賀強(qiáng) 季瀏
摘 要:觀察4周游泳訓(xùn)練對(duì)db/db小鼠內(nèi)臟脂肪組織巨噬細(xì)胞介導(dǎo)的慢性炎癥的影響,探討運(yùn)動(dòng)抗炎的作用機(jī)制。將db/db小鼠和同窩野生小鼠各16只隨機(jī)分為相應(yīng)的對(duì)照組(WC、DC)和運(yùn)動(dòng)組(WE,DE)。小鼠進(jìn)行4周每天1 h、每周5 d的游泳運(yùn)動(dòng)。各組小鼠取附睪脂肪分離附睪脂肪組織基質(zhì)血管部分細(xì)胞(SVCs),流式細(xì)胞術(shù)檢測(cè)SVCs F4/80+CD11b+CD11c+和F4/80+CD11b+ CD11c-巨噬細(xì)胞;RT-PCR檢測(cè)炎癥相關(guān)基因表達(dá)。結(jié)果顯示db/db小鼠體質(zhì)量、附睪脂肪含量、空腹血糖(FBG)、SVCs數(shù)量、SVCs中 F4/80+CD11b+巨噬細(xì)胞數(shù)量及其百分?jǐn)?shù)、F4/80+CD11b+CD11c+巨噬細(xì)胞數(shù)量及其百分?jǐn)?shù)均顯著升高(P﹤0.05);附睪脂肪TNF-α、IL-6、iNOS、F4/80、CD11c mRNA表達(dá)顯著升高(P﹤0.05);IL-10、CD206、Arg1 mRNA表達(dá)顯著下降(P﹤0.05)。4周游泳訓(xùn)練顯著提高db/db 小鼠體質(zhì)量(P﹤0.05);附睪脂肪含量無顯著差異;FBG、SVCs數(shù)量,SVCs中F4/80+CD11b+巨噬細(xì)胞數(shù)量及其百分?jǐn)?shù),F(xiàn)4/80+CD11b+巨噬細(xì)胞中CD11c+巨噬細(xì)胞數(shù)量及其百分?jǐn)?shù)顯著下降(P﹤0.05)。附睪脂肪TNF-α、IL-6、iNOS、F4/80、CD11c mRNA表達(dá)顯著下降(P﹤0.05);IL-10、CD206、Arg1 mRNA表達(dá)顯著升高(P﹤0.05)。4周游泳訓(xùn)練對(duì)野生型小鼠各項(xiàng)參數(shù)變化無顯著差異。結(jié)果說明:1) db/db小鼠附睪脂肪M1型促炎性巨噬細(xì)胞增加,炎癥因子基因表達(dá)提高;2)4周游泳訓(xùn)練有效降低db/db小鼠附睪脂肪巨噬細(xì)胞浸潤(rùn),降低M1型巨噬細(xì)胞,提高M(jìn)2型巨噬細(xì)胞表型,降低脂肪組織炎癥水平。
關(guān) 鍵 詞:運(yùn)動(dòng)生物化學(xué);2型糖尿??;巨噬細(xì)胞;慢性炎癥;游泳訓(xùn)練;小鼠
中圖分類號(hào):G804.7 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-7116(2015)05-0133-06
Abstract: The authors observed the effects of 4-week swimming training on visceral fat tissue chronic inflammation mediated by macrophages in db/db mice, and probed into the working mechanism of exercise-induced anti-inflammation. The authors randomly divided 16 db/db mice and 16 wild littermate mice into corresponding control groups (WC and DC) and exercise groups (WE and DE), let the mice swim 1 hour a day, 5 days a week, for 4 weeks, took epididymis fat pads out of the mice in various groups, separated stromal vascular fraction cells (SVCs) of epididymis fat tissues, analyzed SVCs F4/80+CD11b+CD11c+ and F4/80+CD11b+CD11c- macrophages by means of flow cytometry, determined inflammation related gene expressions by means of RT-PCR, and revealed the following findings: db/db mices body mass, epididymis fat content, fasting blood glucose (FBG), SVCs number, F4/80+CD11b+ macrophage number and its percentage in SVCs, F4/80+CD11b+ CD11c+ macrophages number and its percentage increased significantly (P<0.05), their epididymis fat TNF-α, IL-6, iNOS, F4/80 and CD11c mRNA expression increased significantly (P<0.05), their epididymis fat IL-10, CD206 and Arg1 mRNA expression decreased significantly (P<0.05); the 4-week swimming training significantly increased db/db mices body mass (P<0.05), did not significantly change their epididymis fat content, significantly decreased their FBG, SVCs number, F4/80+CD11b+ macrophage number and its percentage in SVCs, CD11c+ macrophage number and its percentage in F4/80+CD11b+ macrophages (P<0.05), significantly decreased their epididymis fat TNF-α, IL-6, iNOS, F4/80, CD11c mRNA expression (P<0.05), and significantly increased their IL-10, CD206 and ARG1mRNA expression (P<0.05); the 4-week swimming training did not significantly change various indexes of wild mice. The said findings indicate the followings: 1) as type M1 pro-inflammatory macrophages in epididymis fat of db/db mice increases, inflammatory cytokines gene expression increases; 2) the 4-week swimming training effectively reduced the infiltration of macrophages in epididymis fat of db/db mice, reduced type M1 macrophages, promoted type M2 anti-inflammatory macrophage phenotype, thus lowered fat tissue inflammation level.
