国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于電阻抗斷層成像的一維參數(shù)提取研究

2015-12-23 04:59徐燦華史學(xué)濤董秀珍
醫(yī)療衛(wèi)生裝備 2015年7期
關(guān)鍵詞:水槽電導(dǎo)率顱腦

劉 蒙,代 萌,徐燦華,楊 濱,史學(xué)濤,董秀珍,付 峰

基于電阻抗斷層成像的一維參數(shù)提取研究

劉 蒙,代 萌,徐燦華,楊 濱,史學(xué)濤,董秀珍,付 峰

目的:利用電阻抗斷層成像(electrical impedance tomography,EIT)數(shù)據(jù)提取對(duì)生物組織整體電阻抗變化敏感的一維參數(shù)。方法:分析電阻抗斷層成像過(guò)程,利用對(duì)電阻抗整體變化趨勢(shì)敏感的數(shù)據(jù)構(gòu)建一維參數(shù),并進(jìn)行仿真、物理模型及臨床驗(yàn)證實(shí)驗(yàn)。結(jié)果:實(shí)驗(yàn)證實(shí),通過(guò)電阻抗斷層成像的原始數(shù)據(jù)構(gòu)建的一維參數(shù)與生物組織整體電阻抗的變化具有相關(guān)性,可用于實(shí)時(shí)監(jiān)測(cè)整體電阻抗的變化趨勢(shì)。結(jié)論:提取的EIT一維參數(shù)對(duì)電阻抗整體的變化趨勢(shì)具有較高的敏感性,和二維動(dòng)態(tài)圖像結(jié)合使用,可提供更多的生物組織電阻抗監(jiān)測(cè)信息。

生物電阻抗斷層成像;EIT一維參數(shù);Geselowitz敏感性關(guān)系;提取

0 引言

電阻抗斷層成像(electrical impedance tomography,EIT)是一種通過(guò)對(duì)生物組織施加一定模式的安全電流激勵(lì),測(cè)量體表響應(yīng)電壓并依據(jù)驅(qū)動(dòng)電流和響應(yīng)電壓的關(guān)系,采用重構(gòu)算法構(gòu)建生物組織內(nèi)部電阻抗或其變化分布圖像的新型醫(yī)學(xué)功能成像技術(shù)[1],因其無(wú)創(chuàng)、簡(jiǎn)便、無(wú)害、廉價(jià)等特點(diǎn),引起越來(lái)越多研究者的關(guān)注。目前,EIT成像系統(tǒng)已經(jīng)進(jìn)入臨床實(shí)驗(yàn)階段,隨著臨床實(shí)驗(yàn)研究的深入,研究者發(fā)現(xiàn)EIT二維動(dòng)態(tài)圖像對(duì)于實(shí)時(shí)電阻抗的變化反應(yīng)靈敏,但對(duì)于監(jiān)測(cè)對(duì)象一段時(shí)間內(nèi)整體阻抗變化趨勢(shì)無(wú)法實(shí)時(shí)、直觀反映,給長(zhǎng)期病程的監(jiān)測(cè)帶來(lái)不便。為使EIT動(dòng)態(tài)成像監(jiān)測(cè)系統(tǒng)更好地適應(yīng)臨床需要,有必要利用現(xiàn)有EIT系統(tǒng)提取一套簡(jiǎn)單、有效的參數(shù)指標(biāo)來(lái)反映整體電阻抗的變化趨勢(shì),對(duì)臨床EIT動(dòng)態(tài)圖像的觀測(cè)結(jié)果進(jìn)行有力的補(bǔ)充,為臨床診斷提供更加充分全面的阻抗信息。本研究將基于第四軍醫(yī)大學(xué)EIT課題組自主研制的EIT動(dòng)態(tài)成像監(jiān)測(cè)系統(tǒng)EITMonitor,通過(guò)分析其阻抗數(shù)據(jù)和成像算法,提取具有特征性的參數(shù)信息指標(biāo),以達(dá)到對(duì)監(jiān)測(cè)目標(biāo)整體阻抗變化趨勢(shì)的實(shí)時(shí)、直觀反映的目的。

1 EIT一維參數(shù)的提取

為從現(xiàn)有的EIT二維動(dòng)態(tài)成像系統(tǒng)中提取可以反映電阻抗整體變化的一維參數(shù),首先應(yīng)對(duì)其成像原理進(jìn)行分析研究,并從成像原始數(shù)據(jù)中提取與阻抗變化的相關(guān)量。然后,依據(jù)相關(guān)量的變化特點(diǎn)構(gòu)建可反映電阻抗整體變化的EIT一維參數(shù)。

