻[5]中關于摻鉺光纖激光器也有相似討論,同樣認為這種假設對摻鉺光纖激光器不合適.
其次,鎖模光纖激光器中的兩種特殊狀態(tài)——類噪聲脈沖群(noise-like pulse)和耗散孤子(dissipative soliton resonance,DSR),與研究中提到的現(xiàn)象也有差異.這兩種現(xiàn)象的實驗裝置中都加入了明顯的鎖模調(diào)制器件,已達到穩(wěn)定的連續(xù)鎖模狀態(tài).此外,其輸出也有典型特征:類噪聲脈沖群的輸出光譜是有較寬3 dB譜寬的平滑曲線[25-26],而DSR則輸出比較典型的方波脈沖和孤子光譜[27-28].本研究中采用的是未加入任何調(diào)制器件的簡單線型腔,輸出的是呈現(xiàn)調(diào)Q包絡的鎖模脈沖和存在眾多小峰的不平滑光譜.
有研究表明,重摻雜摻銩光纖中,銩離子的上轉換和重吸收過程會導致可飽和吸收[29-31].文獻[7]提到飽和吸收體(離子簇)只存在于重摻雜光纖中.本實驗使用的光纖吸收系數(shù)較低,而吸收系數(shù)與摻雜濃度存在一定程度的正比關系.由此可推斷,實驗所用光纖并非重摻雜,但這種可飽和吸收在其中應該還是起到了一定作用.
實驗中,由于銩離子的發(fā)射譜和增益帶寬比較寬,諧振腔腔鏡是無特定波長選擇的寬帶腔鏡,且增益光纖也比較長.因此,在諧振腔內(nèi)振蕩的縱模很多,不同縱模之間存在激烈的競爭和耦合,形成脈沖演化初期的短脈沖.在光強度較高時,自相位調(diào)制發(fā)生作用[32-33],使各個縱模之間的相位差接近或等于腔內(nèi)的縱模間隔,于是具有相對優(yōu)勢的一個或幾個模式便從眾多模式中脫穎而出,形成具有一定鎖模特征的脈沖輸出.
在未使用任何特殊鎖模器件情況下,觀察到線型腔中摻銩光纖激光器的自脈沖(類鎖模)現(xiàn)象,脈沖以調(diào)Q包絡形式存在.分析認為主要機制為自相位調(diào)制和摻銩光纖中的離子簇導致的可飽和吸收效應.機理明晰尚需進一步的分析與驗證.
引文:杜戈果,宋玉立,徐意,等.連續(xù)泵浦摻銩雙包層光纖激光器的自脈沖現(xiàn)象[J].深圳大學學報理工版,2015,32(4) : 422-427.
參考文獻/References:
[1]Harun S W,Saidin N,Zen D I M,et al.Self-starting harmonic mode-locked thulium-doped fiber laser with carbon nanotubes saturable absorber[J].Chinese Physics Letters,2013,30(9) : 094204-1-094204-3.
[2]Jackson S D.Passively Q-switched Tm3+-doped silica fiber lasers[J].Applied Optics,2007,46(16) : 3311-3317.
[3]Liu Jiang,Wu Sida,Xu Jia,et al.Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber[C]//International Conference on Lasers and Electron-Optics.San Jose(USA) : OSA,2012: JW2A.76-1-JW2A.76-2.
[4]Wang Q,Geng J,Luo T,et al.Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J].Optics Letters,2009,34(23) : 3616-3618.
[5]Boudec P L,F(xiàn)lohic M L,F(xiàn)rancois P L,et al.Self-pulsing in Er3+-doped fiber laser[J].Optical and Quantum Electronics,1993,25(5) : 359-367.
[6]Boudec P L,F(xiàn)rancois P L,Delevaque E,et al.Influence of ion pairs on the dynamical behavior of Er3+-doped fiber laser[J].Optical and Quantum Electronics,1993,25(8) : 501-507.
[7]Colin S,Contesse E,Boudec P L,et al.Evidence of a saturable-absorption effect in heavily erbium-doped fibers [J].Optics Letters,1996,21(24) : 1987-1989.
[8]Loh W H,Sandro J P.Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping: experimental results[J].Optics Letters,1996,21(18) : 1475-1477.
[9]Sanchez F,Stephan G.General analysis of instabilities in erbium-doped fiber lasers[J].Physical Review E,1996,53(3) : 2110-2122.
[10]Rojo R R,Mohebi M.Study of the onset of self-pulsing behavior in an Er-doped fiber laser[J].Optics Communications,1997,137(1/2/3) : 98-102.
[11]Hideur A,Chartier T,Ozkul C,et al.Dynamics andstabilization of a high power side-pumped Yb-doped double-clad fiber laser[J].Optics Communications,2000,186(4/5/6) : 311-317.
[12]Salhi M,Hideur A,Chartier T,et al.Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser[J].Optics Letters,2002,27(15) : 1294-1296.
[13]Ortac B,Hideur A,Chartier T,et al.Influence of cavity losses on stimulated Brillouin scattering in a self-pulsing side-pumped ytterbium-doped double-clad fiber laser[J].Optics Communications,2003,215(4/5/6) : 389-395.
[14]Upadhyaya B N,Chakravarty U,Kuruvilla A,et al.Selfpulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser[J].Optics Communications,2010,283(10) : 2206-2213.
[15]Chakravarty U,Kuruvilla A,Harikrishnan H,et al.Study on self-pulsing dynamics in Yb-doped photonic crystal fiber laser[J].Optics and Laser Technology,2013,51: 82-89.