Key words: sports biochemistry;type 2 diabetes;macrophage;chronic inflammation;swimming training;mouse
靜態(tài)生活方式、不良飲食結(jié)構(gòu)提高了2型糖尿病的發(fā)病風(fēng)險(xiǎn),全球范圍內(nèi)2型糖尿病人群持續(xù)升高,成為醫(yī)療衛(wèi)生面臨的重大課題。Hotamisligil[1-2]1993年發(fā)現(xiàn)肥胖、糖尿病動(dòng)物脂肪組織中促炎癥因子TNF-α基因、蛋白表達(dá)均成倍增加,1994年發(fā)現(xiàn)TNF-α通過抑制胰島素受體的酪氨酸酶活性直接干擾胰島素信號(hào)通路,揭示了慢性炎癥為胰島素抵抗的病理機(jī)制之一,同樣為2型糖尿病常見的病理特征。Weisberg[3]2003年通過免疫組化染色發(fā)現(xiàn)肥胖動(dòng)物脂肪組織中F4/80+染色陽性巨噬細(xì)胞數(shù)量顯著增加,為促炎癥因子TNF-α、IL-6、IL-1β等的主要來源,極大地提高了對(duì)脂肪組織免疫細(xì)胞和代謝疾病之間的認(rèn)識(shí)。羅格列酮為糖尿病治療藥物,可有效降低肥胖動(dòng)物脂肪組織中巨噬細(xì)胞炎癥,提示糖尿病的治療與脂肪組織巨噬細(xì)胞炎癥有關(guān)[4]。
2006年美國(guó)運(yùn)動(dòng)醫(yī)學(xué)會(huì)(ACSM)提出“運(yùn)動(dòng)是良藥”的健康理念,運(yùn)動(dòng)被列為疾病防控的常規(guī)治療手段,運(yùn)動(dòng)、營(yíng)養(yǎng)、藥物作為治療2型糖尿?。═2DM)的三駕馬車,運(yùn)動(dòng)的經(jīng)濟(jì)性、廣泛的健康效應(yīng)更備受青睞,運(yùn)動(dòng)的抗炎效應(yīng)實(shí)為防治T2DM的關(guān)鍵途徑。前期研究發(fā)現(xiàn),運(yùn)動(dòng)對(duì)肥胖動(dòng)物模型慢性炎癥的改善與降低脂肪組織巨噬細(xì)胞浸潤(rùn)、促炎表型有關(guān)[5]。運(yùn)動(dòng)對(duì) 2型糖尿病小鼠(db/db)脂肪組織巨噬細(xì)胞介導(dǎo)的慢性炎癥的影響和機(jī)制尚不清楚,以往運(yùn)動(dòng)對(duì)脂肪組織炎癥的研究多通過檢測(cè)炎癥因子基因表達(dá)的方法推測(cè)巨噬細(xì)胞數(shù)量變化、炎癥狀態(tài),顯然不如流式細(xì)胞術(shù)準(zhǔn)確。本研究通過流式細(xì)胞術(shù)檢測(cè)純合瘦素受體自發(fā)突變(lepr-/-)的2型糖尿病小鼠(db/db)模型附睪脂肪組織巨噬細(xì)胞浸潤(rùn)、表型分析,該小鼠表現(xiàn)為多食、多飲、多尿,3~4周產(chǎn)生肥胖表型,10~14 d胰島素和血糖開始升高,非常適合用于代謝類疾病研究。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物及分組
本實(shí)驗(yàn)選用16只4周齡C57BLKS背景雄性瘦素受體自發(fā)突變純合子db/db小鼠(BKS.Cg-Dock7m+/+ Leprdb/JNju)作為2型糖尿病研究模型,同窩生野生小鼠16只,購自南京大學(xué)模式動(dòng)物中心(SCXK(蘇)2010-0001)。適應(yīng)飼養(yǎng)1周后隨機(jī)分為野生安靜對(duì)照組(WC)、db/db安靜對(duì)照組(DC)、野生運(yùn)動(dòng)組(WE)和db/db游泳運(yùn)動(dòng)組(DE) ,每組8只。動(dòng)物分籠飼養(yǎng),飼養(yǎng)條件為室溫(23±1)℃,相對(duì)濕度控制在50%~60%,喂食國(guó)家標(biāo)準(zhǔn)嚙齒類動(dòng)物飼料,自由攝食飲水,12 h/12 h光照。
1.2 運(yùn)動(dòng)方案