1.1 EIT一維參數(shù)提取的理論依據(jù)

如圖1所示的區(qū)域Ω內(nèi)部電導(dǎo)率為σ,四周被不導(dǎo)電的區(qū)域包圍,當(dāng)電流I從電極a-b注入到區(qū)域Ω時(shí),測(cè)得c-d處電壓為g,同時(shí)a-b和c-d處分別形成電勢(shì)場(chǎng)Φ(σ)和Ψ(σ)[2]。當(dāng)區(qū)域Ω內(nèi)電導(dǎo)率由σ變?yōu)棣?Δσ時(shí),根據(jù)Geselowitz敏感性關(guān)系,此時(shí)邊界積分存在下列關(guān)系

圖1 電流I通過(guò)電極a-b注入邊界為Γ的區(qū)域

將公式(1)展開(kāi)得到

公式(2)中0((Δσ)2)為Δσ的高階無(wú)窮小,當(dāng)電阻抗擾動(dòng)足夠小時(shí),0((Δσ)2)可近似為0,此時(shí)式(1)可近似為

EIT動(dòng)態(tài)成像的計(jì)算過(guò)程是將公式(3)線性化得到線性敏感矩陣,并對(duì)該矩陣求逆以得到電導(dǎo)率分布圖像[3]。由公式(3)可知邊界測(cè)量電壓與Ω區(qū)域內(nèi)部電導(dǎo)率的變化相關(guān),因此可通過(guò)對(duì)邊界測(cè)量電壓與EIT動(dòng)態(tài)成像計(jì)算過(guò)程的分析,構(gòu)建反映生物電阻抗整體變化趨勢(shì)的EIT一維參數(shù)。

1.2 EIT一維參數(shù)的構(gòu)建

EITMonitor系統(tǒng)采用16個(gè)電極依次對(duì)向注入安全電流的激勵(lì)模式,每次激勵(lì)時(shí)測(cè)量相鄰電極間的電壓并采用正交數(shù)字解調(diào)法進(jìn)行實(shí)部、虛部解調(diào)[4],各電極依次激勵(lì)完成后,生成一幀原始數(shù)據(jù),數(shù)據(jù)中包含256組具有實(shí)部和虛部的電壓值。對(duì)該組數(shù)據(jù)采用重建算法進(jìn)行計(jì)算,計(jì)算結(jié)果以二維圖像的形式顯示。由成像過(guò)程可知每幀圖像的原始數(shù)據(jù)正是邊界測(cè)量電壓正交數(shù)字解調(diào)后的集合。測(cè)量電壓解調(diào)后的實(shí)部和虛部,依次對(duì)應(yīng)生物組織復(fù)阻抗實(shí)部和虛部[5-6]??梢罁?jù)每幀圖像原始數(shù)據(jù)的集合構(gòu)建如下EIT一維參數(shù)

其中,Z1-D代表EIT一維參數(shù),單位為Ω;I表示激勵(lì)電流的大小,用以消除激勵(lì)電流變化的影響;φi和φi為該幀數(shù)據(jù)第i組測(cè)量電壓值的實(shí)部和虛部,為消除兩者變化的影響而對(duì)其求模值[7]。

2 EIT一維參數(shù)實(shí)驗(yàn)驗(yàn)證

通過(guò)對(duì)EITMonitor系統(tǒng)成像過(guò)程的理論分析,利用成像的原始數(shù)據(jù)構(gòu)建了可反映電阻抗整體變化的EIT一維參數(shù)。為了驗(yàn)證該參數(shù)的有效性、靈敏性,下一步將通過(guò)仿真實(shí)驗(yàn)、物理模型實(shí)驗(yàn)和臨床實(shí)驗(yàn)進(jìn)行驗(yàn)證,其中物理模型實(shí)驗(yàn)和臨床實(shí)驗(yàn)均采用第四軍醫(yī)大學(xué)EIT課題組自主研制的EITMonitor電阻抗成像圖像監(jiān)護(hù)系統(tǒng)進(jìn)行。

2.1 仿真模型實(shí)驗(yàn)

仿真實(shí)驗(yàn)采用如圖2所示的有限單元法(finite element method,F(xiàn)EM)模型。該模型半徑10 cm,采用三角形單元剖分,總計(jì)剖分648個(gè)單元;各單元初始電導(dǎo)率設(shè)為1.667 S/m,模擬0.9%NaCl均一溶液;當(dāng)某區(qū)域被選中時(shí)電導(dǎo)率增加20%,模擬均一溶液整體電導(dǎo)率的擾動(dòng)[8]。

