江 潮,李大鵬,張志堅(jiān),束浩明,胡 浪,李正南,黃永輝
1江蘇大學(xué)附屬醫(yī)院骨科,江蘇鎮(zhèn)江 2120012江蘇大學(xué)醫(yī)學(xué)院外科學(xué),江蘇鎮(zhèn)江 212013
堿性成纖維細(xì)胞生長(zhǎng)因子和轉(zhuǎn)化生長(zhǎng)因子-β1復(fù)合骨髓間充質(zhì)干細(xì)胞對(duì)大鼠退變椎間盤的修復(fù)作用
江 潮1,2,李大鵬1,張志堅(jiān)2,束浩明1,2,胡 浪1,李正南1,2,黃永輝1
1江蘇大學(xué)附屬醫(yī)院骨科,江蘇鎮(zhèn)江 212001
2江蘇大學(xué)醫(yī)學(xué)院外科學(xué),江蘇鎮(zhèn)江 212013
目的 探討堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)和轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)復(fù)合骨髓間充質(zhì)干細(xì)胞(BMSCs)以溫敏性殼聚糖(TCH)為載體對(duì)大鼠退變椎間盤的修復(fù)作用。方法 針刺法建立SD大鼠椎間盤退變模型,4周后核磁共振下觀察退變效果。體外培養(yǎng)BMSCs,并用含增強(qiáng)型綠色熒光蛋白的腺病毒轉(zhuǎn)染使帶有增強(qiáng)型綠色熒光蛋白基因,作熒光標(biāo)記。將椎間盤退變的SD大鼠分成4組,實(shí)驗(yàn)組A組使用bFGF+TGF-β1+BMSCs+TCH凝膠移植入退變的椎間盤中,B組和C組分別使用BMSCs+TCH凝膠和bFGF+TGF-β1+TCH凝膠,對(duì)照組D組使用PBS緩沖液。繼續(xù)培養(yǎng)4周后核磁共振觀察各組椎間盤的修復(fù)情況。HE、Masson染色、組織病理學(xué)觀察各組椎間盤結(jié)構(gòu)。逆轉(zhuǎn)錄PCR,Western blot檢測(cè)各組髓核蛋白聚糖、Ⅱ型膠原、Sox-9、Ⅰ型膠原的表達(dá)。結(jié)果 移植注射的BMSCs能在椎間盤中生長(zhǎng),呈類髓核分化。核磁共振結(jié)果顯示:A組髓核信號(hào)明顯高于其他3組,B組高于C組,D組髓核信號(hào)最低,硬脊膜受壓,脊髓呈串珠狀改變,各組間Pfirrmann分級(jí)結(jié)果差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。HE、Masson染色顯示:A組椎間盤結(jié)構(gòu)完整,髓核細(xì)胞數(shù)量?jī)?yōu)于其他3組,髓核和纖維環(huán)界限清楚,B組髓核數(shù)量多于C組,B組纖維環(huán)未見(jiàn)斷裂,而C組可見(jiàn)斷裂的纖維環(huán),D組髓核細(xì)胞被雜亂的纖維組織取代。逆轉(zhuǎn)錄PCR、Western blot顯示:A組蛋白聚糖、Ⅱ型膠原、Sox-9的表達(dá)最高,B組優(yōu)于C組,D組表達(dá)最低(P<0.05)。而Ⅰ型膠原的表達(dá)在4組之間差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論 移植的BMSCs在退變椎間盤中能夠存活,呈類髓核分化。bFGF+TGF-β1+BMSCs+TCH凝膠復(fù)合體對(duì)退變的椎間盤具有明顯修復(fù)作用。BMSCs+TCH凝膠治療退變椎間盤的效果優(yōu)于bFGF+TGF-β1+TCH凝膠但低于bFGF+TGF-β1+BMSCs+ TCH凝膠復(fù)合體。
堿性成纖維細(xì)胞生長(zhǎng)因子;轉(zhuǎn)化生長(zhǎng)因子-β1;骨髓間充質(zhì)干細(xì)胞;溫敏性殼聚糖;腺病毒;椎間盤退變
Acta Acad Med Sin,2015,37(4):456-465
腰椎間盤退變是腰腿痛最常見(jiàn)的原因之一。椎間盤是一個(gè)特殊的結(jié)構(gòu),由外層的纖維環(huán)和中央的髓核以及上下軟骨終板構(gòu)成[1]。研究表明,椎間盤退變起自髓核,由于髓核細(xì)胞壞死凋亡,細(xì)胞外基質(zhì)如蛋白聚糖合成分泌減少,Ⅱ型膠原向Ⅰ型膠原轉(zhuǎn)化,而細(xì)胞外基質(zhì)的減少使髓核微環(huán)境發(fā)生改變,進(jìn)一步使髓核細(xì)胞數(shù)量減少,如此形成一個(gè)惡性循環(huán)。目前針對(duì)腰椎間盤退變的治療方法主要是椎間盤摘除術(shù)和椎間融合術(shù)。這些治療方法能在一定程度上緩解患者的疼痛但并不能從根本上逆轉(zhuǎn)椎間盤退變[2]。研究表明骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)在體外能誘導(dǎo)向類髓核細(xì)胞分化,并合成蛋白聚糖等細(xì)胞外基質(zhì)[3]。但有關(guān)BMSCs在體內(nèi)經(jīng)生長(zhǎng)因子誘導(dǎo)對(duì)退變椎間盤的修復(fù)作用報(bào)道較少。本研究將成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor,bFGF)+轉(zhuǎn)化生長(zhǎng)因子-β1(transforming growth factorβ1,TGF-β1)+BMSCs+溫敏性殼聚糖(temperatureresponsive chitosan hydrogel,TCH)凝膠復(fù)合體、BMSCs+ TCH凝膠、bFGF+TGF-β1+TCH凝膠分別注射入大鼠退變的椎間盤中,比較各組退變椎間盤修復(fù)作用的差異,以期進(jìn)一步為腰椎間盤退變的生物學(xué)治療應(yīng)用到臨床提供理論依據(jù)。