對(duì)照組小鼠不施加任何運(yùn)動(dòng)干預(yù),于籠中靜養(yǎng);游泳運(yùn)動(dòng)組小鼠采用游泳運(yùn)動(dòng):運(yùn)動(dòng)組小鼠在深為90 cm,直徑為60 cm的塑料水桶內(nèi)進(jìn)行游泳,水溫控制在(31±1)℃,水深控制在(60~65)cm。運(yùn)動(dòng)組小鼠適應(yīng)性運(yùn)動(dòng)1周:第1、2天適應(yīng)性游泳15 min,第3天30 min,第4、5天45 min,降低小鼠對(duì)水的應(yīng)激反應(yīng),休息2 d執(zhí)行正式運(yùn)動(dòng)方案:每天游泳60 min,每周5 d,共4周。
1.3 組織取材和指標(biāo)測(cè)試
1)附睪脂肪組織SVCs分離和流式分析。
末次訓(xùn)練結(jié)束禁食12 h,血糖儀(日本京都1640血糖儀)檢測(cè)小鼠空腹血糖,斷頸處死小鼠,取雙側(cè)附睪脂肪,分離脂肪組織SVCs:50 mg附睪脂肪組織,預(yù)冷1×PBS 緩沖液清洗2~3次,去掉血跡和毛發(fā),F(xiàn)ACS buffer (1×PBS緩沖液+2%BSA)中剪碎,500 g 4 ℃離心5 min,加入2 mg/mL 2型膠原酶消化液(FACS buffer稀釋),37 ℃搖床恒溫水浴消化45 min,100 ?m孔徑細(xì)胞篩網(wǎng)(美國(guó)BD)過濾細(xì)胞懸液,過濾掉細(xì)胞團(tuán)塊和無法消化的結(jié)締組織,1 000 g離心5 min,棄上層脂肪細(xì)胞,收集底層SVCs細(xì)胞團(tuán),F(xiàn)ACS buffer重懸細(xì)胞[6]。附睪脂肪SVCs的流式細(xì)胞儀分析20 ?g/mL FC-Block抗體4℃孵育附睪脂肪SVCs細(xì)胞20 min,小鼠F4/80 Percp-cy5.5、CD11b Pacific blue、CD11c APC-cy7熒光標(biāo)記流式抗體和IgG抗體暗室孵育細(xì)胞20 min。美國(guó)BD FACS CantoII型流式細(xì)胞儀分離SVCs中F4/80+ CD11b+和F4/80+CD11b+ CD11c+巨噬細(xì)胞。
2)Real-time PCR法測(cè)定附睪脂肪組織基因表達(dá)。
Trizol法提取小鼠附睪脂肪總RNA:200 mg附睪脂肪于2 mL研磨管(含磁珠),加入1.5 mL Trizol試劑(Invitrogen),剪碎組織,勻漿(美國(guó)OMNI Bead Ruptor24) 2~3次,每次30 s,間隔15 s,12 000 g 4 ℃離心10 min,吸棄上層300 ?L油脂避免污染RNA,收集上清,加入200 μL氯仿,室溫靜置5 min,12 000 g 4 ℃離心15 min,收集上層水相400 μL,加入400 μL異丙醇,室溫靜置10 min。12 000 g 4 ℃離心10 min,棄上清,加入1 mL 體積分?jǐn)?shù)為75%乙醇,7 500 g 4 ℃離心5 min,吸棄上清,空氣干燥5~10 min,加入40 μL DEPC水(碧云天),55~60 ℃水浴助溶,超微量分光光度計(jì)(美國(guó)NanoVue Puls)測(cè)定RNA D(λ)值和D(260)/D(280),計(jì)算RNA濃度后于-80 ℃超低溫冰箱保存?zhèn)錅y(cè)。cDNA合成試劑盒(TOYOBO FSQ-101)進(jìn)行逆轉(zhuǎn)錄反應(yīng)(BIO-RAD PCR儀):反應(yīng)條件為37 ℃ 15 min→98 ℃ 5 min→4 ℃,采用SYBR Green摻入法,利用TOYOBO SYBR Green Realtime PCR Master Mix(QPK-201)試劑盒在ABI熒光實(shí)時(shí)定量PCR儀進(jìn)行PCR反應(yīng),反應(yīng)條件為95 ℃ 1 min→95 ℃ 15 s→60 ℃ 30 s→72 ℃ 45 s共45個(gè)循環(huán),目標(biāo)基因引物見表1。
1.4 統(tǒng)計(jì)學(xué)分析
通過Graph Pad 5軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,數(shù)據(jù)以平均數(shù)±標(biāo)準(zhǔn)差形式表示,組間采用雙因素方差分析,以P<0.05為顯著性差異。