圖2 有限元仿真模型

FEM模型等間隔放置16個(gè)電極,依次采用對(duì)向驅(qū)動(dòng)模式注入安全電流1 mA,通過(guò)正向計(jì)算得到邊界電壓,并采用等位線反投影法(equipotential backprojection,EPBP)進(jìn)行二維圖像重建,仿真EITMonitor系統(tǒng)動(dòng)態(tài)成像過(guò)程。

2.1.1 實(shí)驗(yàn)方案

以FEM模型中心為起點(diǎn),逐漸增大擾動(dòng)目標(biāo)面積,模擬整體電阻抗逐漸增大的過(guò)程,根據(jù)變化序列將EIT一維參數(shù)變化曲線與二維圖像對(duì)應(yīng)顯示,驗(yàn)證提取的EIT一維參數(shù)與電阻抗整體變化的有效性。

2.1.2 實(shí)驗(yàn)結(jié)果

當(dāng)FEM模型擾動(dòng)范圍持續(xù)增大時(shí)(如圖3所示),EIT一維參數(shù)曲線呈下降趨勢(shì),EIT一維參數(shù)相對(duì)FEM模型電阻抗擾動(dòng)變化比例(一維參數(shù)下降率/目標(biāo)電阻抗增大率)范圍為3.63~4.68。對(duì)象整體電阻抗變化具有相關(guān)性,可有效實(shí)時(shí)反映電阻抗整體變化的趨勢(shì)。

圖3 EIT一維指標(biāo)仿真驗(yàn)證實(shí)驗(yàn)

圖4 EIT一維指標(biāo)物理實(shí)驗(yàn)?zāi)P?/p>

2.2 物理模型實(shí)驗(yàn)

為進(jìn)一步驗(yàn)證EIT一維參數(shù)的敏感性,采用圖4中直徑約為207mm的圓形水槽進(jìn)行物理

通過(guò)FEM仿真實(shí)驗(yàn),證實(shí)EIT一維參數(shù)與監(jiān)測(cè)模型實(shí)驗(yàn)。水槽中加注5 000 ml 0.16%的NaCl溶液,測(cè)量其電導(dǎo)率為0.067 S/m,以之作為背景溶液;使用底部直徑為14.5mm、體積為10ml的圓柱形瓊脂塊,測(cè)量電導(dǎo)率為0.25 S/m,作為電阻抗擾動(dòng)目標(biāo)。

2.2.1 實(shí)驗(yàn)方案

在實(shí)驗(yàn)水槽水平面等間隔安置EITMonitor系統(tǒng)16個(gè)電極實(shí)施監(jiān)測(cè),監(jiān)測(cè)過(guò)程中快速(1~2 s)將圓柱形瓊脂塊插入水槽中,待水槽溶液停止波動(dòng)后快速(1~2 s)將圓柱形瓊脂塊抽出水槽,待水槽平穩(wěn)后再次快速插入,不斷重復(fù)該動(dòng)作并記錄EIT一維參數(shù)曲線和二維圖像的變化,驗(yàn)證該參數(shù)對(duì)于整體電阻抗突變的敏感性。

2.2.2 實(shí)驗(yàn)結(jié)果

如圖5所示,當(dāng)擾動(dòng)目標(biāo)快速插入水槽時(shí),EIT一維參數(shù)產(chǎn)生如圖0:00:18—0:00:27時(shí)刻的躍變,以插入前平穩(wěn)的A時(shí)刻為背景幀,插入前后時(shí)刻EIT二維圖像變化如圖5所示;當(dāng)擾動(dòng)目標(biāo)快速拔出水槽時(shí),EIT一維參數(shù)產(chǎn)生如圖5中標(biāo)注的0:01:21—0:01:24時(shí)刻的躍變,以拔出前平穩(wěn)的B時(shí)刻為背景幀,躍變前后EIT二維圖像變化如圖5所示。對(duì)比多組數(shù)據(jù),EIT一維參數(shù)插入時(shí)變化在0.50%~0.79%之間,抽出時(shí)變化在0.43%~0.54%之間,變化幅度顯著。