材料 雄性SD大鼠68只,體質(zhì)量300 g,江蘇大學(xué)動(dòng)物中心提供,動(dòng)物許可證號(hào):SYXK(蘇)2008-0024,清潔級(jí);DMEM/Fl2培養(yǎng)基、胎牛血清、胰蛋白酶(美國(guó) Gibco公司),bFGF、TGF-β1(美國(guó)PeproTech公司),增強(qiáng)型綠色熒光蛋白腺病毒(江蘇大學(xué)基礎(chǔ)與技術(shù)實(shí)驗(yàn)室),殼聚糖、β-甘油磷酸鈉、羥乙基纖維素、Ⅰ、Ⅱ型膠原基因引物、Sox-9基因引物、蛋白聚糖基因引物、β-actin基因引物(上海生工生物工程有限公司),Ⅰ、Ⅱ型膠原抗體、蛋白聚糖多克隆抗體、Sox-9抗體(美國(guó)Santa公司),CO2恒溫細(xì)胞培養(yǎng)箱(美國(guó)Forma公司),PCR儀(美國(guó)Applied Biosystems公司),Western blot儀(美國(guó)Biorad公司),熒光顯微鏡(德國(guó)Leica公司)。
SD大鼠針刺椎間盤退變動(dòng)物模型的建立 取SD大鼠68只,雄性,術(shù)前禁食10 h,以10%水合氯醛(4 ml/kg)腹腔注射麻醉,腰背部備皮,沿髂嵴平對(duì)L6棘突向上摸到L5~L2棘突記號(hào)筆標(biāo)記,俯臥于C臂機(jī)球管上,碘伏消毒鋪巾,沿L3~L5做3 cm縱切口,切開(kāi)皮膚、筋膜,沿棘突右側(cè)1 mm切開(kāi)剝離椎旁肌肉,顯露L23、L34、L45、L56關(guān)節(jié)突關(guān)節(jié),選用27G穿刺針沿關(guān)節(jié)突外側(cè)偏下與水平方向呈40°進(jìn)針,進(jìn)針深度3~4 mm,觸及柔韌感的纖維環(huán),繼續(xù)再進(jìn)針約2 mm,達(dá)髓核(圖1),C臂機(jī)正側(cè)位透視確認(rèn)針尖均位于椎間盤中央[4]。碘伏生理鹽水1∶4沖洗,逐層縫合至皮膚,術(shù)后分籠飼養(yǎng),青霉素肌注5萬(wàn)~10萬(wàn)U/d×3 d。4周后核磁共振下觀察椎間盤退變情況。
BMSCs的分離培養(yǎng)及熒光標(biāo)記 取SD大鼠1只,6周齡,雄性,100 g。取出雙下肢股骨、脛骨,用含PBS的1 ml注射器,反復(fù)沖洗骨髓腔至干凈的培養(yǎng)皿內(nèi),至骨髓腔由紅變白,用滴管吹打骨髓液,移入離心管內(nèi),1000×g,離心5 min,棄上清,用含10%胎牛血清的DMEM/Fl2培養(yǎng)基重懸稀釋,調(diào)整細(xì)胞密度為1×106ml接種于25 cm2細(xì)胞培養(yǎng)瓶中。37℃、5% CO2飽和濕度條件下培養(yǎng)。48 h全量換液,以后每3天全量換液1次,倒置顯微鏡觀察細(xì)胞形態(tài),待細(xì)胞鋪滿80%細(xì)胞培養(yǎng)瓶時(shí),用0.25%胰蛋白酶消化,按1∶2傳代。
BMSCs流式細(xì)胞儀鑒定及BMSCs熒光標(biāo)記 取第3代BMSCs,0.25%胰蛋白酶消化,用含有5%胎牛血清的冷PBS沖洗,調(diào)整細(xì)胞密度為5×106ml。取50 μl細(xì)胞懸液,分別加入下列單克隆抗體:CD90-PE、CD29-PE、CD44-PE、CD34-PE,置4℃孵育30 min,PBS洗3次,流式細(xì)胞儀檢測(cè)并分析結(jié)果[5]。
取第3代BMSCs,待細(xì)胞鋪滿瓶底70%時(shí)用無(wú)血清DMEM/F12培養(yǎng)基調(diào)整腺病毒載體增強(qiáng)型綠色熒光蛋白滴度為100顆粒數(shù)/細(xì)胞進(jìn)行轉(zhuǎn)染。在轉(zhuǎn)染最初1 h內(nèi),每15分鐘輕搖細(xì)胞培養(yǎng)瓶使病毒與細(xì)胞充分接觸。24 h更換為正常含10%胎牛血清的培養(yǎng)基。轉(zhuǎn)染后第3天于熒光倒置顯微鏡下觀察腺病毒轉(zhuǎn)染細(xì)胞情況,熒光顯微鏡拍照記錄,與普通光鏡細(xì)胞圖對(duì)照,計(jì)算轉(zhuǎn)染效率。
圖1 C臂機(jī)下針刺退變模型Fig 1 The acupuncture degeneration model under C arm X-ray machine
溫敏性殼聚糖凝膠與bFGF、TGF-β1溶液的制備
用0.1 mol/L的鹽酸溶解殼聚糖,配成2%的殼聚糖溶液,并在磁力攪拌器中攪拌2 h,高壓滅菌后4℃冰箱備用。將β-甘油磷酸鈉溶解在雙蒸水中,配置成β-甘油磷酸鈉水溶液,控制濃度為20%,用0.22 μm小濾器過(guò)濾除菌。羥乙基纖維素粉末經(jīng)紫外線照射3 h滅菌,溶于PBS緩沖液,濃度為2%。測(cè)定3種溶液pH值,然后將上述3種溶液按8∶2∶2比例混合(pH值為7.2),即配置成TCH。置于37℃恒溫水浴箱,配置好的溫敏性殼聚糖溶液10 min后凝結(jié)成殼聚糖凝膠。用pH值7.2的PBS將bFGF、TGF-β1粉末溶解,與殼聚糖溶液混合,控制最終濃度為10 ng/ml。取第3代熒光標(biāo)記的BMSCs與配置好的含bFGF、TGF-β1殼聚糖溶液混勻,控制細(xì)胞濃度為1×106ml,現(xiàn)配現(xiàn)用。
實(shí)驗(yàn)動(dòng)物移植模型的建立 將針刺椎間盤退變的SD大鼠分成4組,A組:bFGF+TGF-β1+BMSCs+ TCH凝膠組;B組:BMSCs+TCH凝膠組;C組: bFGF+TGF-β1+TCH凝膠組;D組:PBS緩沖液組。按上述針刺腰椎間盤退變模型的方法,分別將20 μl bFGF+TGF-β1+BMSCs+TCH凝膠、BMSCs+TCH凝膠、bFGF+TGF-β1+TCH凝膠、PBS緩沖液用微量注射器穿刺注射入椎間盤中心,為防止細(xì)胞流失,針尖過(guò)10 min后等殼聚糖溶液在髓核中央凝結(jié)成凝膠再緩慢拔出,逐層縫合至皮膚。術(shù)后分籠飼養(yǎng),青霉素肌注5萬(wàn)~10萬(wàn)U/d×3 d(整個(gè)觀察期,3只SD大鼠出現(xiàn)右下肢輕度跛行,4只傷口淺表感染,予換藥抗感染處理后傷口愈合,2只不明原因死亡)。