2 結(jié)果及分析
2.1 四周游泳訓(xùn)練對(duì)db/db小鼠生理和代謝的影響
如表2所示,與WC組比較,DC組小鼠體質(zhì)量、附睪脂肪質(zhì)量、附睪脂肪質(zhì)量與體質(zhì)量百分比、空腹血糖濃度顯著增加(P<0.05);與WC組比較,WE組小鼠各種參數(shù)普遍表現(xiàn)出下降趨勢(shì),但并無顯著性差異;與DC組比較,DE組小鼠體質(zhì)量顯著升高(P<0.05),附睪脂肪質(zhì)量及其與體質(zhì)量百分比均無顯著性差異,空腹血糖濃度顯著下降(P<0.05)。
2.2 四周游泳訓(xùn)練對(duì)db/db小鼠脂肪組織巨噬細(xì)胞浸潤(rùn)和表型的影響
圖1為各組小鼠附睪脂肪組織SVCs的流式細(xì)胞術(shù)分析模式圖,P1門為SVCs,P2門為F4/80+CD11b+巨噬細(xì)胞,P3門為F4/80+CD11b+ CD11c+巨噬細(xì)胞。表3 表明,與WC 組比較,DC組小鼠附睪脂肪SVCs數(shù)量顯著增加(P<0.05),SVCs中F4/80+CD11b+ 巨噬細(xì)胞數(shù)量、百分?jǐn)?shù)顯著增加(P<0.05),F(xiàn)4/80+CD11b+ 巨噬細(xì)胞中CD11c+ 巨噬細(xì)胞數(shù)量、百分?jǐn)?shù)顯著增加(P<0.05);與WC組比較,WE組小鼠附睪脂肪SVCs數(shù)量、SVCs中F4/80+CD11b+巨噬細(xì)胞數(shù)量、百分?jǐn)?shù)和F4/80+CD11b+ 巨噬細(xì)胞中CD11c+ 巨噬細(xì)胞數(shù)量、百分?jǐn)?shù)無顯著差異。與DC組比較,DE組小鼠附睪脂肪SVCs數(shù)量顯著下降(P<0.05),SVCs中F4/80+CD11b+巨噬細(xì)胞數(shù)量和百分?jǐn)?shù)顯著下降(P<0.05),F(xiàn)4/80+CD11b+巨噬細(xì)胞中CD11c+ 巨噬細(xì)胞數(shù)量和百分?jǐn)?shù)顯著下降(P<0.05)。
2.3 四周游泳訓(xùn)練對(duì)db/db小鼠脂肪巨噬細(xì)胞標(biāo)志物基因表達(dá)的影響
表4表明,與WC組比較,DC組小鼠附睪脂肪F4/80、CD11c mRNA表達(dá)顯著升高(P<0.05),CD206、Arg1mRNA表達(dá)顯著下降(P<0.05);與WC組比較,WE組小鼠各參數(shù)無顯著差異;與DC組比較,DE組小鼠F4/80、CD11c mRNA表達(dá)顯著下降(P<0.05),CD206和ARG1mRNA表達(dá)顯著升高。
2.4 四周游泳訓(xùn)練對(duì)db/db小鼠脂肪炎癥基因表達(dá)的影響
表5表明,與WC組比較,DC 組小鼠附睪脂肪TNF-α、IL-6、iNOS mRNA表達(dá)顯著升高(P<0.05),IL-10 mRNA顯著下降(P<0.05);與WC組比較,WE組小鼠各項(xiàng)參數(shù)無顯著差異。與DC組比較,DE組小鼠TNF-α、IL-6、iNOS、mRNA表達(dá)顯著下降(P<0.05),IL-10 mRNA表達(dá)顯著升高(P<0.05)。
3 討論
3.1 四周游泳訓(xùn)練對(duì)脂肪組織巨噬細(xì)胞數(shù)量和表型的影響
脂肪組織基質(zhì)血管部分(stromal vascular fraction,SVF)富含間充質(zhì)干細(xì)胞、前體脂肪細(xì)胞、內(nèi)皮細(xì)胞和巨噬細(xì)胞、嗜酸性粒細(xì)胞等多種免疫細(xì)胞[7]。SVCs數(shù)量與脂肪組織的肥胖程度相關(guān),隨高脂膳食干預(yù)時(shí)間延長(zhǎng)小鼠附睪脂肪含量增加的同時(shí)SVCs數(shù)量進(jìn)行性增加[8]。本研究發(fā)現(xiàn)db/db小鼠附睪脂肪中SVCs數(shù)量明顯增加。運(yùn)動(dòng)對(duì)脂肪組織SVCs數(shù)量的影響尚不清楚,也無類似研究先例,4周游泳訓(xùn)練對(duì)野生小鼠附睪脂肪SVCs數(shù)量的影響并不顯著,不過4周游泳訓(xùn)練顯著降低db/db小鼠附睪脂肪SVCs數(shù)量。