圖5 物理模型實(shí)驗(yàn)EIT一維曲線和二維圖像變化過(guò)程

通過(guò)物理模型實(shí)驗(yàn)證實(shí)EIT一維參數(shù)不僅可實(shí)時(shí)反映電阻抗整體變化的趨勢(shì),對(duì)于監(jiān)測(cè)對(duì)像電阻抗整體的突變同樣具有較高的敏感性。

2.3 臨床實(shí)驗(yàn)

仿真實(shí)驗(yàn)與物理模型實(shí)驗(yàn)證實(shí)了EIT一維參數(shù)對(duì)于實(shí)時(shí)監(jiān)測(cè)生物組織電阻抗整體變化的有效性和敏感性,為進(jìn)一步驗(yàn)證該參數(shù)在EIT臨床應(yīng)用中的可行性,下面我們將選取慢性硬膜下血腫(chronic subdural hematoma,CSDH)患者鉆孔閉式引流術(shù)的術(shù)中情況進(jìn)行EIT一維參數(shù)實(shí)時(shí)監(jiān)測(cè)研究。

CSDH是指顱腦外傷后3周以上伴有血腫的情況,臨床表現(xiàn)為顱內(nèi)壓增高,常伴有頭痛、四肢乏力、精神萎靡、惡心嘔吐等癥狀。目前,多數(shù)CSDH患者采用保守治療后病情趨于穩(wěn)定,但對(duì)具有進(jìn)行性發(fā)展或有腦受壓嚴(yán)重以及臨床癥狀明顯的患者均需進(jìn)行手術(shù)治療。鉆孔閉式引流術(shù)是目前比較常用的方法[9],即在積液腔的低位處放置引流管,為防止氣顱外接封閉式引流袋(瓶)。術(shù)后48~72 h積液腔可明顯縮小,為避免復(fù)發(fā),腦水腫尚未消退之前應(yīng)及時(shí)拔除引流管[10]。

理論分析,CSDH鉆孔閉式引流術(shù)中顱腦整體液體量持續(xù)減少,顱腦壓降低,引流過(guò)程與FEM仿真實(shí)驗(yàn)變化過(guò)程相似,EIT一維參數(shù)應(yīng)有相似變化?;诖嗽O(shè)想,我們與第四軍醫(yī)大學(xué)第一附屬醫(yī)院神經(jīng)外科合作選取符合條件的病例開(kāi)展臨床實(shí)驗(yàn)研究,實(shí)驗(yàn)選取患者均已簽署知情同意書(shū)。

2.3.1 實(shí)驗(yàn)方案

(1)病例選取條件:①年齡>20歲;②頭部有明確外傷史,傷后入院>21 d;③入院時(shí)格拉斯哥昏迷評(píng)分(Glasgow coma scale,GCS):3~13分;④顱腦CT顯示需進(jìn)行單孔鉆孔閉式引流術(shù)治療。

(2)監(jiān)測(cè)方法:采用對(duì)向電極驅(qū)動(dòng)激勵(lì)模式,注入頻率50 kHz、大小0.5 mA的安全電流,連續(xù)監(jiān)測(cè)引流術(shù)中患者顱腦電阻抗整體變化,并以一維參數(shù)曲線和二維圖像的方式顯示。實(shí)驗(yàn)場(chǎng)景如圖6所示。

圖6 鉆孔閉式引流術(shù)中EIT監(jiān)護(hù)場(chǎng)景圖

(3)監(jiān)測(cè)指標(biāo):術(shù)中監(jiān)測(cè)記錄每次引流過(guò)程的EIT一維參數(shù)和二維圖像的變化,并記錄每次的引流量。

2.3.2 實(shí)驗(yàn)結(jié)果

實(shí)驗(yàn)中共收治符合病例選取標(biāo)準(zhǔn)的患者6例,其中男4例、女2例,年齡為38~60歲,平均51.2歲;入院時(shí)GCS評(píng)分5~13分,平均8分。每位患者術(shù)中引流2次,每次引流5 ml,引流過(guò)程中進(jìn)行實(shí)時(shí)動(dòng)態(tài)EIT監(jiān)測(cè),并記錄每人2次引流過(guò)程中相應(yīng)的EIT一維參數(shù)和二維圖像的變化,共收集數(shù)據(jù)12組。雖然變化幅度有差異,但引流中EIT一維指標(biāo)變化趨勢(shì)均與圖7變化相似,二維圖像均以引流開(kāi)始前平穩(wěn)段為背景幀,相應(yīng)變化如圖7所示。