磁共振成像分析 每組大鼠分別選取15只于移植治療前和治療后4周統(tǒng)一行核磁共振成像(magnetic resonance imaging,MRI)檢查。采用SIMENS 3.0T MR掃描儀(江蘇大學(xué)附屬醫(yī)院磁共振室)。掃描序列如下:常規(guī)自旋回波序列T2加權(quán)像矢狀面及橫斷面。自旋回波序列T2加權(quán)像掃描參數(shù)為重復(fù)時(shí)間4070 ms,恢復(fù)時(shí)間241 ms,層厚1.5 mm,視野160 mm。SD大鼠椎間盤退變程度MRI評(píng)估按照Pfirrmann分級(jí)法共分為5級(jí)[6]。
組織病理切片檢查及移植BMSCs的示蹤標(biāo)記各組SD大鼠磁共振掃描后隨機(jī)選取4只,完整取出L23、L34、L45、L56椎間盤,包括髓核、纖維環(huán)、上下軟骨板,4%多聚甲醛固定24 h,10%稀硝酸脫鈣48 h,石蠟包埋切片,切片厚度5 μm,組織切片行HE、Masson三色染色。每組選取1只SD大鼠,取出椎間盤,迅速放入液氮中,行冰凍切片,熒光顯微鏡下觀察綠色熒光蛋白的表達(dá)。
逆轉(zhuǎn)錄PCR法檢測(cè)蛋白聚糖、Ⅱ型膠原,Sox-9及Ⅰ型膠原基因的表達(dá) 每組SD大鼠隨機(jī)選取5只,完整取出L23、L34、L45、L56髓核組織置于研缽中,邊研磨邊添加液氮,組織研磨成粉狀后,加入1 ml Trizol,按照說(shuō)明書提取總RNA,按逆轉(zhuǎn)錄試劑盒說(shuō)明書將RNA逆轉(zhuǎn)錄為cDNA,然后進(jìn)行PCR擴(kuò)增,引物均由上海生工生物工程有限公司合成,引物序列見(jiàn)表1。
表1 引物序列Table 1 Primer sequences
PCR反應(yīng)條件:(1)蛋白聚糖反應(yīng)條件為:94℃3 min;94℃30 s,61℃45 s,72℃1 min,36個(gè)循環(huán); 72℃,6 min。(2)Ⅱ型膠原反應(yīng)條件為:94℃3 min; 94℃30 s,60℃ 30 s,72℃ 45 s,35個(gè)循環(huán);72℃7 min。(3)Sox-9反應(yīng)條件為:94℃3 min;94℃30 s,59℃30 s,72℃45 s,35個(gè)循環(huán);72℃7 min。(4)Ⅰ型膠原反應(yīng)條件為:94℃3 min;94℃30 s,60℃30 s,72℃ 45 s,35個(gè)循環(huán);72℃ 7 min。(5)βactin反應(yīng)條件為:94℃3 min;94℃30 s,57℃30 s,72℃45 s,30個(gè)循環(huán);72℃ 7 min。PCR產(chǎn)物在1%瓊脂糖凝膠上進(jìn)行電泳,應(yīng)用凝膠成像分析系統(tǒng)分析條帶,將目的基因與內(nèi)參β-actin的像素強(qiáng)度值進(jìn)行對(duì)比后得到的相對(duì)表達(dá)值(目的基因/β-actin)進(jìn)行統(tǒng)計(jì)分析。
Western blot檢測(cè)蛋白聚糖、Ⅱ型膠原,Sox-9及Ⅰ型膠原蛋白的表達(dá) 每組5只SD大鼠,取出L23、L34、L45、L56椎間盤髓核組織,用細(xì)胞裂解液提取髓核總蛋白,BCA蛋白定量試劑盒測(cè)定蛋白濃度,1∶1加入2×上樣緩沖液,100℃煮沸10 min。10%的聚丙烯酰胺凝膠電泳,將蛋白印跡轉(zhuǎn)至聚偏氟乙烯膜上,體積分?jǐn)?shù)5%脫脂奶粉TBST室溫下封閉2 h。分別與蛋白聚糖、Ⅱ型膠原,Sox-9及Ⅰ型膠原及β-actin多克隆抗體4℃孵育過(guò)夜,TBST漂洗3×10 min,二抗室溫孵育2 h,TBST漂洗3×15 min后化學(xué)發(fā)光顯色劑暗室曝光顯影拍照,凝膠圖像分析系統(tǒng)分析光密度值。
統(tǒng)計(jì)學(xué)處理 采用SPSS 18.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析,MRI等級(jí)資料分布采用Kruskal-Wallis H檢驗(yàn),其組間兩兩比較采用Wilcoxon秩和檢驗(yàn);PCR、Western blot數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差表示,組間比較行單因素方差分析和LSD-t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
BMSCs形態(tài)學(xué)與表面抗原鑒定結(jié)果 貼壁生長(zhǎng)的BMSCs形態(tài)均一,呈長(zhǎng)梭形,原代生長(zhǎng)緩慢,為散在的小集落。消化傳代至第3代生長(zhǎng)迅速,細(xì)胞排列有方向性,呈漩渦樣生長(zhǎng),經(jīng)增強(qiáng)型綠色熒光蛋白腺病毒轉(zhuǎn)染后,在熒光顯微鏡下能觀察到綠色熒光(圖2)。與普通光鏡細(xì)胞圖對(duì)照,計(jì)算轉(zhuǎn)染率>90%。BMSCs表型鑒定結(jié)果顯示:CD29陽(yáng)性率99.6%、CD44陽(yáng)性率99.1%、CD90陽(yáng)性率95.3%、CD34陽(yáng)性率1.2%(圖3)。
