李海明,楊 盛,韋何雯,闕 斐,徐廣偉,董曉尉,張 輝,*,馮鳳琴
(1.浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,浙江 杭州 310058;2.金華市質(zhì)量技術(shù)監(jiān)督檢測院,浙江 金華 321000;3.浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院應(yīng)用工程系,浙江 杭州 310018)
食品級Pickering乳液的研究進展
李海明1,楊 盛1,韋何雯2,闕 斐3,徐廣偉2,董曉尉2,張 輝1,*,馮鳳琴1
(1.浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,浙江 杭州 310058;2.金華市質(zhì)量技術(shù)監(jiān)督檢測院,浙江 金華 321000;3.浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院應(yīng)用工程系,浙江 杭州 310018)
Pickering乳液是指由納米/微米級粒子穩(wěn)定的乳液。近年來,Pickering乳液因其獨特的穩(wěn)定性,以及在食品、藥品中的包埋、載運和質(zhì)地改良等方面的潛在應(yīng)用,逐漸成為食品研究領(lǐng)域的熱點。本文結(jié)合食品級Pickering粒子的相關(guān)性質(zhì)解釋了其穩(wěn)定機制,包括三相接觸角理論、吸附理論和空間屏障理論等,并分析了環(huán)境因素如溫度、pH值和鹽濃度等對乳液制備及穩(wěn)定性的影響;綜述了近年來開發(fā)的一系列食品級Pickering粒子的制備方式、性質(zhì)及其實際應(yīng)用情況,以期推動Pickering乳液在食品領(lǐng)域的研發(fā)及工業(yè)應(yīng)用。
Pickering乳液;納米粒子;粒子穩(wěn)定;緩釋;載運體系
乳液體系(emulsion)在食品工業(yè)中十分常見,它對食品的質(zhì)構(gòu)形成、風(fēng)味改善和營養(yǎng)品質(zhì)提升等方面有著廣泛而重要的應(yīng)用。乳液由兩種互不相溶的液體組成,其中一種液體以液滴的形式分散于另一種液體中,如油滴包埋在水相里形成水包油(O/W)乳液,或者是水滴包埋在油相里形成油包水(W/O)乳液。人們需要通過一定的方法來穩(wěn)定這些乳液中的液滴,防止其絮凝(flocculation)、聚結(jié)(coalescence)、沉降(sedimentation)或懸浮(creaming)[1]。許多食品乳液體系中都含有納米/微米級(nm/μm)固體粒子,這些粒子吸附在乳液液滴的油/水界面上,形成單層或多層的固體粒子層,起到穩(wěn)定乳液的作用[2]。早在1907年,Pickering就觀察到了這種由固體粒子穩(wěn)定的乳液體系,后來人們將該乳液體系稱為Pickering乳液,將其中起乳化和穩(wěn)定作用的固體粒子稱為Pickering粒子。相比由吐溫(Tween)、司盤(Span)等小分子表面活性劑穩(wěn)定的乳液,這種由粒子穩(wěn)定的Pickering乳液具有諸多優(yōu)點,如穩(wěn)定性強、抗奧氏熟化和安全性好等;在活性物質(zhì)載運釋放、質(zhì)地改良和降低熱量等方面有良好的應(yīng)用潛力,因此Pickering粒子有望成為新型功能性食品配料[3-4]。食品級Pickering粒子的主要原料是來源廣泛且廉價的淀粉、蛋白質(zhì)、脂肪等材料,一般通過反相沉淀、酸堿水解、熱誘導(dǎo)聚合等方法,結(jié)合微射流、噴霧干燥、冷凍干燥等技術(shù)制備這些材料的納米級粒子。Pickering粒子除了有粒徑(nm/μm)大小要求外,還需具備良好的潤濕性、Zeta電位和完整性等性質(zhì),因此常常需要對天然產(chǎn)物粒子進行改性處理。而且不同的環(huán)境條件,如pH值、鹽濃度、粒子濃度、乳液體系中的組分等條件,也會對Pickering乳液的性質(zhì)產(chǎn)生影響。因此,本文從粒子的性質(zhì)及制備過程,乳液的制備條件及穩(wěn)定性研究等方面綜述食品級Pickering粒子及其乳液的最新研究進展,以期推動Pickering乳液在食品領(lǐng)域的研發(fā)與工業(yè)應(yīng)用。
