何振亞,傅建中,徐月同
(1.浙江大學(xué)機(jī)械工程學(xué)院,浙江杭州310027;2.華南理工大學(xué)機(jī)械與汽車工程學(xué)院,廣東廣州510640)
數(shù)控機(jī)床旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差測(cè)量方法
何振亞1,2,傅建中1,徐月同1
(1.浙江大學(xué)機(jī)械工程學(xué)院,浙江杭州310027;2.華南理工大學(xué)機(jī)械與汽車工程學(xué)院,廣東廣州510640)
為實(shí)現(xiàn)多軸數(shù)控機(jī)床空間誤差的補(bǔ)償,提出一種基于球桿儀組合路徑的數(shù)控機(jī)床旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差的測(cè)量方法.根據(jù)轉(zhuǎn)角定位誤差敏感方向,通過組合切線測(cè)量和平動(dòng)軸圓軌跡測(cè)量方法,無需機(jī)床空間誤差模型和繁瑣的誤差解耦計(jì)算,便可直接辨識(shí)轉(zhuǎn)角定位誤差.采用模型仿真驗(yàn)證該方法的可行性和對(duì)照實(shí)驗(yàn)驗(yàn)證可靠性.實(shí)驗(yàn)結(jié)果表明組合路徑測(cè)量方法的辨識(shí)結(jié)果與激光測(cè)量結(jié)果吻合較好,兩者的測(cè)量結(jié)果差異δ≤0.007 8°.該方法測(cè)量過程操作簡(jiǎn)單、辨識(shí)原理直觀易懂,可用于機(jī)床旋轉(zhuǎn)軸定位精度的評(píng)估以及為誤差補(bǔ)償提供依據(jù),從而提高機(jī)床加工精度.
旋轉(zhuǎn)軸;轉(zhuǎn)角定位誤差;組合路徑;球桿儀;數(shù)控機(jī)床
隨著現(xiàn)代制造業(yè)的發(fā)展,多軸數(shù)控機(jī)床廣泛應(yīng)用于汽車、醫(yī)療、航空航天等先進(jìn)裝備制造領(lǐng)域[1].多軸數(shù)控機(jī)床是在傳統(tǒng)的三軸機(jī)床的基礎(chǔ)上增加旋轉(zhuǎn)軸,因而多軸數(shù)控機(jī)床誤差補(bǔ)償控制更為復(fù)雜,不僅要考慮平動(dòng)軸的運(yùn)動(dòng)誤差,還需考慮旋轉(zhuǎn)軸的運(yùn)動(dòng)誤差.目前,對(duì)平動(dòng)軸的運(yùn)動(dòng)誤差研究已趨成熟,且在ISO230有明確的規(guī)定,但關(guān)于旋轉(zhuǎn)軸的運(yùn)動(dòng)誤差的研究卻停留在探索階段.
圍繞多軸機(jī)床的空間誤差測(cè)量課題,Lei等[2]開發(fā)了一種3D探針裝置,專門測(cè)量五軸機(jī)床的空間誤差.此方法需要規(guī)劃特殊測(cè)量路徑和結(jié)合空間誤差模型進(jìn)行誤差解耦求解;Tsutsumi等[3-4]提出采用球桿儀對(duì)五軸機(jī)床的13個(gè)鏈接誤差進(jìn)行辨識(shí),其中包括8個(gè)關(guān)于旋轉(zhuǎn)軸的誤差;Mayer等[5]提出采用球桿儀五步測(cè)量,并結(jié)合誤差模型辨識(shí)各項(xiàng)誤差,并開發(fā)了3D杯狀傳感器評(píng)估旋轉(zhuǎn)軸的8個(gè)鏈接誤差,但未包括轉(zhuǎn)角定位誤差[6].Zhu等[7]采用球桿儀測(cè)量旋轉(zhuǎn)軸6項(xiàng)基本誤差;張大衛(wèi)等[8]提出采用球桿儀對(duì)機(jī)床旋轉(zhuǎn)軸的4項(xiàng)誤差進(jìn)行檢測(cè),但未提及如何測(cè)量轉(zhuǎn)角定位誤差.Lee等[9]把旋轉(zhuǎn)軸誤差分為2大類:跟位置有關(guān)的誤差以及跟位置無關(guān)的誤差,并提出各項(xiàng)誤差以及安裝誤差的估算方法,但也未提及轉(zhuǎn)角定位誤差的估算.前述所有基于球桿儀的誤差測(cè)量方法,均須結(jié)合機(jī)床空間誤差模型,進(jìn)行誤差解耦辨識(shí),其辨識(shí)原理抽象,過程較復(fù)雜、易錯(cuò).