大鼠術(shù)后4周MRI觀察結(jié)果 MRI、T2加權(quán)像示4組SD大鼠L23、L34、L45、L56腰椎間盤髓核信號(hào)強(qiáng)度比鄰近上下椎間盤髓核信號(hào)低,A組髓核信號(hào)比鄰近椎間盤信號(hào)稍有降低,椎間隙高度未見(jiàn)下降;B組髓核信號(hào)低于A組,高信號(hào)區(qū)域縮小,脊髓出現(xiàn)輕度壓際,椎間隙高度未見(jiàn)明顯下降;C組髓核信號(hào)明顯降低,呈凸面向后的弧形改變,硬脊膜前緣有弧形壓際;D組髓核信號(hào)進(jìn)一步減低,有些甚至呈“黑椎間盤”樣改變,髓核向后突出,硬脊膜受壓,成弧形改變(圖4)。Pfirrmann分級(jí)結(jié)果顯示,從A組到D組,SD大鼠的 Pfirrmann分級(jí)越來(lái)越高,Kruskal-Wallis H檢驗(yàn)結(jié)果顯示各組間分級(jí)結(jié)果差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(表2)。
組織病理切片檢查及移植BMSCs的示蹤標(biāo)記結(jié)果
冰凍切片:熒光顯微鏡觀察顯示術(shù)后4周bFGF+ TGF-β1+BMSCs+TCH凝膠組和BMSCs+TCH凝膠組椎間盤冰凍切片可觀察到綠色熒光,而未注射熒光標(biāo)記BMSCs的兩組未觀察到綠色熒光(圖5)。
圖2 細(xì)胞形態(tài)學(xué)觀察(×100)Fig 2 Morphologies of the cells(×100)
圖3 第3代BMSCs流式細(xì)胞儀檢測(cè)Fig 3 The third generation of BMSCs detected by flow cytometry
圖4 大鼠腰椎間T2加權(quán)像矢狀位Fig 4 Sagittal T2weighted images of the rat’s lumbar
椎間盤HE染色:A組椎間盤結(jié)構(gòu)清晰,髓核與纖維環(huán)分界清楚,纖維膠原排列整齊,髓核內(nèi)細(xì)胞數(shù)量較多,細(xì)胞質(zhì)與細(xì)胞核染色明顯;B組椎間盤結(jié)構(gòu)欠清晰,纖維膠原排列不規(guī)則,未見(jiàn)明顯斷裂,髓核體積縮小,髓核內(nèi)細(xì)胞數(shù)量減少;C組椎間盤結(jié)構(gòu)紊亂,髓核與纖維環(huán)界限模糊,纖維膠原分層、斷裂,髓核組織結(jié)構(gòu)紊亂;D組椎間盤結(jié)構(gòu)更加紊亂,纖維環(huán)與髓核界限不清,纖維環(huán)斷裂,見(jiàn)外層的纖維進(jìn)入中央髓核,髓核軟骨樣細(xì)胞被雜亂的纖維軟骨樣組織取代(圖6)。
Masson三色染色:A組膠原纖維排列規(guī)則,纖維環(huán)與髓核分界清楚,髓核內(nèi)軟骨樣細(xì)胞較多;B組膠原纖維排列紊亂,但未見(jiàn)纖維膠原斷裂,能觀察到髓核與纖維環(huán)分界;C組和D組膠原纖維排列紊亂,各層間裂隙明顯,能明顯看到膠原纖維斷裂(圖7)。
蛋白聚糖、Ⅱ型膠原、Sox-9、Ⅰ型膠原的mRNA表達(dá) A組中蛋白聚糖、Ⅱ型膠原、Sox-9的mRNA表達(dá)最高,與B組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);D組這3種mRNA表達(dá)最弱,與C組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);C組3種mRNA表達(dá)高于D組,但低于B組,與B組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);A、B、C、D 4組Ⅰ型膠原表達(dá)差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)(圖8、表3)。
表2 各組髓核核磁共振T2加權(quán)像信號(hào)Pfirrmann分級(jí)結(jié)果(n)Table 2 Pfirrmann grading result of 4 groups’T2-weighted signal intensity(n)
圖5 BMSCs移植術(shù)后帶綠色熒光(×400)Fig 5 Green fluorescent protein expression can be observed after transplantation(×400)
圖6 4組大鼠椎間盤HE染色(×50)Fig 6 Hematoxylin-eosin staining of the rat discs in 4 groups(×50)
圖7 4組大鼠纖維環(huán)Masson氏三色染色(×50)Fig 7 Masson’s staining of rat discs in 4 groups(×50)
圖8 蛋白聚糖、Ⅱ型膠原、Sox-9和Ⅰ型膠原的逆轉(zhuǎn)錄PCR電泳結(jié)果Fig 8 Reverse transcription polymerase chain reaction of aggrecan,collagenⅡ,Sox-9 and collagen I
表3 各組目的基因的mRNA表達(dá)(n=4,±s)Table 3 Target gene mRNA expressions in each group(n=4,±s)
表3 各組目的基因的mRNA表達(dá)(n=4,±s)Table 3 Target gene mRNA expressions in each group(n=4,±s)
目的基因相對(duì)值=目的基因灰度值/β-actin灰度值;與BMSCs+TCH凝膠組相比,aP<0.05;與bFGF+TGF-β1+TCH凝膠組相比,bP<0.05;與PBS緩沖液組相比,cP<0.05Target gene relative value=target gene gray value/the gene gray value of β-actin;aP<0.05 compared with the BMSCs+TCH gel;bP<0.05 compared with bFGF+ TGF-β1+TCH gel;cP<0.05 compared with PBS buffer solution