[16]Chen Z J,Grudinin A B,Porta J,et al.Enhanced Q switching in double-clad fiber lasers[J].Optics Letters,1998,23(6) : 454-456.
[17]Glas P,Naumann M,Schirrmacher A,et al.Self pulsing versus self locking in a CW pumped neodymium doped double clad fiber laser[J].Optics Communications,1999,161(4/5/6) : 345-358.
[18]Farries M C,Morkel P R,Townsend J E.Spectroscopic and lasing characteristics of samarium doped glass fiber [J].IEE Proceedings J(Optoelectronics),1990,137(5) : 318-322.
[19]Jackson S D,King T A.Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers[J].Journal of Optical Society of America B,1999,16(12) : 2178-2188.
[20]Jackson S D,King T A.High-power diode-claddingpumped Tm-doped silica fiber laser[J].Optics Letters,1998,23(18) : 1462-1464.
[21]Jackson S D.Direct evidence for laser reabsorption as initial cause for self-pulsing in three-level fiber lasers [J].Electronics Letters,2002,38(25) : 1640-1642.
[22]Sherif A F,King T A.Dynamics and self-pulsing effects in Tm3+-doped silica fiber lasers[J].Optics Communications,2002,208(4/5/6) : 381-389.
[23]Tsao H X,Chang C H,Lin S T,et al.Passively gainswitched and self mode-locked thulium fiber laser at 1950 nm[J].Optics and Laser Technology,2014,56: 354-357.
[24]Zhou W,Shen D Y,Wang Y S,et al.Mode-locked thulium-doped fiber laser with a narrow bandwidth and high pulse energy[J].Laser Physics Letters,2012,9(8) : 587-590.
[25]Tang D Y,Zhao L M,Zhao B.Soliton collapse and bunched noise-like pulse generation in a passive modelocked fiber ring laser[J].Optics Express,2005,13(7) : 2289-2294.
[26]Li Jianfeng,Yan Zhijun,Sun Zhongyuan,et al.Thuliumdoped all-fiber mode-locked laser based on NPR and 45-tilted fiber grating[J].Optics Express,2014,22(25) : 31020-31028.
[27]Gumenyuk R,Vartiainen I,Tuovinen H,et al.Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J].Optics Letters,2011,36(5) : 609-611.
[28]Haxsen F,Wandt D,Morgner U,et al.Monotonically chirped pulse evolution in an ultrashort pulse thuliumdoped fiber laser[J].Optics Letters,2012,37(6) : 1014-1016.
[29]Tang Yulong,Xu Jianqiu.Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings[C]//Photonics and Optoelectronics Meetings.Wuhan(China) : SPIE,2009,72760L-1-72760L-10.
[30]Qamar F Z,King T A.Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers [J].Journal of Modern Optics,2005,52(8) : 1053-1063.
[31]Liu Chun,Luo Zhengqiang,Huang Yizhong,et al.Selfmode-lock 2 μm Tm-doped double-clad fiber laser with a simple linear cavity[J].Applied Optics,2014,53(5) : 892-897.
[32]Myslinski P,Chrostowski J,Koningstein J A K,et al.Self-mode locking in a Q-switched erbium-doped fiber laser [J].Applied Optics,1993,32(3) : 286-290.
[33]Han Xu,F(xiàn)eng Guoying,Wu Chuanlong,et al.Investigation of self-pulsing and self-mode-locking in ytterbiumdoped fiber laser[J].Acta Physica Sinica,2012,61(11) : 114204-1-114204-7.(in Chinese)韓旭,馮國英,武傳龍,等.摻鐿光纖激光器自脈沖與自脈沖內(nèi)的自鎖模研究[J].物理學報,2012,61(11) : 114204-1-114204-7.
【中文責編:方圓;英文責編:木南】
【電子與信息科學/Electronics and Information Science】
Citation: Du Geguo,Song Yuli,Xu Yi,et al.Self-pulsing in a continuous wave pumped Tm-doped double-clad fiber laser[J].Journal of Shenzhen University Science and Engineering,2015,32(4) : 422-427.(in Chinese)
Self-pulsing in a continuous wave pumped Tm-doped double-clad fiber laserDu Geguo1,2,Song Yuli1,2,Xu Yi1,2,Wang Jinzhang1,
Guo Chunyu1,and Cao Wenhua2
1) Shenzhen Key Laboratory of Laser Engineering,Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institution,Shenzhen University,Shenzhen 518060,P.R.China
2) College of Electronic Science and Technology,Shenzhen University,Shenzhen 518060,P.R.China
Abstract:We observe the self-pulsing(self-mode-locking like) in a Tm-doped silica fiber laser operating at a wavelength around 2 μm.To get further insight into the variation and evolution of the self-mode-locking,we investigate both single-end and double-end pumping configurations with different cavity-lengths.We find that the main mechanism of self-mode-locking can be attributed to the combination of self-phase modulation effect and the saturable absorption effect caused by ion pairs in Tm-doped fiber.
Key words:optoelectronic and laser technology; Tm-doped fiber; self-pulsing; saturable absorption; self-phase modulation; pulse
作者簡介:杜戈果(1971—),女(漢族),陜西省米脂縣人,深圳大學教授.E-mail: dugeguo@ szu.edu.cn
基金項目:國家自然科學基金資助項目(61308049) ;深圳市戰(zhàn)略新興產(chǎn)業(yè)發(fā)展專項資金資助項目(JCYJ2013032910303 5715) ;深圳市科技計劃基礎研究資助項目(JC201105 170655A)
doi:10.3724/SP.J.1249.2015.04422
文獻標志碼:A
中圖分類號:TN 248