李郝林等[10]提出利用標(biāo)準(zhǔn)球及紅外三維工件測(cè)頭對(duì)機(jī)床回轉(zhuǎn)工作臺(tái)轉(zhuǎn)角誤差進(jìn)行測(cè)量,但測(cè)量精度受旋轉(zhuǎn)運(yùn)動(dòng)的轉(zhuǎn)角誤差和主軸運(yùn)動(dòng)誤差的耦合誤差影響;梁軍等[11]采用激光角度干涉儀實(shí)現(xiàn)了數(shù)控轉(zhuǎn)臺(tái)位置精度的測(cè)量.測(cè)量安裝時(shí),步進(jìn)電機(jī)與被測(cè)轉(zhuǎn)臺(tái)回轉(zhuǎn)中心需同軸安裝,增加了安裝難度,此外激光干涉儀和步進(jìn)電機(jī)成本較高.
鑒此,本文提出一種低成本的基于球桿儀的機(jī)床旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差測(cè)量新方法,即組合路徑測(cè)量方法(combined paths measurement method, CPMM).根據(jù)轉(zhuǎn)角定位誤差的敏感方向,采用球桿儀切線測(cè)量方法對(duì)旋轉(zhuǎn)軸進(jìn)行測(cè)量;同時(shí),為了減小機(jī)床其他運(yùn)動(dòng)軸運(yùn)動(dòng)誤差對(duì)被測(cè)旋轉(zhuǎn)軸的影響,運(yùn)用平動(dòng)軸圓軌跡測(cè)量結(jié)果對(duì)切線測(cè)量數(shù)據(jù)進(jìn)行修正,避免了誤差解耦的繁瑣過程,通過簡(jiǎn)單的代數(shù)計(jì)算可直接求解轉(zhuǎn)角定位誤差.最后采用模型仿真和高精度的激光測(cè)量對(duì)照實(shí)驗(yàn)驗(yàn)證CPMM的可行性和可靠性.
球桿儀廣泛應(yīng)用于評(píng)價(jià)和診斷數(shù)控機(jī)床動(dòng)態(tài)精度[12].其工作原理是將球桿儀的兩端分別安裝在機(jī)床主軸與工作臺(tái)上,測(cè)量?jī)奢S插補(bǔ)圓軌跡運(yùn)動(dòng),通過分析測(cè)量軌跡與標(biāo)準(zhǔn)軌跡進(jìn)行對(duì)比,從而評(píng)價(jià)機(jī)床精度,如垂直度、直線度、反向間隙、圓度和伺服比例不匹配等.
隨著多軸機(jī)床的應(yīng)用,球桿儀測(cè)量軌跡向多樣化發(fā)展,如3個(gè)平動(dòng)軸的空間測(cè)量、旋轉(zhuǎn)軸的徑向測(cè)量和軸向測(cè)量、三軸插補(bǔ)切向測(cè)量、圓環(huán)軌跡測(cè)量和球面軌跡測(cè)量等.測(cè)量時(shí),機(jī)床運(yùn)動(dòng)需確保球桿儀兩端安裝球座的理想距離等于球桿儀的桿長(zhǎng).如圖1所示,球桿儀的典型測(cè)量運(yùn)動(dòng)軌跡.如圖1(f)所示,切線測(cè)量時(shí),旋轉(zhuǎn)軸的旋轉(zhuǎn)運(yùn)動(dòng)以及與其垂直的2個(gè)平動(dòng)軸平面圓軌跡運(yùn)動(dòng)構(gòu)成的球桿兩端圓環(huán)軌跡,并且球桿桿長(zhǎng)方向始終相切于內(nèi)圓,故命名為球桿儀切線測(cè)量.
圖1 球桿儀的典型測(cè)量運(yùn)動(dòng)軌跡Fig.1 Typical paths of ball bar measurement
采用球桿儀對(duì)機(jī)床旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差進(jìn)行檢測(cè).根據(jù)轉(zhuǎn)角定位誤差的敏感方向?yàn)榍芯€方向,采用球桿儀的切線測(cè)量路徑.切線測(cè)量時(shí)機(jī)床2個(gè)平動(dòng)軸和一個(gè)旋轉(zhuǎn)軸三軸聯(lián)動(dòng),因此切線測(cè)量結(jié)果反映的是三軸運(yùn)動(dòng)的耦合誤差.傳統(tǒng)的辨識(shí)方法是根據(jù)傳遞矩陣的機(jī)床空間誤差模型解耦計(jì)算,最后分離出轉(zhuǎn)角定位誤差.為了避免傳統(tǒng)方法導(dǎo)致的繁瑣空間誤差解耦辨識(shí)過程,本文提出采用CPMM,即組合切線測(cè)量和平動(dòng)軸圓軌跡測(cè)量,對(duì)機(jī)床旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差進(jìn)行測(cè)量和辨識(shí).