分組Group 蛋白聚糖AggrecanⅡ型膠原CollagenⅡ Sox-9 Ⅰ型膠原CollagenⅠbFGF+TGF-β1+BMSCs+TCH凝膠組bFGF+TGF-β1+BMSCs+TCH gel 0.8451±0.0524a 0.7732±0.0442a 0.8637±0.0392a0.7963±0.0421 BMSCs+TCH凝膠組BMSCs+TCH gel 0.7282±0.0304b 0.6435±0.0379b 0.7713±0.0449b 0.7929±0.0561 bFGF+TGF-β1+TCH凝膠組bFGF+TGF-β1+TCH gel 0.6036±0.0214c 0.5034±0.0263c 0.5886±0.0257c 0.8445±0.0416 PBS緩沖液組PBS buffer solution 0.5239±0.0456 0.4138±0.0683 0.3243±0.0442 0.8657±0.0327
蛋白聚糖、Ⅱ型膠原、Sox-9、Ⅰ型膠原的蛋白表達(dá)A組蛋白聚糖、Ⅱ型膠原、Sox-9的蛋白表達(dá)最高,與B組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);D組3種蛋白表達(dá)最弱,與C組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);C組3種蛋白表達(dá)高于D組,但低于B組,與B組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);A、B、C、D 4組Ⅰ型膠原表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)(圖9、表4)。
圖9 蛋白聚糖、Ⅱ型膠原、Sox-9和Ⅰ型膠原的Western blot檢測(cè)結(jié)果Fig 9 Western blot of aggrecan,collagenⅡ,Sox-9,and collagenⅠ
表4 各組目的蛋白的表達(dá)(n=4,±s)Table 4 Expressions of target proteins in each group(n=4,±s)
表4 各組目的蛋白的表達(dá)(n=4,±s)Table 4 Expressions of target proteins in each group(n=4,±s)
目的蛋白相對(duì)值=目的蛋白灰度值/β-actin灰度值;與BMSCs+TCH凝膠組相比,aP<0.05;與bFGF+TGF-β1+TCH凝膠組相比,bP<0.05;與PBS緩沖液組相比,cP<0.05Target protein relative value=target protein relative value/the protein gray value of β-actin;aP<0.05 compared with the BMSCs+TCH gel;bP<0.05 compared with bFGF+TGF-β1+TCH gel;cP<0.05 compared with PBS buffer solution
分組Group 蛋白聚糖AggrecanⅡ型膠原CollagenⅡ Sox-9 Ⅰ型膠原CollagenⅠbFGF+TGF-β1+BMSCs+TCH凝膠組bFGF+TGF-β1+BMSCs+TCH gel0.8069±0.0378a 0.7629±0.0287a 0.8041±0.1061a0.5558±0.0413 BMSCs+TCH凝膠組BMSCs+TCH gel 0.6979±0.0476b 0.6926±0.0475b 0.7010±0.0591b 0.5591±0.0513 bFGF+TGF-β1+TCH凝膠組bFGF+TGF-β1+TCH gel 0.5276±0.0389c 0.5858±0.0419c 0.4712±0.0458c 0.5809±0.0767 PBS緩沖液組PBS buffer solution 0.4672±0.0761 0.4781±0.0319 0.3714±0.0341 0.5991±0.0271
骨髓間充質(zhì)干細(xì)胞具有多種分化潛能,體外實(shí)驗(yàn)表明BMSCs在適當(dāng)?shù)拇碳は履苷T導(dǎo)分化成類髓核細(xì)胞,且取材方便,體外擴(kuò)增容易,無(wú)免疫原性,是退變椎間盤移植的合適細(xì)胞來(lái)源[7]。Bertolo等[8]體外誘導(dǎo)BMSCs向軟骨細(xì)胞分化,檢測(cè)出類似于髓核細(xì)胞表型的BMSCs,并向外分泌多種細(xì)胞外基質(zhì),增加細(xì)胞外基質(zhì)、Ⅱ型膠原等蛋白的表達(dá)。Strassburg等[9]證實(shí)BMSCs可分泌多種細(xì)胞因子,如:集落刺激因子、干細(xì)胞生長(zhǎng)因子、內(nèi)皮細(xì)胞生長(zhǎng)因子及多種白細(xì)胞介素,能夠促進(jìn)退變髓核細(xì)胞的增殖,逆轉(zhuǎn)退變髓核的功能。將動(dòng)物自體骨髓間充質(zhì)干細(xì)胞移植入退變的椎間盤組織內(nèi),結(jié)果顯示BMSCs分化為類髓核細(xì)胞并能長(zhǎng)時(shí)間存活至少24周[10],經(jīng)細(xì)胞移植治療的退變椎間盤形態(tài)的改變、髓核細(xì)胞的丟失以及纖維環(huán)的排列紊亂等均得到一定程度的修復(fù)。而在細(xì)胞移植的同時(shí)加入適當(dāng)?shù)纳L(zhǎng)因子和細(xì)胞支架,對(duì)移植的細(xì)胞進(jìn)行促增殖和誘導(dǎo)分化被證實(shí)能增強(qiáng)細(xì)胞移植的療效[11]。