Pickering乳液最典型的特征是由非兩親性(nonamphiphilic)的較大粒子(相對于表面活性劑和蛋白質(zhì)分子來說)在液滴界面上形成不可逆的粒子吸附層(圖1a)[5],而典型的表面活性劑穩(wěn)定理論則源于兩親性小分子(amphiphilic)基于“相似相溶”原理在液滴界面上形成吸附層(圖1b、1c)[6]。因此解釋表面活性劑作用的理論并不直接適用于Pickering乳液體系。近年來,以Pickering粒子的性質(zhì)為起點,發(fā)展出了主要以下幾種穩(wěn)定理論:三相接觸角(θ)理論、粒子不可逆吸附理論,空間屏障理論和粒子間強毛細管力作用理論等[7]??偟膩碚f,就是具有合適潤濕性的nm/μm級粒子(d:10 nm至幾微米)產(chǎn)生了尺寸效應(yīng),不可逆地吸附在乳液液滴界面上,并形成穩(wěn)固的空間壁壘和產(chǎn)生強烈的毛細管作用力,從而使乳液能夠長期穩(wěn)定并很好地阻礙奧氏熟化的發(fā)生。下面將結(jié)合粒子的性質(zhì)具體介紹這幾種穩(wěn)定機制的原理及影響因素。
圖1 乳液油/水界面上的吸附結(jié)構(gòu)及穩(wěn)定機制示意圖[5-6]Fig.1 Schematic presentation of the structure of the adsorption layers and the respective mode of emulsion fi lm stabilization[5-6]
1.1 潤濕性
潤濕性是Pickering粒子的一個重要性質(zhì),體現(xiàn)了粒子的疏水性質(zhì),決定著粒子在油/水界面上的吸附情況,一般用粒子在油/水界面的三相接觸角θ來評估粒子的潤濕性[8]。從力學(xué)角度來看,θ是3 種表面張力平衡的結(jié)果,可以用經(jīng)典楊氏方程(Young equation)表示:cosθ=(γpo-γpw)/γow,其中γpo、γpw和γow分別表示油、水以及油/水界面上的張力(圖2)[9]。當(dāng)粒子呈親水性時,粒子大部分位于水相,θ<90 °,為了保持在油/水界面上的吸附狀態(tài),界面會以油滴為中心呈球面包裹,形成水包油(O/W)型乳液;與之相反,粒子呈親油性時,θ>90 °,形成W/O型乳液;當(dāng)粒子的θ接近90 °時,通過調(diào)節(jié)油水比和表面修飾情況可制得穩(wěn)定的O/W或者W/O乳液;而具有強親水性或強疏水性的粒子(θ接近0或180 °)則不能形成任何穩(wěn)定乳液[10]。通常來講,大部分的天然食品物料如淀粉、蛋白質(zhì)等都不具有良好的表面潤濕性,而是需要經(jīng)過一定的表面修飾才適合。例如,Bhosale等[11]用琥珀酸酐(octenyl succinic anhydride,OSA)修飾或熱處理方式以增強天然淀粉的疏水性和完整性,杜研學(xué)等[12]將米渣谷蛋白與卡拉膠進行糖基化改性,降低蛋白表面疏水性,增強乳化性;楊曉泉團隊[13]通過美拉德反應(yīng)對多肽進行糖基化接枝以增強蛋白質(zhì)的親水性等。粒子的形狀(球形與否、長寬比、表面光滑與否等)也會影響其潤濕吸附情況,從而影響乳液的穩(wěn)定性[14-16]。
圖2 固體粒子在油/水界面的接觸角示意圖[9]Fig.2 Schematic representation of (a) hydrophilic or (b) hydrophobic particles’ contact angle θ[9]
1.2 活化能