測(cè)量原理:通過平動(dòng)軸圓軌跡測(cè)量數(shù)據(jù),分解出平動(dòng)軸圓軌跡運(yùn)動(dòng)產(chǎn)生的誤差對(duì)切線方向的影響分量.然后,用此分量修正切線測(cè)量結(jié)果,從而巧妙地解決了球桿儀測(cè)量時(shí)多軸運(yùn)動(dòng)帶來的誤差解耦問題,簡(jiǎn)化了轉(zhuǎn)角定位誤差求解過程.
以C軸為例介紹CPMM原理.如圖2所示,球桿儀C軸的切線測(cè)量示意圖.測(cè)量軌跡由X、Y軸插補(bǔ)圓軌跡運(yùn)動(dòng),以及C軸的旋轉(zhuǎn)運(yùn)動(dòng)形成.因此,在切線方向(桿長(zhǎng)方向)不僅受C軸轉(zhuǎn)角定位誤差的影響,也受X、Y兩軸插補(bǔ)圓軌跡運(yùn)動(dòng)所產(chǎn)生的誤差的影響.如圖3所示,X和Y軸的插補(bǔ)圓軌跡測(cè)量.圓軌跡的圓心,設(shè)置在C軸的旋轉(zhuǎn)中心上,并且桿長(zhǎng)|ON′|=|ON|,即如圖3所示的N′點(diǎn)軌跡與圖2所示的N點(diǎn)軌跡是相同的.
圖2 球桿儀C軸切線測(cè)量Fig.2 C-axis tangential measurement of ball bar
圖3 X和Y軸的平面圓軌跡測(cè)量Fig.3 X-and Y-axis plane circular measurement of ball bar
如圖4所示,X、Y和C軸聯(lián)動(dòng)形成的球桿儀切線測(cè)量軌跡.可見,在球桿儀切線測(cè)量過程中,被測(cè)軸的旋轉(zhuǎn)中心與球桿儀的球桿兩端構(gòu)成的三角形△OMN始終不變,且∠OMN=90°,圓環(huán)軌跡的小圓半徑記為R.如圖5所示,組合切線測(cè)量和平動(dòng)軸圓軌跡測(cè)量的辨識(shí)原理.設(shè)切線測(cè)量和平動(dòng)軸圓軌跡測(cè)量的桿長(zhǎng)分別為L(zhǎng)1、L2,則有
通過X和Y軸的平面圓軌跡測(cè)量(圖3),得到徑向誤差Δlxy,其在切線測(cè)量(圖5)時(shí)桿長(zhǎng)方向的分量記為Exy,
圖4 切線測(cè)量運(yùn)動(dòng)過程示意圖Fig.4 Schematic diagram of tangential measurement process
圖5 旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差辨識(shí)原理Fig.5 Identified principle of angular position errors of rotational axis
式中:θc為測(cè)量時(shí)C軸的轉(zhuǎn)角位置.
旋轉(zhuǎn)軸C的轉(zhuǎn)角定位誤差對(duì)切線測(cè)量桿長(zhǎng)的影響Ec,由于轉(zhuǎn)角定位誤差角度εαc(θc)較小,可采用弧長(zhǎng)公式近似計(jì)算:
設(shè)切線測(cè)量的誤差記為Δlxyc,則有
因此,旋轉(zhuǎn)軸的轉(zhuǎn)角定位誤差可表達(dá)為
把式(1)代入式(5)便可計(jì)算得機(jī)床的轉(zhuǎn)角定位誤差.可見,對(duì)比傳統(tǒng)的誤差模型解耦求解過程[3], CPMM辨識(shí)旋轉(zhuǎn)軸的轉(zhuǎn)角誤差具有簡(jiǎn)單、直觀的優(yōu)點(diǎn).需要指出的是,本文所提測(cè)量方法以旋轉(zhuǎn)工作臺(tái)的C軸測(cè)量為例講述其原理,但該方法可推廣到其他類型的四軸及五軸機(jī)床.