2.3.3 結(jié)果分析

整個(gè)引流過(guò)程中,顱腦出血部位的液體量持續(xù)減少,同一位置生物電阻抗擾動(dòng)面積持續(xù)增大,與FEM仿真實(shí)驗(yàn)過(guò)程相似,臨床監(jiān)測(cè)EIT一維指標(biāo)變化趨勢(shì)和FEM仿真實(shí)驗(yàn)的結(jié)果相同,進(jìn)一步證實(shí)了提取的EIT一維參數(shù)臨床監(jiān)護(hù)的有效性。每次引流中EIT一維參數(shù)的變化時(shí)間和幅度見(jiàn)表1。

圖7 引流過(guò)程中EIT一維指標(biāo)和二維動(dòng)態(tài)圖像變化過(guò)程

表1 引流5 ml一維指標(biāo)變化統(tǒng)計(jì)表

由統(tǒng)計(jì)結(jié)果可知,引流時(shí)EIT一維參數(shù)均有較小幅度的下降,這和整體阻抗變化較小有關(guān);引流相同量所需時(shí)間相差較大,這和引流時(shí)顱腦壓力有關(guān)。可見(jiàn)EIT一維參數(shù)對(duì)顱腦電阻抗微小變化具有較高敏感性,但與顱腦壓力變化并無(wú)直接關(guān)系。

3 討論

本文通過(guò)對(duì)EIT動(dòng)態(tài)成像過(guò)程的分析,提取了可反映整體生物電阻抗變化趨勢(shì)的EIT一維參數(shù),并運(yùn)用仿真、物理實(shí)驗(yàn)、臨床實(shí)驗(yàn)證實(shí)了該參數(shù)對(duì)生物組織電阻抗整體的變化具有較高的敏感性,為EIT監(jiān)測(cè)技術(shù)的臨床應(yīng)用提供了更多的信息指標(biāo)。但同時(shí)發(fā)現(xiàn)EIT一維參數(shù)現(xiàn)階段提供的監(jiān)測(cè)信息相對(duì)單一,只能僅僅反映變化趨勢(shì),量化指標(biāo)較少。隨著研究的深入,下一步我們將進(jìn)一步優(yōu)化EIT一維信息參數(shù),嘗試提出量化指數(shù),與EIT二維圖像監(jiān)護(hù)互為補(bǔ)充,推動(dòng)EIT臨床應(yīng)用研究的深入。

[1]董秀珍.生物電阻抗技術(shù)研究進(jìn)展[J].中國(guó)醫(yī)學(xué)物理學(xué)雜志,2004,21(6):311-320.

[2]馬磊,嚴(yán)碧歌.電阻抗斷層成像技術(shù)的進(jìn)展[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2007,7(5):780-782.

[3]帥萬(wàn)鈞,董秀珍,付峰.腦阻抗斷層成像的圖像重構(gòu)算法[J].國(guó)外醫(yī)學(xué):生物醫(yī)學(xué)工程分冊(cè),2004,27(6):332-336.

[4]史學(xué)濤.用于電阻抗多頻及參數(shù)成像數(shù)據(jù)采集系統(tǒng)的正交序列解調(diào)法[J].第四軍醫(yī)大學(xué)學(xué)報(bào),2000,21(7):164-166.

[5]劉銳崗,史學(xué)濤.多頻電阻抗掃描的Cole-Cole模型分析[J].航天醫(yī)學(xué)與醫(yī)學(xué)工程,2006,12(6):438-441.

[6]安源,任超世.電阻抗斷層功能成像技術(shù)的發(fā)展[J].第四軍醫(yī)大學(xué)學(xué)報(bào),2001,22(1):90-92.

[7]YOU Fu-sheng,SHI Xue-tao.A quantitative method based on total relative change for dynamic eiectrical impedance tomography[J]. IEEE Transactions on Biomedical Engineering,2008,55:1 224-1 231.

[8]董秀珍.腦EIT中邊界電壓隨顱內(nèi)電阻率擾動(dòng)變化情況的仿真研究[J].中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2008,27(5):644-649.

[9]FEI Z,ZHANG X,BAI H M,et al.Posttraumatic secondary brain insults exacerbates nruronal injury by altering metabotropic glutamate receptors[J].BMC Neurosci,2007,8(1):96-99.

[10]齊翔,張金哲,鄒哲偉.嬰幼兒化膿性腦膜炎致硬膜下積液的外科治療[J].中華神經(jīng)外科雜志,2002,18(6):357-359.