Pickering乳液是熱力學(xué)不穩(wěn)定體系,有自發(fā)油水分離傾向。這種油水分離過程需要克服一定的活化能(ΔG),ΔG越大體系越穩(wěn)定(圖3)。通常用粒子從油/水界面上脫離所需的能量ΔG脫離來衡量Pickering乳液的活化能,ΔG脫離=πR2γow(1-|cosθ|)2,其中R、γow、θ分別為粒子半徑、油/水界面張力、粒子的三相接觸角[17]。理論上,對于一個半徑為10 nm,θ=90 °的理想粒子,粒子從油/水界面上分離所需能量ΔG脫離=103kT(k為玻爾茲曼常數(shù),T是絕對溫度/K),而粒子自身熱運動所具有的能量僅為1 kT,遠低于其活化能(圖4)[18]。因此,納米/微米(10 nm至幾微米)級粒子一旦吸附到油/水界面上就可被視為不可逆吸附。通常認為這些粒子間的強毛細管作用力和靜電作用力起到了重要的穩(wěn)定作用。其中靜電相互作用是由粒子帶相同電荷所引起,可以用Zeta電位來表征粒子的帶電荷能力,一般Zeta電位絕對值大于30的粒子穩(wěn)定性較好,但粒子的帶電情況還受環(huán)境的pH值、離子濃度和黏度等因素影響,Zeta電位只能作為評價乳液穩(wěn)定性的一個重要參數(shù),不可一概而論。
圖3 各種狀態(tài)下乳液體系的能量示意圖Fig.3 Schematic representation of Pickering emulsion energy in different states
圖4 4 理想球形粒子脫離界面所需能量與其粒徑關(guān)系的示意圖(粒子三相接觸角90 °,油/水界面張力27 mN/m)[18]Fig.4 Plot illustrating the increase in energy of detachment of a single spherical particle as a function of it size (contact angle 90 °, oil-water interfacial tension 27 mN/m)[18]
1.3 Pickering粒子濃度
Pickering粒子的濃度會直接影響乳液的微觀結(jié)構(gòu)和流變性質(zhì)(如液滴尺寸、粒子的吸附密度以及乳液黏彈性等),從而影響乳液的穩(wěn)定性。在穩(wěn)定的Pickering乳液中,液滴表面的粒子吸附密度可以從5%到多層吸附之間變化(圖5)[19-20]。Tzoumaki等[21-23]以甲殼素納米粒子制備乳液,當(dāng)粒子質(zhì)量分數(shù)從0.01%、0.03%、0.05%依次升高時,相應(yīng)的乳液液滴的體積平均粒徑(d43)從100 μm迅速降低到15 μm,再降到10 μm;而當(dāng)粒子質(zhì)量分數(shù)在0.05%~0.5%變化時,液滴d43保持10 μm左右。這是因為,當(dāng)乳液中粒子濃度較低時,液滴表面粒子吸附率低,液滴間發(fā)生頸狀融合達到穩(wěn)定狀態(tài),此時液滴粒徑大;隨著粒子濃度增大,液滴表面粒子吸附率逐漸升高直到形成完整的單層固體粒子吸附層,相應(yīng)的液滴尺寸會隨之逐漸變小直至某一最小值,然后保持不變;而當(dāng)固體粒子濃度繼續(xù)增加,粒子會在液滴表面形成多層吸附或分散在連續(xù)相中形成膠凝網(wǎng)絡(luò)結(jié)構(gòu)。該凝膠網(wǎng)絡(luò)有助于固定液滴,阻礙液滴聚結(jié),從而提高乳液的抗聚結(jié)、抗懸浮能力,使乳液更穩(wěn)定。這種變化是Pickering乳液的一種基本規(guī)律性變化[24]。
圖5 Pickering乳液微觀結(jié)構(gòu)隨粒子濃度變化示意圖[19]Fig.5 Schematic representation of Pickering emulsion droplet microstructures at different particle concentrations[19]
天然或改性過的食品原料是良好的Pickering粒子來源,目前已有許多食品級Pickering粒子得到了有效的應(yīng)用(表1),如多糖類粒子、蛋白質(zhì)類粒子和脂質(zhì)類粒子等[25]。
表1 食品級Pickering粒子列舉Table 1 Examples of food grade particles used as stabilizers for Pickering emulsion
2.1 多糖類粒子
2.1.1 改性淀粉粒子