bFGF是一種強(qiáng)有力的有絲分裂原,對(duì)BMSCs的作用主要表現(xiàn)為促增殖和軟骨分化。Visser等[12]研究表明,在眾多生長(zhǎng)因子中bFGF對(duì)BMSCs具有最強(qiáng)的促增殖作用,能使體外培養(yǎng)的BMSCs集落增大2.5倍,且擴(kuò)增后細(xì)胞維持成纖維細(xì)胞樣形態(tài)。Yanada等[13]研究顯示,在低密度培養(yǎng)的BMSCs,bFGF能促使其維持增殖能力達(dá)80 PD(population doublings);維持其軟骨分化達(dá)至少46 PD;而且維持其長(zhǎng)的端粒達(dá)105 PD。TGF-β1具有多種功能,可以調(diào)節(jié)細(xì)胞增值、黏附、遷移及分化。Morigele等[14]研究顯示,經(jīng)TGF-β1誘導(dǎo)后的BMSCs基因表型與髓核細(xì)胞相似,并能增加細(xì)胞外基質(zhì)如Ⅱ型膠原蛋白的表達(dá)。將bFGF與TGF-β1混合干預(yù)BMSCs,既能夠促進(jìn)BMSCs的增殖,又能促進(jìn)BMSCs向類髓核細(xì)胞分化,從而使bFGF和TGF-β1在生物學(xué)功能上形成互補(bǔ),進(jìn)而加速BMSCs的增殖與定向分化。
殼聚糖是近年研究應(yīng)用較多的新型細(xì)胞支架材料,這種天然高分子材料具有良好的生物相容性、機(jī)械穩(wěn)定性、微生物降解性等優(yōu)良性能[15],同時(shí)也是唯一帶正電荷的堿性多糖,其陽(yáng)離子特性能捕獲高價(jià)陰離子蛋白聚糖,與bFGF和TGF-β1混合后能使其免于被滅活和流失,使生長(zhǎng)因子緩慢釋放。殼聚糖能將生長(zhǎng)因子集中在細(xì)胞周圍,增加生長(zhǎng)因子同受體接觸的機(jī)會(huì),促進(jìn)細(xì)胞的增殖與分化[16]。而溫敏性殼聚糖在常溫下是液體,注射入機(jī)體后可在體溫的作用下形成凝膠樣物質(zhì)。將BMSCs和生長(zhǎng)因子用溫敏性殼聚糖包裹可以無(wú)損注射入椎間盤,很好地解決了椎間盤組織工程支架導(dǎo)入過(guò)程對(duì)椎間盤產(chǎn)生附加損傷的問(wèn)題。與單純注射BMSCs和生長(zhǎng)因子相比,能夠減少BMSCs和生長(zhǎng)因子的流失,以及側(cè)位骨贅的形成[17]。
本研究核磁共振、HE和Masson病理切片、逆轉(zhuǎn)錄PCR和Western blot結(jié)果均提示,bFGF+TGF-β1+ BMSCs+TCH凝膠復(fù)合體移植治療SD大鼠退變的椎間盤有明顯的效果,其原因可能為:(1)移植的BMSCs在bFGF、TGF-β1和髓核的微環(huán)境作用下朝類髓核細(xì)胞分化,一定程度上增加了椎間盤中央髓核細(xì)胞的數(shù)量;(2)移植存活的BMSCs能分泌胰島素樣生長(zhǎng)因子、血小板衍化生長(zhǎng)因子等多種生長(zhǎng)因子,能促進(jìn)退變髓核細(xì)胞的生長(zhǎng),使髓核細(xì)胞數(shù)量增加,向外分泌更多的細(xì)胞外基質(zhì),一定程度逆轉(zhuǎn)了退變髓核細(xì)胞的功能;(3)由于髓核細(xì)胞和細(xì)胞外基質(zhì)的增多,從而有較高的膨脹張力分擔(dān)椎體壓力負(fù)荷,使椎間隙高度增加,外周纖維環(huán)和上下軟骨板的退變程度減低。而B(niǎo)MSCs+TCH凝膠組效果優(yōu)于bFGF+TGF-β1+TCH凝膠組,其原因可能為:(1)針刺退變椎間盤中央的髓核細(xì)胞已經(jīng)開(kāi)始凋亡,髓核細(xì)胞數(shù)量減少,且細(xì)胞已呈退變趨勢(shì),向外分泌細(xì)胞外基質(zhì)功能減弱,雖然生長(zhǎng)因子能在一定程度上營(yíng)養(yǎng)退變的髓核細(xì)胞,但其逆轉(zhuǎn)退變髓核細(xì)胞的功能有限;(2)將外源性的BMSCs注入到椎間盤,BMSCs朝類髓核細(xì)胞分化,并向外分泌細(xì)胞外基質(zhì),增加了椎間盤中央類髓核細(xì)胞的數(shù)量和細(xì)胞外基質(zhì)的表達(dá);(3)移植存活的BMSCs在退變的椎間盤中具有抗炎和免疫調(diào)節(jié)作用[18],能有效減少退變椎間盤中炎癥介質(zhì)的釋放。
綜上,本研究結(jié)果表明注射bFGF、TGF-β1治療退變的椎間盤只適用于椎間盤退變的早中期,后期髓核細(xì)胞數(shù)量減少、功能下降,纖維環(huán)斷裂,治療效果有限。而B(niǎo)MSCs移植可以有效增加中央類髓核細(xì)胞的數(shù)量,并分泌多種生長(zhǎng)因子逆轉(zhuǎn)殘存的髓核細(xì)胞,與髓核細(xì)胞共同分泌多種細(xì)胞外基質(zhì),可以明顯改善退變的椎間盤。在移植BMSCs時(shí)同時(shí)復(fù)合bFGF、TGF-β1和TCH凝膠支架,既能促進(jìn)BMSCs的增殖和定向分化,又能防止BMSCs的流失造成側(cè)位骨贅的形成,比單純 BMSCs移植效果更明顯。但 BMSCs復(fù)合bFGF、TGF-β1的最佳濃度,以及是否可以找到一種高效的非病毒目的基因載體,將目的基因?qū)氲紹MSCs,通過(guò)目的基因的持續(xù)表達(dá),對(duì)BMSCs產(chǎn)生特定的生物學(xué)作用,增強(qiáng)其對(duì)椎間盤的修復(fù)作用,同時(shí)又避免病毒載體免疫和誘導(dǎo)腫瘤的風(fēng)險(xiǎn),有待于進(jìn)一步研究。