(收稿:2015-03-12 修回:2015-06-05)

英國(guó)《科學(xué)文摘》(SA)收錄本刊2014年發(fā)表66篇論文索引(二)

(索引項(xiàng)目:題目,作者姓名,卷號(hào),期號(hào),頁(yè)碼,月份,年份)2014)

27.Selection of MR imaging sequences in diagnosis of trigeminal neuralgia and hemifacial spasm

WANG Xiao-hui,LIU Dan,LI Jun,ZHANG Bei,ZHAO Rongjuan,SUN Qi(v 35,n 7,p 77-79,July,2014)

28.Technique for separating heartbeat and respiration signals from bio-radar output signals

YANG Fang,ZHANG Hua,LI Sheng,XUE Hui-jun,LU Guo-hua (v 35,n 7,p 28-30,July,2014)

29.Value of thermal tomography for evaluation of thyroid disease and subclinical state

YANG Yun,WANG Yu(v 35,n 7,p 69-71,July,2014)

(????)(????)

30.WLAN network-based wireless location technology and its application in healthcare industry

ZENG Fan,JI Xiao-bo,LIU Feng(v 35,n 7,p 134-136,July, 2014)

31.Operating procedure design based on features of large composite hypobaric chamber

ZHANG Dong-hui,XU Yong-hua,WANG Zhong-ming,SHI Wen-hui,DONG Xiang(v 35,n 7,p 37-39,82,July,2014)

32.Research of local optimization and improvement in medical ambulance boat

ZHANG Tao,WANG Shi-hui,WANG Wen-jun,OU Chong-yang, LIU Xiao-Rong(v 35,n 7,p 47-49,71,July,2014)

33.Study on electromagnetic compatibility of medical equipment under complicated electromagnetic environment

ZHANG Ya-dong,JIA Jian-ge,ZHAO Peng,DUAN Xin-an,LI Yan-feng,ZHAO Zheng-nan,WANG Qing-guo,JIA Rui(v 35,n 7,p 13-17,July,2014)

34.Design,application and perspective of home medical devices

ZHAO Hui-jun(v 35,n 7,p 105-107,July,2014)

35.Development of new type of proximal femoral lockingplate

ZHOU Wen-guang,KONG Yue,WEI Pei-de,XU Xin-jian,LIN Zhi-Xiong(v 35,n 7,p 31-33,July,2014)

36.Evaluation of radiation protective effect of 6 MV CyberKnife room reconstructed from medical linear accelerator room

ZHOU Zhen-shan,WANG Jun-liang,SHEN Ge,SHENG Hongguo,QI Wei-hua(v 35,n 7,p 88-91,July,2014)

37.Applied research of image processing technology in PACS

LU Ying-hua(v 35,n 5,p 132-133,155,May,2014)

38.Rapid drainage and measuring device for residual urine

FANG Qiang,LEI Ju,FAN Ru-hui,WANG Xin-yang,HU Quansheng,SONG Bing-qing,ZHOU Zhan-song(v 35,n 3,p 34-36,March, 2014)

39.Experimental study of mesoporous silica nanomaterials uptake in 293T Cell

TIAN Ying,WANG Jian-dong,TENG Zhao-gang,LU Guangming,ZHENG Ling(v 35,n 3,p 26-28,March,2014)

(????)(????)

40.Performance verification of sysmex XE-2100 automated hematology analyzer

YANG Ming,JIA Jing-yuan,LI Dan-dan,QI Yong-zhi(v 35,n 3, p 85-88,March,2014)

41.Design of audible alarm signal test system based on YY 0709-2009 standard

ZHANG Hai-ming,QI Li-jing(v 35,n 3,p 32-33,March,2014)

42.Component analysis on oxygen-rich gas by molecular sieve oxygen generator

ZHU Lu,ZHU Meng-fu,DENG Cheng,CHEN Ping,WANG Xing-peng(v 35,n 3,p 29-31,March,2014)

43.Contact-free measurement of heart rate via bioradar

BAI Jun,HUANG De-sheng,ZHANG Xiao,ZHANG Peng-fei(v 35,n 3,p 10-13,March,2014)

44.Hospital network structural optimization for cloud computing

CAO Mei-qin,TANG Hong-jian,SUN Qi-liang,JIANG Jin-peng (v 35,n 3,p 61-63,March,2014)

45.Comparative study of 320 row dynamic volumetric CTand echocardiography for normal left ventricular function

CHEN Si-min,PENG Jin,WU Gui-hua,YAO Li-ting,LIN Jiankun(v 35,n 3,p 66-68,March,2014)