天然淀粉來源廣泛、成本低廉,但親水性強、易溶脹,因此需要對淀粉粒子進行疏水性改性。由淀粉粒子穩(wěn)定的乳液,經(jīng)過短暫、溫和的熱處理(70~72℃水浴1 min),乳液穩(wěn)定性增強,這是因為吸附在液滴表面的淀粉粒子在原位發(fā)生了部分糊化,增強了粒子的空間屏障能力[18]。Marefati等[47]將淀粉粒子穩(wěn)定的P ickering乳液進行冷凍干燥,制備了包油量達80%的粉末,該粉末具備良好的凍融穩(wěn)定性,而且,淀粉的部分糊化、原位凝膠能增加冷凍干燥物的穩(wěn)定性。Marku等[48]也制備出含油量高達56%的乳液,乳液在8 周內(nèi)都保持穩(wěn)定。
2.1.2 甲殼素納米粒子
甲殼素通過酸水解可自發(fā)形成納米級棒狀粒子,基于該粒子穩(wěn)定的乳液,能較長時間的防止乳液分層;提高乳液溫度(20~74℃)、NaCl濃度(0~200 mmol/L)或pH值(3.0~6.7),都能增強乳液的界面機械性能和乳化穩(wěn)定性。Tzoumaki等[21-23]發(fā)現(xiàn),相比那些由乳清蛋白穩(wěn)定的乳液,由甲殼素晶體穩(wěn)定的乳液的抗氧化性、抗聚結(jié)性更好。目前,基于甲殼素納米粒子的食品分散體系已經(jīng)開始應(yīng)用于具有特定功能屬性(如針對糖尿病、肥胖等)食品的設(shè)計與生產(chǎn)中。
2.1.3 纖維素
適當(dāng)處理過的纖維素也可用來制備Pickering乳液。研究者[32]從山竹皮中制備了微纖化纖維素(micro fibrillated cellulose,MFC),并通過高壓均質(zhì)方式制得Pickering乳液。研究發(fā)現(xiàn),高壓均質(zhì)次數(shù)越多,MFC粒徑越小,形成的Pickering乳液越穩(wěn)定。此外,在低pH值或高濃度鹽的條件下,MFC的乳化性能會降低,而加熱處理對其影響不大。Kargar等[33]發(fā)現(xiàn)微晶纖維素穩(wěn)定的Pickering乳液中由于在粒子液滴外圍形成較厚的吸附層,顯著降低了油相的氧化效率,這可應(yīng)用于提高乳液抗氧化性。
2.2 蛋白質(zhì)類粒子
大豆分離蛋白(SPI)和和豌豆分離蛋白(PPI)是食品領(lǐng)域中研究最廣泛的植物蛋白。Liu Fu[34]、Liang Hanning[35]等報道了SPI和PPI經(jīng)熱處理后以納米聚集體(100~200 nm)形式存在,是一種有效的Pickering粒子。由PPI聚集體穩(wěn)定的Pickering乳液在酸性環(huán)境下穩(wěn)定性顯著增強。隨著PPI聚集體濃度升高,乳液液滴之間發(fā)生絮凝,進而形成凝膠網(wǎng)絡(luò)。Destribats等[36]發(fā)現(xiàn),經(jīng)熱處理制得的乳清蛋白凝膠微粒,通過調(diào)節(jié)乳液中NaCl濃度,在pH 2~8之間都可形成穩(wěn)定的水包油型乳液。中性WPM粒子形成的乳液液滴相對較大,更穩(wěn)定;而帶電的WPM粒子形成的液滴較小、易絮凝。Folter等[37]于2012年首次報道了疏水性蛋白質(zhì)在Pickering乳液中的應(yīng)用,以玉米醇溶蛋白為代表,通過反相沉淀法制備了疏水蛋白Pickering粒子,以此粒子制備的乳液穩(wěn)定性良好,液滴的尺寸范圍在10~200 μm。在國內(nèi),楊曉泉團隊近5 a來對于玉米醇溶蛋白[49-50]、小麥醇溶蛋白[51]等疏水性植物蛋白質(zhì)的納米粒子制備與應(yīng)用方面做了大量工作,包括制備蛋白納米粒子[52]、利用干法制備玉米肽糖基化納米粒子[53]、利用Zein與多糖及蛋白質(zhì)的相互作用合成了多種Zein復(fù)合粒子(包括Zein/酪元酸鈉[54-56]、Zein/硬脂酸[38]、Zein/甜菜果膠、Zein/甲殼素復(fù)合粒子等),并對這些粒子在活性物質(zhì)輸送和乳液穩(wěn)定等領(lǐng)域做了一系列的研究。這些研究拓寬對疏水性蛋白質(zhì)來源的Pickering粒子的制備和應(yīng)用,但對于如何高效利用各種疏水性蛋白質(zhì)粒子還需更多的研究。
2.3 脂肪類粒子