為了驗(yàn)證CPMM的可行性,首先采用模型仿真實(shí)驗(yàn)驗(yàn)證.以雙轉(zhuǎn)臺(tái)五軸機(jī)床為研究對(duì)象(如圖6所示).機(jī)床的成形運(yùn)動(dòng)由2個(gè)開環(huán)運(yùn)動(dòng)鏈構(gòu)成:1)床身-Y方向運(yùn)動(dòng)軸-Z方向運(yùn)動(dòng)軸-主軸-刀具;2)床身-X方向運(yùn)動(dòng)軸-A擺動(dòng)軸-C回轉(zhuǎn)工作臺(tái)-工件.
圖6 雙轉(zhuǎn)臺(tái)五軸數(shù)控機(jī)床結(jié)構(gòu)示意圖Fig.6 Schematic structural diagram of five-axis machine tool with a titling rotary table
根據(jù)機(jī)床空間運(yùn)動(dòng)學(xué)方程,球桿儀測(cè)量桿長(zhǎng)矢量??杀硎緸?/p>
式中:Pt表示球桿儀安裝在主軸的端點(diǎn)在刀具坐標(biāo)系的齊次坐標(biāo),Pw表示球桿儀安裝在工作臺(tái)上的端點(diǎn)在工件坐標(biāo)系的齊次坐標(biāo),RPt和RPw分別表示Pt和Pw在機(jī)床坐標(biāo)系的齊次表達(dá)式T和ΔT表示運(yùn)動(dòng)部件i向其相鄰低序體的理想傳遞矩陣和誤差傳遞矩陣.傳遞矩陣齊次表達(dá)式可參見文獻(xiàn)[13].
借助計(jì)算機(jī)對(duì)切線測(cè)量和2個(gè)平動(dòng)軸圓軌跡測(cè)量進(jìn)行仿真.機(jī)床各運(yùn)動(dòng)軸的運(yùn)動(dòng)誤差參數(shù)由計(jì)算機(jī)隨機(jī)生成,
式中:RPt_N、RPw_M和RPw_o分別為切向測(cè)量時(shí)(圖3)點(diǎn)N、M和O在機(jī)床坐標(biāo)系的齊次坐標(biāo).
3.1 驗(yàn)證轉(zhuǎn)角誤差的敏感方向
C軸運(yùn)動(dòng)會(huì)產(chǎn)生6項(xiàng)運(yùn)動(dòng)誤差,驗(yàn)證其他5項(xiàng)誤差對(duì)切線測(cè)量的影響程度.為了更清淅地表明,假設(shè)X軸和Y軸為理想運(yùn)動(dòng),即消除了平動(dòng)軸圓軌跡運(yùn)動(dòng)產(chǎn)生誤差的影響.給定C軸的各項(xiàng)誤差參數(shù),仿真切線測(cè)量并根據(jù)上述辨識(shí)方法計(jì)算轉(zhuǎn)角定位誤差εαc.如圖7所示,給定轉(zhuǎn)角定位誤差和辨識(shí)計(jì)算得到的轉(zhuǎn)角定位誤差值.其中最大絕對(duì)誤差是0.001 0°,最大相對(duì)誤差是6.30%,計(jì)算值與給定值基本一致.表明了切線方向?yàn)檗D(zhuǎn)角定位誤差的敏感方向.
圖7 驗(yàn)證轉(zhuǎn)角定位誤差敏感方向的仿真結(jié)果Fig.7 Simulation results of sensitive direction of angular position errors
3.2 驗(yàn)證CPMM的可行性
設(shè)定機(jī)床各運(yùn)動(dòng)軸的誤差參數(shù),仿真切線測(cè)量和圓軌跡測(cè)量的實(shí)際軌跡,并根據(jù)上述辨識(shí)方法計(jì)算轉(zhuǎn)角定位誤差εαc.如圖8所示,驗(yàn)證CPMM的仿真結(jié)果.可見,辯識(shí)結(jié)果與給定值基本上一致,但存在一些細(xì)微誤差,最大絕對(duì)誤差0.004 1°,最大相對(duì)誤差20.13%.主要原因是:2個(gè)平動(dòng)軸圓軌跡運(yùn)動(dòng)產(chǎn)生的位置誤差矢量在測(cè)量平面上的分量,與理論徑向存在一定的小角度偏差.仿真結(jié)果表明,這對(duì)辯識(shí)結(jié)果的影響并不大,故采用CPMM辨識(shí)旋轉(zhuǎn)軸轉(zhuǎn)角誤差是可行的.