[1]Kepler CK,Anderson DG,Tannoury C,et al.Intervertebral disk degeneration and emerging biologic treatments[J].J Am Acad Orthop Surg,2011,19(9):543-553.
[2]王海,熊承杰,黃博,等.椎間盤組織工程學(xué)種子細(xì)胞來(lái)源的研究進(jìn)展[J].中國(guó)脊柱脊髓雜志,2012,22(1):77-81.
[3]Steck E,Bertram H,Abel R,et al.Induction of intervertebral disc-like cells from adult mesenchymal stem cells [J].Stem Cells,2005,23(3):403-411.
[4]Li D,Yang H,Huang Y,et al.Lumbar intervertebral disc puncture under C-arm fluoroscopy:a new rat model of lumbar intervertebral disc degeneration[J].Exp Anim,2014,63(2):227-234.
[5]Takemitsu H,Zhao D,Yamamoto I,et al.Comparison ofbone marrow and adipose tissue-derived canine mesenchymal stem cells[J].BMC Vet Res,2012,8:150.
[6]Yu LP,Qian WW,Yin GY,et al.MRI assessment of lumbar intervertebral disc degeneration with lumbar degenerative disease using the Pfirrmann grading systems[J].PLoS One,2012,7(12):e48074.
[7]Hee HT,Ismail HD,Lim CT,et al.Effects of implantation of bone marrow mesenchymal stem cells,disc distraction and combined therapy on reversing degeneration of the intervertebral disc[J].J Bone Joint Surg Br,2010,92(5): 726-736.
[8]Bertolo A,Mehr M,Aebli N,et al.Influence of different commercial scaffolds on the in vitro differentiation of human mesenchymal stem cells to nucleus pulposus-like cells[J].Eur Spine J,2012,21(Suppl 6):S826-S838.
[9]Strassburg S,Richardson SM,F(xiàn)reemont AJ,et al.Coculture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype[J].Regen Med,2010,5(5):701-711.
[10]Sobajima S,Vadala G,Shimer A,et al.Feasibility of a stem cell therapy for intervertebral disc degeneration[J].Spine J,2008,8(6):888-896.
[11]Stoyanov JV,Gantenbein-Ritter B,Bertolo A,et al.Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells[J].Eur Cell Mater,2011,21:533-547.
[12]Visser R,Arrabal PM,Santos-Ruiz L,et al.Basic fibroblast growth factor enhances the osteogenic differentiation induced by bone morphogenetic protein-6 in vitro and in vivo[J].Cytokine,2012,58(1):27-33.
[13]Yanada S,Ochi M,Kojima K,et al.Possibility of selection of chondrogenic progenitor cells by telomere length in FGF-2-expanded mesenchymal stromal cells[J].Cell Prolif,2006,39(6):575-584.
[14]Morigele M,Shao Z,Zhang Z,et al.TGF-beta1 induces a nucleus pulposus-like phenotype in Notch 1 knockdown rabbit bone marrow mesenchymal stem cells[J].Cell Biol Int,2013,37(8):820-825.
[15]Mathews S,Bhonde R,Gupta PK,et al.Novel biomimetic tripolymer scaffolds consisting of chitosan,collagen type 1,and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering[J].J Biomed Mater Res B Appl Biomater,2014,102(8): 1825-1834.