脂肪類粒子穩(wěn)定的Pickering乳液在食品體系中十分常見(如黃油、可可脂乳液等),這些脂肪粒子通常由熔融-冷卻法制備而成,具有較高熔點和良好的界面活性。Rousseau[57]將脂肪穩(wěn)定的Pickering乳液按微觀結(jié)構(gòu)分為3 種類型:類型Ⅰ是典型的界面吸附粒子(nm/μm級)型乳液[58],如Garti等[59]以飽和脂肪(氫化硬脂酸甘油酯、棕櫚硬脂和棕櫚油等)制備了脂肪納米粒子乳液,并以此制備了穩(wěn)定的W/O/W雙重乳液;類型Ⅱ是表面活性劑協(xié)同脂肪界面結(jié)晶型乳液,最新的應(yīng)用是制備該類型的可可脂乳液以生產(chǎn)低脂肪、低熱量的巧克力[60]。制備類型Ⅱ的乳液時,一般會加入表面活性劑來輔助脂肪在油/水界面上的造粒與分散,如加入的單甘酯會在油/水界形成單分子層,降溫過程中迅速形成晶體并作為脂肪粒結(jié)晶的晶核促進脂質(zhì)納米粒子的形成,而加入聚甘油聚蓖麻酸酯則能很好地促進粒子的分散與穩(wěn)定。在類型Ⅱ的基礎(chǔ)上,通過改變?nèi)橐后w系成分和剪切條件等因素來控制脂肪的結(jié)晶動力學(xué)和結(jié)構(gòu)來獲得類型Ⅲ剪切-結(jié)晶液滴包埋型乳液。類型Ⅱ乳液中脂肪在液滴表面上形成的脂肪殼層相對較薄,粒徑約在5 μm以下;類型Ⅲ乳液中脂肪殼層通常較厚約10~20 μm。這些體系能夠完全封裝溶液,例如基于脂肪粒封裝NaCl溶液的乳液3 個月后仍然穩(wěn)定,因此在活性物質(zhì)的包埋載運方面有很大的應(yīng)用潛力。值得一提的是,該封裝效果對NaCl溶液的濃度不敏感而對溫度敏感,這與上文所述的纖維素類粒子(MFC)穩(wěn)定的乳液的性質(zhì)恰恰相反[44,61-62]。
Pickering乳液在食品工業(yè)中具有良好的應(yīng)用前景。利用Pickering乳液出色的穩(wěn)定特性,可裝載非穩(wěn)態(tài)的營養(yǎng)及功能性成分,改善食品質(zhì)構(gòu)。而且,Pickering粒子因其來源廣泛而具有各自的特色應(yīng)用,如淀粉類的粒子可以原位糊化的性質(zhì),脂肪粒子的封裝性質(zhì)和蛋白質(zhì)粒子的表面改性等,創(chuàng)造性地開發(fā)基于粒子性質(zhì)的特色用途將是很有價值的研究方向。食品體系是多糖、蛋白質(zhì)、油脂和活性小分子等多組分混合體系,這些復(fù)雜成分的相互作用會嚴重影響Pickering乳液的穩(wěn)定性。因此,研究分析Pickering粒子與多糖、蛋白質(zhì)、小分子表面活性劑等的相互作用機制與效果,尋找更適合食品工業(yè)生產(chǎn)的Pickering粒子及乳液制備和應(yīng)用條件,會是未來研究的一個熱點。同時,進一步探究Pickering乳液在抗氧化、抗菌、酶反應(yīng)等方面的優(yōu)勢,也是一個很有價值的研究方向。
[1] 余立意, 張輝, 馮鳳琴. 結(jié)構(gòu)化載運體系的構(gòu)建技術(shù)[J]. 中國食品學(xué)報, 2013, 13(9): 162-173.
[2] DICKINSON E. Food colloids: an overview[J]. Colloids and Surfaces, 1989, 42(1): 191-204.
[3] BINKS B P, HOROZOV T S. Colloidal particles at liquid interfaces[M]. Cambridge: Cambridge University Press, 2006: 1-74.
[4] MORRIS V J. Emerging roles of engineered nanomaterials in the food industry[J]. Trends in Biotechnology, 2011, 29(10): 509-516.
[5] ROUSSEAU D. Fat crystals and emulsion stability: a review[J]. Food Research International, 2000, 33(1): 3-14.
[6] TCHOLAKOVA S, DENKOV N D, LIPS A. Comparison of solid particles, globular proteins and surfactants as emulsifi ers[J]. Physical Chemistry Chemical Physics, 2008, 10(12): 1608-1627.