Nishimura[9]探索ob/ob小鼠附睪脂肪SVCs中免疫細(xì)胞的組成,發(fā)現(xiàn)F4/80+CD11b+巨噬細(xì)胞數(shù)量最多,約為30%。脂肪組織中巨噬細(xì)胞數(shù)量隨肥胖程度進(jìn)行性增加,巨噬細(xì)胞數(shù)量、炎癥狀態(tài)與胰島素抵抗高度相關(guān)[10]。肥胖動(dòng)物內(nèi)臟脂肪組織中巨噬細(xì)胞數(shù)量遠(yuǎn)遠(yuǎn)高于皮下脂肪組織,因此內(nèi)臟脂肪組織對(duì)慢性炎癥、胰島素抵抗的作用更為突出,所以脂肪組織慢性炎癥研究通常選擇附睪脂肪[11]。
巨噬細(xì)胞根據(jù)炎癥特性分為經(jīng)典激活(M1)和替代性激活(M2),F(xiàn)4/80、CD11b為巨噬細(xì)胞常見的分子標(biāo)志物,M2型巨噬細(xì)胞分泌抗炎因子IL-10,豐富表達(dá)精氨酸酶(Arginase1),可與iNOS競(jìng)爭(zhēng)性催化底物L(fēng)-精氨酸,抑制NO產(chǎn)生,經(jīng)典標(biāo)志物為CD206、CD163等;M1型巨噬細(xì)胞分泌TNF-α、IL-6等一系列促炎癥因子,iNOS表達(dá)增加催化底物L(fēng)-精氨酸,產(chǎn)生NO,經(jīng)典標(biāo)志物為CD11c[11]。通過F4/80、CD11b、CD11c熒光標(biāo)記抗體分離db/db小鼠附睪脂肪組織SVCs中F4/80+CD11b+ CD11c+ (M1)和F4/80+CD11b+ CD11c- (M2)巨噬細(xì)胞,研究分析4周游泳訓(xùn)練對(duì)db/db小鼠附睪脂肪巨噬細(xì)胞的影響,結(jié)果發(fā)現(xiàn)db/db小鼠附睪脂肪SVCs中F4/80+CD11b+巨噬細(xì)胞數(shù)量和百分?jǐn)?shù)增加,F(xiàn)4/80+CD11b+巨噬細(xì)胞中CD11c+/M1型巨噬細(xì)胞及其比例遠(yuǎn)遠(yuǎn)高于野生小鼠,提示促炎癥的巨噬細(xì)胞數(shù)量顯著增加,結(jié)果同營(yíng)養(yǎng)性肥胖小鼠附睪脂肪巨噬細(xì)胞變化相似。Nguyen[6]發(fā)現(xiàn)ob/ob小鼠附睪脂肪組織F4/80+巨噬細(xì)胞百分?jǐn)?shù)(55.5±2.3)%顯著高于野生對(duì)照組(35.1±1.1)%,C57BL/6小鼠附睪脂SVCs中F4/80+、F4/80+CD11b+ CD11c+巨噬細(xì)胞數(shù)量隨肥胖程度進(jìn)行性增加。4周游泳訓(xùn)練顯著降低db/db小鼠附睪脂肪SVCs中F4/80+CD11b+巨噬細(xì)胞的數(shù)量及其百分?jǐn)?shù)和F4/80+CD11b+ CD11c+ 細(xì)胞及其百分?jǐn)?shù),對(duì)野生小鼠相同指標(biāo)影響則不明顯,因此可以推斷4周游泳訓(xùn)練降低db/db小鼠附睪脂肪組織SVCs數(shù)量部分與F4/80+CD11b+巨噬細(xì)胞數(shù)量減少有關(guān)。很明顯50 mg附睪脂肪無法分離出明顯的F4/80+CD11b+CD11c-細(xì)胞群,無法直觀地判定F4/80+CD11b+CD11c-細(xì)胞亞群的變化趨勢(shì)。
3.2 四周游泳運(yùn)動(dòng)對(duì)脂肪組織巨噬細(xì)胞炎癥標(biāo)志物基因表達(dá)的影響
db/db小鼠附睪脂肪F4/80、CD11c mRNA表達(dá)顯著高于同窩野生小鼠,進(jìn)一步表明db/db小鼠附睪脂肪中巨噬細(xì)胞,尤其M1型巨噬細(xì)胞數(shù)量的增加。TNF-α、IL-6、iNOS mRNA表達(dá)的顯著升高表明脂肪組織炎癥水平的升高,同時(shí)CD206、IL-10和Arg1基因表達(dá)的顯著下降提示M2型巨噬細(xì)胞數(shù)量下降,抗炎功能下降或受到抑制。前期研究表明db/db小鼠附睪脂肪F4/80+染色陽性細(xì)胞數(shù)目增加,F(xiàn)4/80、CD68、TNF-α、IL-6、CD11c、MCP-1mRNA等表達(dá)顯著提高[12-13],這些研究結(jié)果同ob/ob、小鼠營(yíng)養(yǎng)性肥胖小鼠脂肪組織巨噬細(xì)胞炎癥特征基本一致[14]。