46.Medical image processing based on curvelet transform

CHEN Xiu-mei,TANG Min(v 35,n 3,p 109-113,March,2014)

47.PET/CT images based on CT attenuation correction artifact

CHEN Ze-long,XIE Kang-ning,QI Jia-xue,QIAN Gen-nian, ZHAO Chun-lei,CHEN Jie(v 35,n 3,p 81-84,March,2014)

48.Design and application of traditional Chinese medicine diagnosis and treatment information management system for cardiovascular diseases

DING Kang,FANG Zhu-yuan,CHENG Cai(v 35,n 3,p 58-60, March,2014)

49.Hemostatic materials preparation method by potato starch

DU Bao-tang,SHI Yue(v 35,n 3,p 23-25,March,2014)

(????)(????)

50.Comparative study of bio-electrodes applied to stroke screening in brain electrical impedance tomography

GUO Da-long,YOU Fu-sheng,DAI Meng,SHI Xue-tao,FU Feng,YANG Bin,XU Can-hua,DONG Xiu-zhen(v 35,n 3,p 19-22, March,2014)

51.Design and implementation of Wi-Fi access solution with internet of things based on low power ARM

LI Zhen,CHEN Guang-fei,CUI Li-peng (v 35,n 3,p 52-55, March,2014)

52.Application of security gap technology in transmission of hospital data

QIN Fang,ZHAN Yong-feng,LI Ya-dong(v 35,n 3,p 64-65, 150,March,2014)

53.Construction of large mobile medical rescue equipment system based on whole treatment chain

REN Jia-shun,CHEN Yu,WANG Wei-dong,GAO Jia-rong,XIANG Yu,ZHANG Jing-fang(v 35,n 3,p 14-16,March,2014)

54.Development of novel fixing device for orotracheal intubation

WANG Lie-ming,WANG Dian-liang,FENG Xin,YANG Li-jie, FU Yun-tao,LU Jun,WU Jiang,ZHANG Zhuo(v 35,n 3,p 37-38,44,March,2014)

55.NCCLS EP5 a-based evaluation of D-dimer detection precision of CA-7000 automatic coagulation analyzer

WANG Qiu-ju,WANG Xing-zu,XIAO Hui-jian,ZHAO Guimei,LING Yue-ming(v 35,n 3,p 91-92,March,2014)

56.Improvement and application of field watering method for power sprayer

XIE Chang-gui,WANG Xiao-kui,LIU Yi-zhong,WANG Peng, XIA Qi(v 35,n 3,p 42-44,March,2014)

57.Development and application of removing device for bone screw

XIONG Guang-xing,XIE Kang-ning,QI Jia-xue,LIU Ya-ke(v 35,n 3,p 47-48,March,2014)

58.Application of integrated electronic medical record platform for mobile devices

XU Hai-feng,SHAO Xin,ZHANG Yang(v 35,n 3,p 56-57, March,2014)

59.Design of waveform generator for portable transcutaneous electrical nerve stimulation device

YAO Song-ming,LU Yao-sheng,CHEN Yang,HUANG Yan-wen (v 35,n 3,p 7-9,13,March,2014)

(????)(????)

60.TDI-teiota index for assessing right ventricular function before and after treatment of high altitude pulmonary edema

YU Li-hua,JIANG Tie-min,ZHUANG Lan-ping,AN Chao,XU Shu-zhen(v 35,n 3,p 72-74,March,2014)

61.Comparative analysis of ultrasonic diagnostic devices of grade 3 class A hospitals in some province

YUAN Yi,DING Ming-yue,XIE Bin(v 35,n 3,p 49-51,March, 2014)

62.Structure design of vehicle-mounted reverse osmosis water purifier

YUAN Ying-hai,SU Hong-bo,ZHU Meng-fu,ZHANG Zheng, TIAN Feng,SUN Jing-gong(v 35,n 3,p 17-18,22,March,2014)

63.Progress in auxiliary device for visualized superficial veinpuncture

ZHANG Bing,GUI Li,LIU Jing-jing,GU Shen(v 35,n 3,p 114-116,March,2014)

64.Improvement of heliox pipeline in high and low pressure chamber

ZHANG Dun-xiao,WANG Hai-dong,WEI Jian-fen(v 35,n 3,p 45-46,63,March,2014)

65.MRI-based 3D morphological variation of bladder tumor

ZHANG Xi,LIU Yang,ZHANG Guo-peng,LU Hong-bing(v 35, n 3,p 1-6,March,2014)