[7] DICKINSON E. Use of nanoparticles and micro particles in the formation and stabilization of food emulsions[J]. Trends in Food Science & Technology, 2012, 24(1): 4-12.
[8] PAUNOV V N, CAYRE O J, NOBLE P F, et al. Emulsions stabilized by food colloid particles: role of particle adsorption and wettability at the liquid interface[J]. Journal of Colloid and Interface Science, 2007, 312(2): 381-389.
[9] INOUE M, HASHIZAKI K, TAGUCHI H, et al. Emulsion preparation using beta-cyclodextrin and its derivatives acting as an emulsifi er[J]. Chemical and Pharmaceutical Bulletin, 2008, 56(9): 1335-1337.
[10] 周君, 喬秀穎, 孫康. Pickering乳液的制備和應(yīng)用研究進展[J]. 化學(xué)通報, 2012, 75(2): 99-105.
[11] BHOSALE R, SINGHAL R. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches[J]. Carbohydrate Polymers, 2006, 66(4): 521-527.
[12] 杜研學(xué), 史蘇華, 熊華, 等. 米渣谷蛋白卡拉膠糖基化改性及功能性質(zhì)[J]. 食品科學(xué), 2011, 32(16): 11-15.
[13] 華南理工大學(xué). 包埋脂溶性維生素的玉米肽糖基化產(chǎn)物納米顆粒的制備方法: 中國, CN201310305999.6[P]. 2013-12-18.
[14] BALLARD N, BON S A F. Hybrid biological spores wrapped in a mesh composed of interpenetrating polymer nanoparticles as “patchy”Pickering stabilizers[J]. Polymer Chemistry, 2011, 2(4): 823-827.
[15] MADIVALA B, VANDEBRIL S, FRANSAER J, et al. Exploiting particle shape in solid stabilized emulsions[J]. Soft Matter, 2009, 5(8): 1717-1727.
[16] NONOMURA Y, KOBAYASHI N, NAKAGAWA N. Multiple pickering emulsions stabilized by microbowls[J]. Langmuir, 2011, 27(8): 4557-4562.
[17] AVEYARD R, BINKS B P, CLINT J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100: 503-546.
[18] RAYNER M, MARKU D, ERIKSSONA M, et al. Biomass-based particles for the formulation of pickering typeemulsions in food and topical applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458(1): 48-62.
[19] DICKINSON E. Stabilising emulsion-based colloidal structures with mixed food ingredients[J]. Journal of the Science of Food and Agriculture, 2013, 93(4): 710-721.
[20] VIGNATI E, PIAZZA R, LOCKHART T P. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion[J]. Langmuir, 2003, 19(17): 6650-6656.
[21] TZOUMAKI M V, MOSCHAKIS T, KIOSSEOGLOU V, et al. Oilin-water emulsions stabilized by chitin nanocrystal particles[J]. Food Hydrocolloids, 2011, 25(6): 1521-1529.
[22] TZOUMAKI M V, MOSCHAKIS T, SCHOLTEN E, et al. In vitro lipid digestion of chitin nanocrystal stabilized O/W emulsions[J]. Food & Function, 2013, 4(1): 121-129.
[23] TZOUMAKI M V, MOSCHAKIS T, BILIADERIS C G. Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocry stal aqueous dispersions[J]. Carbohydrate Polymers, 2013, 95(1): 324-331.
[24] HUNTER T N, PUGH R J, FRANKS G V, et al. The role of particles in stabilising foams and emulsions[J]. Advances in Colloid and Interface Science, 2008, 137(2): 57-81.
[25] LUO Zijun, MURRAY B S, YUSOFF A, et al. Particle-stabilizing effects of flavonoids at the oil-water interface[J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2636-2645.
[26] RAYNER M, TIMGREN A, SJ?? M, et al. Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions[J]. Journal of the Science of Food and Agriculture, 2012, 92(9): 1841-1847.
[27] TIMGREN A, RAYNER M, SJ?? M, et al. Starch particles for food based Pickering emulsions[J]. Procedia Food Science, 2011, 1: 95-103.
[28] YUSOFF A, MURRAY B S. Modified starch granules as particlestabilizers of oil-in-water emulsions[J]. Food Hydrocolloids, 2011, 25(1): 42-55.
[29] SONG Xiaoyan, PEI Yaqiong, ZHU Wei, et al. Particle-stabilizers modified from indica rice starches differing in amylose content[J]. Food Chemistry, 2014, 153: 74-80.