有氧運(yùn)動(dòng)對(duì)改善2型糖尿病患者胰島素抵抗、降低外周血中炎癥標(biāo)志物有良好的效果[15],動(dòng)物實(shí)驗(yàn)也發(fā)現(xiàn)2周中等強(qiáng)度運(yùn)動(dòng)可降低db/db小鼠外周血中炎癥蛋白[16],然而運(yùn)動(dòng)對(duì)db/db小鼠脂肪炎癥基因表達(dá)的影響沒見報(bào)道。本研究發(fā)現(xiàn)4周游泳訓(xùn)練顯著降低db/db小鼠附睪脂肪F4/80、CD11c、TNF-α、IL-6、iNOS mRNA表達(dá),提高了IL-10、Arg1、CD206 mRNA表達(dá),這一發(fā)現(xiàn)同運(yùn)動(dòng)對(duì)肥胖小鼠附睪脂肪炎癥的改善效果相似,Kawanishi[5]發(fā)現(xiàn)營(yíng)養(yǎng)性肥胖小鼠附睪脂肪F4/80、CD11c、TNF-α mRNA表達(dá)顯著升高,CD163 mRNA表達(dá)顯著下降,16周耐力跑臺(tái)運(yùn)動(dòng)顯著降低F4/80、CD11c mRNA表達(dá),提高CD163mRNA表達(dá),降低脂肪組織炎癥。Bradely[17]發(fā)現(xiàn)6周自主跑輪運(yùn)動(dòng)顯著降低高脂膳食小鼠TNF-α、MCP-1等促炎因子mRNA表達(dá)。Vieira[18]發(fā)現(xiàn)12周65%~70%VO2max跑臺(tái)運(yùn)動(dòng)降低脂肪組織F4/80、TNF-α表達(dá),同時(shí)降低機(jī)體炎癥水平,改善胰島素抵抗。
db/db小鼠附睪脂肪M1型(F4/80+CD11b+CD11c+) 巨噬細(xì)胞增多,炎癥因子基因表達(dá)水平明顯高于野生小鼠;4周游泳訓(xùn)練有效降低附睪脂肪F4/80+CD11b+巨噬細(xì)胞浸潤(rùn),尤其降低M1型巨噬細(xì)胞數(shù)量,提高M(jìn)2型巨噬細(xì)胞表型,降低db/db小鼠附睪脂肪炎癥水平。
參考文獻(xiàn):
[1] Hotamisligil G S,Shargill N S,Spiegelman B M. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance[J]. Science,1993,259(5091):87-91.
[2] Hotamisligil G S,Budavari A,Murray D,et al. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha[J]. J Clin Invest,1994,94(4):1543-1549.
[3] Weisberg S P,McCann D,Desai M,et al. Obesity is associated with macrophage accumulation in adipose tissue[J]. J Clin Invest,2003,112(12):1796-1808.
[4] Xu H,Barnes G T,Yang Q,et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance[J]. J Clin Invest,2003,112(12):1821-1830.
[5] Kawanishi N,Yano H,Yokogawa Y,et al. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice[J]. Exerc Immunol Rev,2010,16:105-118.
[6] Nguyen M T,F(xiàn)avelyukis S,Nguyen A K,et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways[J]. J Biol Chem,2007,282(48):35279-35292.