66.Remote radioisotope distribution device based on robotic

HU Xiao-ping,WU De-ping(v 35,n 1,p 37-39,Jan,2014)

23.Research of outpatient emergency system based on hospital information system

WANG Meng,LI Huai-qing(v 35,n 7,p 55-57,July,2014)

24.MedModel-based medical system simulation and optimization on large-scale ships

WANG Meng,YU Dong-fang,SHEN Jun-liang,ZHAO Hong-qi, NI Jian(v 35,n 7,p 9-12,July,2014)

25.Influence of environmental factors on shipborne medical equipment performances

WANG Ming-gang,MAO Ying-jun,WEI Li,FU Lei,GUO Shuchen,CHEN Lei,ZHENG Zhi-hong(v 35,n 7,p 35-37,July,2014)

26.Present situation and development strategy for extremity rehabilitation device

WANG Xiao-guang,ZHANG Hui-jun(v 35,n 7,p 102-104,July,

One-dimensional index extraction based on electrical impedance tomography system

LIU Meng1,DAI Meng2,XU Can-hua2,YANG Bin2,SHI Xue-tao2,DONG Xiu-zhen2,FU Feng2
(1.Department of Medical Engineering,the 323rd Hospital of the PLA,Xi'an 710032,China; 2.School of Biomedical Engineering,the Fourth Military Medical University,Xi'an 710032,China)

ObjectiveTo extract the one-dimensional index from electrical impedance tomography(EIT)raw data in order to reflect the tendency of impedance changes of the measured tissues.MethodsThe process of EIT was analyzed,and the one-dimensional index was established with the data sensitive to the changes of EIT,and the simulation experiments, physical model tests and clinical trials were carried out.ResultsThe one-dimensional index was proved to have a correlation with the electrical impedance of the biological tissue,and thus could be used for the real-time monitoring of the changes of electrical impedance.ConclusionThe extracted EIT one-dimensional index has a high sensitivity to the changes of electrical impedance,and can be combined with the two-dimensional dynamic image for the monitoring of biological tissue electrical impedance.[Chinese Medical Equipment Journal,2015,36(7):9-12]

biological electrical impedance tomography;1D index of EIT;Geselowitz sensitivity relationship;extraction

R318;TH722.2

A

1003-8868(2015)07-0009-04

10.7687/J.ISSN1003-8868.2015.07.009

國(guó)家自然科學(xué)基金項(xiàng)目(51477176)

劉 蒙(1984—),男,技師,主要從事醫(yī)療器械檢修方面的研究工作,E-mail:liumeng3062001@126.com。

710054西安,解放軍323醫(yī)院醫(yī)學(xué)工程科(劉 蒙);710032西安,第四軍醫(yī)大學(xué)生物醫(yī)學(xué)工程學(xué)院(代 萌,徐燦華,楊 濱,史學(xué)濤,董秀珍,付 峰)

付 峰,E-mail:fengfu@fmmu.edu.cn

猜你喜歡
水槽電導(dǎo)率顱腦
可升降折疊的飲水機(jī)水槽
可升降折疊的飲水機(jī)水槽
摻鈣鉻酸鑭-氧化物復(fù)合材料的導(dǎo)電性能研究①
為什么水槽管要做成彎曲狀
基于比較測(cè)量法的冷卻循環(huán)水系統(tǒng)電導(dǎo)率檢測(cè)儀研究
低溫脅迫葡萄新梢電導(dǎo)率和LT50值的研究
要挑好水槽,就看這里了!
酯類(lèi)微乳液的相變過(guò)程中電導(dǎo)率和黏度分析
67例顱腦疾病神經(jīng)介入的診斷及治療
老年重型顱腦損傷合并腦疝聯(lián)合內(nèi)外減壓術(shù)治療的效果觀察
洛隆县| 通许县| 旬阳县| 乃东县| 虹口区| 罗甸县| 景德镇市| 巨鹿县| 长沙县| 马尔康县| 中宁县| 平遥县| 高碑店市| 华容县| 彭山县| 聂荣县| 琼海市| 博罗县| 玉山县| 宝山区| 永济市| 永宁县| 康马县| 青海省| 新安县| 手游| 昌邑市| 库伦旗| 陆良县| 邹平县| 青龙| 黑河市| 东安县| 湟源县| 沙河市| 五大连池市| 富宁县| 乐都县| 南郑县| 渝北区| 成武县|