[30] LI Chen, SUN Peidong, YANG Cheng. Emulsion stabilized by starch nanocrystals[J]. Starch-St?rke, 2012, 64(6): 497-502.
[31] MIAO Ming, LI Rong, JIANG Bo, et al. Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch[J]. Food Chemistry, 2014, 151: 154-160.
[32] WINUPRASITH T, SUPHANTHARIKA M. Microfi brillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer[J]. Food Hydrocolloids, 2013, 32(2): 383-394.
[33] KARGAR M, FAYAZMANESH K, ALAVI M, et al. Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions[J]. Journal of Colloid and Interface Science, 2012, 366(1): 209-215.
[34] LIU Fu, TANG Chuanhe. Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry, 2013, 61(37): 8888-8898.
[35] LIANG Hanning, TANG Chuanhe. Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0[J]. LWTFood Science and Technology, 2014, 58(2): 463-469.
[36] DESTRIBATS M, ROUVET M, GEHIN-DELVAL C, et al. Emulsions stabilised by whey protein microgel particles: towards foodgrade Pickering emulsions[J]. Soft Matter, 2014, 10(36): 6941-6954.
[37] FOLTER J W J, RUIJVEN M W M, VELIKOV K P. Oil-in-water Pickering emulsions stabilized by colloidal particles from the waterinsoluble protein zein[J]. Soft Matter, 2012, 8(25): 6807-6815.
[38] GAO Zhiming, YANG Xiaoquan, WU Nana, et al. Protein-based Pickering emulsion and oil gel prepared by complexes of zein colloidal particles and stearate[J]. Journal of Agricultural and Food Chemistry, 2014, 62(12): 2672-2678.
[39] ANTON M, LE D M, BEAUMAL V, et al. Filler effects of oil droplets on the rheology of heat-set emulsion gels prepared with egg yolk and egg yolk fractions[J]. Colloids and Surfaces B: Biointerfaces, 2001, 21(1): 137-147.
[40] NORTON J E, FRYER P J. Investigation of changes in formulation and processing parameters on the physical properties of cocoa butter emulsions[J]. Journal of Food Engineering, 2012, 113(2): 329-336.
[41] GOULD J, VIEIRA J, WOLF B. Cocoa particles for food emulsion stabilisation[J]. Food & Function, 2013, 4(9): 1369-1375.
[42] HODGE S M, ROUSSEAU D. Continuous-phase fat crystals strongly infl uence water-in-oil emulsion stability[J]. Journal of the American Oil Chemists’ Society, 2005, 82(3): 159-164.
[43] GARTI N, BINYAMIN H, ASERIN A. Stabilization of water-in-oil emulsions by submicrocrystalline α-form fat particles[J]. Journal of the American Oil Chemists’ Society, 1998, 75(12): 1825-1831.
[44] MELNIK S F, NORTON I T, SPYROPOULOS F. Fat-crystal stabilised W/O emulsions for controlled salt release[J]. Journal of Food Engineering, 2010, 98(4): 437-442.
[45] DOUAIRE M, di BARI V, NORTON J E, et al. Fat crystallisation at oil-water interfaces[J]. Advances in Colloid and Interface Science, 2014, 203: 1-10.
[46] GHOSH S, ROUSSEAU D. Triacylglycerol interfacial crystallization and shear structuring in water-in-oil emulsions[J]. Crystal Growth & Design, 2012, 12(10): 4944-4954.
[47] MAREFATI A, RAYNER M, TIMGREN A, et al. Freezing and freeze-drying of Pickering emulsions stabilized by starch granules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436: 512-520.
[48] MARKU D, WAHLGREN M, RAYNER M, et al. Characterization of starch Pickering emulsions for potential applications in topical formulations[J]. International Journal of Pharmaceutics, 2012, 428(1): 1-7.
[49] LI Kangkang, ZHANG Xi, HUANG Qin, et al. Continuous preparation of zein colloidal particles by Flash Nano Precipitation (FNP)[J]. Journal of Food Engineering, 2014, 127: 103-110.
[50] 任曉鳴, 王麗娟, 王金梅, 等. 超臨界CO2反溶劑法制備大豆異黃酮-玉米醇溶蛋白復(fù)合納米顆粒[J]. 食品工業(yè)科技, 2012, 33(24): 273-276.