圖8 驗(yàn)證CPMM的仿真結(jié)果Fig.8 Simulation results of CPMM
采用對(duì)照實(shí)驗(yàn)驗(yàn)證CPMM的可靠性.分別采用CPMM和激光測(cè)量方法[11]對(duì)數(shù)控機(jī)床的回轉(zhuǎn)工作臺(tái)進(jìn)行測(cè)量.如圖9所示,采用CPMM的五軸加工中心回轉(zhuǎn)工作臺(tái)轉(zhuǎn)角定位誤差測(cè)量實(shí)驗(yàn).
如圖10所示,球桿儀切線測(cè)量和平動(dòng)軸圓軌跡測(cè)量結(jié)果.根據(jù)上述辨識(shí)方法,計(jì)算出轉(zhuǎn)角定位誤差εαc.同時(shí),采用激光測(cè)量方法對(duì)回轉(zhuǎn)臺(tái)轉(zhuǎn)角定位誤差進(jìn)行測(cè)量.如圖11所示,球桿儀CPMM和激光測(cè)量方法的辨識(shí)結(jié)果.兩者對(duì)同一運(yùn)動(dòng)誤差的測(cè)量結(jié)果差異δ≤0.007 8°,可見,采用CPMM辨識(shí)的轉(zhuǎn)角定位誤差與激光測(cè)量方法的測(cè)量結(jié)果吻合較好.
圖9 數(shù)控機(jī)床回轉(zhuǎn)工作臺(tái)轉(zhuǎn)角定位誤差測(cè)量實(shí)驗(yàn)Fig.9 Measurement experiment of angular position errors of CNC machine tool rotational table
本文提出組合路徑測(cè)量方法(CPMM)對(duì)數(shù)控機(jī)床旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差進(jìn)行測(cè)量.根據(jù)誤差敏感方向,組合球桿儀切線測(cè)量和平動(dòng)軸圓軌跡測(cè)量方法,對(duì)機(jī)床旋轉(zhuǎn)軸轉(zhuǎn)角定位誤差進(jìn)行辨識(shí),可以避免繁瑣的誤差解耦過程,從而大大簡(jiǎn)化了辨識(shí)過程.該方法具有以下特點(diǎn):
(1)機(jī)床測(cè)量操作簡(jiǎn)單,只需測(cè)量典型的球桿儀切線測(cè)量和平動(dòng)軸圓軌跡測(cè)量,無需設(shè)置特殊測(cè)量路徑;
(2)辨識(shí)過程不需要誤差模型.與傳統(tǒng)的球桿儀測(cè)量的誤差模型辨識(shí)過程,該方法原理直觀、簡(jiǎn)單易懂;
(3)與激光測(cè)量的安裝相比,該測(cè)量方法安裝簡(jiǎn)單,容易操作.
仿真實(shí)驗(yàn)表明切線方向是轉(zhuǎn)角誤差的敏感方向,同時(shí)驗(yàn)證了CPMM的可行性;與激光測(cè)量對(duì)照實(shí)驗(yàn)驗(yàn)證CPMM的可靠性.實(shí)驗(yàn)結(jié)果表明,該方法的辨識(shí)結(jié)果與激光測(cè)量結(jié)果差異,兩者的結(jié)果吻合較好.因此,CPMM可用于旋轉(zhuǎn)軸定位精度的評(píng)估以及為誤差補(bǔ)償提供依據(jù).
圖10 CPMM的測(cè)量結(jié)果Fig.10 Measurement results of CPMM
圖11 CPMM和激光測(cè)量方法的辨識(shí)結(jié)果Fig.11 Identified results of CPMM and laser measurement
(References):
[1]SCHWENKE H,KNAPP W,HAITJEMA H,et al.Geometric error measurement and compensation of machines—an update[J].CIRP Annals-Manufacturing Technology,2008,57(2):660-675.
[2]LEI W,HSU Y.Error measurement of five-axis CNC machines with 3D probe-ball[J].Journal of Materials Processing Technology,2003,139(1):127-133.
[3]TSUTSUMI M,SAITO A.Identification and compensation of systematic deviations particular to 5-axis machining centers[J].International Journal of Machine Tools and Manufacture,2003,43(8):771-780.
[4]TSUTSUMI M,SAITO A.Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary table by simultaneous four-axis control movements[J].International Journal of Machine Tools and Manufacture,2004,44(12):1333-1342.