[16]Sheridan WS,Grant OB,Duffy GP,et al.The application of a thermoresponsive chitosan/beta-GP gel to enhance cell repopulation of decellularized vascular scaffolds[J].J Biomed Mater Res B Appl Biomater,2014,102(8): 1700-1710.
[17]Vadala G,Sowa G,Hubert M,et al.Mesenchymal stem cells injection in degenerated intervertebral disc:cell leakage may induce osteophyte formation[J].J Tissue Eng Regen Med,2012,6(5):348-355.
[18]Murphy MB,Moncivais K,Caplan AI.Mesenchymal stem cells:environmentally responsive therapeutics for regeneratitive medicine[J].Exp Mol Med,2013,45:e54.
Effect of Basic Fibroblast Growth Factor and Transforming Growth Factor-β1 Combined with Bone Marrow Mesenchymal Stem Cells on the Repair of Degenerated Intervertebral Discs in Rat Models
JIANG Chao1,2,LI Da-peng1,ZHANG Zhi-jian2,SHU Hao-ming1,2,HU Lang1,LI Zheng-nan1,2,HUANG Yong-hui1
1Department of Orthopaedics,Affiliated Hospital of Jiangsu University,Zhenjiang,Jiangsu 212001,China
2Department of Surgery,Medicine School,Jiangsu University,Zhenjiang,Jiangsu 212013,China
Objective To evaluate the effects of the combination of basic fibroblast growth factor(bFGF),transforming growth factor-β1(TGF-β1),bone marrow mesenchymal stem cells(BMSCs),and temperature-responsive chitosan hydrogel(TCH)gel on the repair of degenerative intervertebral disc in rat models.Methods Rat models of intervertebral disc degeneration were established by acupuncture.The degenerative effects were observed under magnetic resonance imaging(MRI).The BMSCs was cultured in vitro and then transfected by adenovirus with enhanced green fluorescent protein to make it carry the gene of enhanced green fluorescent protein,which functioned as fluorescence labeling.The SD rat models of intervertebral disc degeneration were divided into four groups:group A,treated with the combination of bFGF,TGF-β1,BMSCs,and TCH gel;group B,treated with the combination of BMSCs and TCH gel;group C,treated with the combination of bFGF,TGF-β1,and TCH gel;and group D,treated with PBS buffer solution.After the corresponding reagents were injected into the degenerative intervertebral discs of each group,the rats were cultivated for another four weeks and then the repair effects of the intervertebral discs were observed under MRI.Furthermore,the intervertebral discs of each group were taken out and observed by HE and Masson staining.The nucleus pulposus was aspirated and the expressions of aggrecan,collagenⅡ,Sox-9,and collagen I of nucleus pulposus of each group were tested by reverse transcription polymerase chain reaction and Western blot.Results The transplanted BMSCs survived in the intervertebral disc and differentiated into nucleus pulposus-like cells.MRI showed that:the signal intensity of the nucleus pulposus of group A was much higher than that of the rest groups,the signal intensity of group B was higher than that of group C,and the signal intensity of group D was the lowest,in which the dura mater spinalis was in compression and the spinal cord changed in beaded shape.The differences of the Pfirrmann grading among the four groups had statistical significance(P<0.05).The results of the HE and Masson stains showed:the intervertebral disc of group A was well-structured,the quantity of nucleus pulposus cells was larger than that of the other three groups,and the boundary between the nucleus pulposus and the annulus fibrosus was clearly defined;the quantity of the nucleus pulposus cells of group B was larger than that of group C,and the broken annulus fibrosus was not observed in group B,while the broken annulus fibrosus could be observed in group C;and,the nucleus pulposus cells of group D were replaced by fibrous tissue.The results of the reverse transcription polymerase chain reaction and Western blot tests showed that,in terms of the expressions of aggrecan,collagenⅡ and Sox-9,group A was the highest,followed by group B,group C,and group D(P<0.05);in terms of the expression of collagenⅠ,there was no obvious difference among these four groups(P>0.05).Conclusions The transplanted BMSCs can survive in the degenerative intervertebral disc and differentiate into nucleus pulposus-like cells.The combination of bFGF,TGF-β1,BMSCs,and TCH gel has obvious repair effect on the degenerative intervertebral discs.The effect of the combination of BMSCs and TCH gel on transplantation therapy of the degenerative intervertebral discs is better than that of the combination of bFGF,TGF-β1 and TCH gel but worse than that of the combination of bFGF,TGF-β1,BMSCs,and TCH gel.
basic fibroblast growth factor;transforming growth factor-β1;bone marrow mesenchymal stem cell;temperatureresponsive chitosan;adenovirus;intervertebral disc degeneration
HUANG Yong-huiTel:05ll-8508225l,E-mail:huangyh8855@l63.com
R659
A
1000-503X(2015)04-0456-10
10.3881/j.issn.1000-503X.2015.04.016
2014-08-05)
黃永輝 電話:05ll-85082251,電子郵件:huangyh8855@l63.com
鎮(zhèn)江市科技計(jì)劃項(xiàng)目(SH20l003l)、江蘇大學(xué)附屬醫(yī)院博士引進(jìn)基金(jdfyrc-2013018)和鎮(zhèn)江市醫(yī)學(xué)重點(diǎn)人才項(xiàng)目 Supported by the Scientific and Technological Planning Item of Zhenjiang City(SH20l003l),Doctor Introduction Fund of Affiliated Hospital of Jiangsu University(jdfyrc-2013018),and the Notable Talented Man of Medicine of Zhenjiang City
中國(guó)醫(yī)學(xué)科學(xué)院學(xué)報(bào)2015年4期