[51] 王麗娟, 胡二坤, 尹壽偉, 等. 水溶性的抗菌小麥醇溶蛋白納米粒子構(gòu)建及性能研究[J]. 現(xiàn)代食品科技, 2014, 30(5): 1-5.
[52] 康波, 齊軍茹, 楊曉泉. 微射流均質(zhì)制備乳鐵蛋白納米乳液的研究[J].食品工業(yè)科技, 2009, 30(8): 182-184.
[53] 任曉鳴, 張晉博, 楊曉泉, 等. 玉米肽-麥芽糊精糖基化產(chǎn)物與α-生育酚共組裝納米粒子的制備及其性質(zhì)[J]. 化工學(xué)報, 2014(4): 1381-1386.
[54] YIN Yechong, YIN Shouwei, YANG Xiaoquan, et al. Surface modification of sodium caseinate films by zein coatings[J]. Food Hydrocolloids, 2014, 36: 1-8.
[55] WANG Lijuan, YIN Yechong, YIN Shouwei, et al. Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation[J]. Journal of Agricultural and Food Chemistry, 2013, 61(46): 11089-11097.
[56] LI Kangkang, YIN Shouwei, YANG Xiaoquan, et al. Fabrication and characterization of novel antimicrobial films derived from thymolloaded zein-sodium caseinate (SC) nanoparticles[J]. Journal of Agricultural and Food Chemistry, 2012, 60(46): 11592-11600.
[57] ROUSSEAU D. Trends in structuring edible emulsions with Pickering fat crystals[J]. Current Opinion in Colloid & Interface Science, 2013, 18(4): 283-291.
[58] GUPTA R, ROUSSEAU D. Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions[J]. Food and Function, 2012, 3(3): 302-311.
[59] GARTI N, ASERIN A, TIUNOVA I, et al. Double emulsions of water-in-oil-in-water stabilized by α-form fat microcrystals. Part 1: selection of emulsifi ers and fat microcrystalline particles[J]. Journal of the American Oil Chemists’ Society, 1999, 76(3): 383-389.
[60] SULLO A, ARELLANO M, NORTON I T. Formulation engineering of water in cocoa: butter emulsion[J]. Journal of Food Engineering, 2014, 142: 100-110.
[61] FRASCH M S, NORTON I T, SPYROPOULOS F. Fat-crystal stabilised W/O emulsions for controlled salt release[J]. Journal of Food Engineering, 2010, 98(4): 437-442.
[62] NADIN M, ROUSSEAU D, GHOSH S. Fat crystal-stabilized waterin-oil emulsions as controlled release systems[J]. LWT-Food Science and Technology, 2014, 56(2): 248-255.
Food Grade Pickering Emulsion: A Review
LI Haiming1, YANG Sheng1, WEI Hewen2, QUE Fei3, XU Guangwei2, DONG Xiaowei2, ZHANG Hui1,*, FENG Fengqin1
(1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; 2. Jinhua Measurement and Test Institute for Quality and Technique Supervision, Jinhua 321000, China; 3. Department of Applied Technology, Zhejiang Economic and Trade Polytechnic, Hangzhou 310018, China)
Pickering emulsions stabilized by nano/microparticles have gained considerable attention due to their remarkable properties such as high stability with respect to coalescence, Ostwald ripening and their potential applications in the food industry. This paper elucidates the relationships between the basic properties of Pickering particles and emulsio n stability based on the stability mechanism, as well as the effects of environmental factors including temperatures, pH and salt concentr ation on emulsion stability. Meanwhile, the latest progress in the preparation of food grade Pickering particles and the application of emulsions based on these particles is reviewed, aiming to promote the development and application in the food industry of Pickering emulsion.
Pickering emulsion; nanoparticles; particle-stabilized; delayed release; delivery model
TS201
A
1002-6630(2015)19-0265-06
10.7506/spkx1002-6630-201519048
2014-10-23
國家高技術(shù)研究發(fā)展計劃(863計劃)項目(2013AA102207-3);國家自然科學(xué)基金面上項目(31471622);浙江省自然科學(xué)基金項目(LY14C200010);浙江大學(xué)馥莉食品研究院基金項目(KY201401)
李海明(1989-),男,碩士研究生,研究方向為食品膠體、蛋白改性。E-mail:601786579@qq.com
*通信作者:張輝(1981-),男,副教授,博士,研究方向為食品膠體。E-mail:hubert0513@zju.edu.cn