[7] Schipper H S,Prakken B,Kalkhoven E,et al. Adipose tissue-resident immune cells:key players in immunometabolism[J]. Trends Endocrinol Metab,2012,23(8):407-415.
[8] Shaul M E,Bennett G,Strissel K J,et al. Dynamic,M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet--induced obesity in mice[J]. Diabetes,2010,59(5):1171-1181.
[9] Nishimura S,Manabe I,Nagasaki M,et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity[J]. Nat Med,2009,15(8):914-920.
[10] Cancello R,Henegar C,Viguerie N,et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss[J]. Diabetes,2005,54(8):2277-2286.
[11] Cancello R,Tordjman J,Poitou C,et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity[J]. Diabetes,2006,55(6):1554-1561.
[12] Tamura Y,Yano M,Kawao N,et al. Enzamin ameliorates adipose tissue inflammation with impaired adipokine expression and insulin resistance[J]. J Nutr Sci,2013,2:e37.
[13] Tamura Y,Sugimoto M,Murayama T,et al. CCR2 inhibition ameliorates insulin resistance and hepatic steatosis in db/db mice[J]. Arterioscler Thromb Vasc Biol,2013,2:e37.
[14] Lumeng C N,Bodzin J L,Saltiel A R,et al. Obesity induces a phenotypic switch in adipose tissue macrophage polarization[J]. J Clin Invest,2007,117(1):175-184.
[15] Kadoglou N P,Perrea D,IIiadis F,et al. Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes[J]. Diabetes Care,2007,30(3):719-721.
[16] Sallam N,Khazaei M,Laher I,et al. Effects of moderate-intensity exercise on plasma C-reactive protein and aortic endothelial function in type 2 diabetic mice[J]. Mediators Inflamm,2010:149678.
[17] Bradley R L,Jeon J Y,Liu F F,et al. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice[J]. Am J Physiol Endocrinol Metab,2008,295(3):E586-E594.
[18] Vieira V J,Valentine R J,Wilund K R,et al. Effects of diet and exercise on metabolic disturbances in high-fat diet-fed mice[J]. Cytokine,2009,46(3):339-345.