[5]ZARGARBASHI S,MAYER J.Assessment of machine tool trunnion axis motion error,using magnetic double ball bar[J].International Journal of Machine Tools and Manufacture,2006,46(14):1823-1834.
[6]ZARGARBASHI S,MAYER J.Single setup estimation of a five-axis machine tool eight link errors by programmed end point constraint and on the fly measurement with Capball sensor[J].International Journal of Machine Tools and Manufacture,2009,49(10):759-766.
[7]ZHU S,DING G,QIN S,et al.Integrated geometric error modeling,identification and compensation of CNC machine tools[J].International Journal of Machine Tools and Manufacture,2012,52(1):24-29.
[8]張大衛(wèi),商鵬,田延嶺,等.五軸數(shù)控機(jī)床轉(zhuǎn)動(dòng)軸誤差元素的球桿儀檢測(cè)方法[J].中國(guó)機(jī)械工程,2008,19(22):2737-2741.
ZHANG Da-wei,SHANG Peng,TIAN Yan-ling,et al.A DBB-based alignment error measurement method for rotary axis of 5-axis CNC machine tool[J].China Mechanical Engineering,2008,19(22):2737-2741.
[9]LEE K I,LEE D M,YANG S H.Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar[J].The International Journal of Advanced Manufacturing Technology,2012,62(5/8):741-750.
[10]李郝林,吳曉健.數(shù)控機(jī)床回轉(zhuǎn)工作臺(tái)轉(zhuǎn)角誤差測(cè)量方法:中國(guó),201010256629.4[P].2010-12-15.
Li Hao-lin,Wu Xiao-jian.An angular errors measurement method for the rotational table of CNC machine tools:China,201010256629.4[P].2010-12-15.
[11]梁軍,舒陽,黃寧秋,等.激光角度干涉儀測(cè)量數(shù)控轉(zhuǎn)臺(tái)位置精度的裝置:中國(guó),201010028151[P]:X, 2010-08-11.
Liang Jun,Shu Yang,Huang Ning-qiu,et al.An angular laser interferometer equipment to measure position errors of rotational table for CNC machine tools:China,201010028151,[P].X.2010-08-11.
[12]商鵬,阮宏慧,張大衛(wèi).基于球桿儀的三軸數(shù)控機(jī)床熱誤差檢測(cè)方法[J].天津大學(xué)學(xué)報(bào),2006,39(11):1336-1340.
SHANG Peng,RUAN Hong-hui,ZHANG Da-wei.Double-bal1-bar based thermal errors measurement method for 3-axis CNC machine tool[J].Journal of Tianjin University,2006,39(11):1336-1340.
[13]LIN Y,SHEN Y.Modelling of five-axis machine tool metrology models using the matrix summation approach[J].The International Journal of Advanced Manufacturing Technology,2003,21(4):243-248.
New method to measure angular position errors of rotational axis of CNC machine tool
HE Zhen-ya1,2,FU Jian-zhong1,XU Yue-tong1
(1.School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;2.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China)
In order to carry out the error compensation of multi-axis machine tools,this paper presents a novel measurement method,a combined paths measurement method(CPMM)based on ball bar,to identify the angular position errors of a rotational axis of a machine tool.According to the error sensitive direction,angular position errors could be directly identified by combining the tangential direction measurement and circular path measurement of translational axes without a mathematical error model of a machine tool and the complicated error decouple process.The simulation and contrast experiments were conducted to verify the feasibility and reliability of the method.The results show that identified value by CPMM is consistent with that by laser measurement method,the maximum difference is 0.007 8°.The operation process of CPMM is simple and its corresponding identification algorithms are easier to understand.The established measurement method can be used for the precision evaluation of a rotational axis,and provide the basis for the error compensation to improve machining precision of machine tools.
rotational axis;angular position error;combined paths;ball bar;CNC machine tool
10.3785/j.issn.1008-973X.2015.05.004
TH 161
A
1008-973X(2015)05-0835-06
2014-04-23. 浙江大學(xué)學(xué)報(bào)(工學(xué)版)網(wǎng)址:www.journals.zju.edu.cn/eng
國(guó)家自然科學(xué)基金資助項(xiàng)目(51175461);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金資助項(xiàng)目(20120101110055).
何振亞(1985-),女,博士,從事數(shù)控技術(shù)及相關(guān)方向的研究.E-mail:hezhenya@163.com
傅建中,男,教授,博導(dǎo).E-mail:fjz@zju.edu.cn
下期論文摘要預(yù)登