唐靚,潘文霞,宋景博,劉銅錘,黃濤(.河海大學(xué)能源與電氣學(xué)院,江蘇南京00;.國網(wǎng)河南省電力公司經(jīng)濟(jì)技術(shù)研究院,河南鄭州45005)
坡面分層土壤模型下地網(wǎng)接地電阻測量方法研究
唐靚1,潘文霞1,宋景博2,劉銅錘1,黃濤1
(1.河海大學(xué)能源與電氣學(xué)院,江蘇南京211100;2.國網(wǎng)河南省電力公司經(jīng)濟(jì)技術(shù)研究院,河南鄭州450052)
一般水電站所建山區(qū)地形復(fù)雜,土壤分層近似坡面分層,此時(shí)采用傳統(tǒng)三極補(bǔ)償法測量地網(wǎng)接地電阻會出現(xiàn)較大誤差。運(yùn)用CDEGS軟件建立坡面分層的土壤模型,并通過仿真分析研究測量引線鋪設(shè)方向?qū)υ撃P拖碌鼐W(wǎng)接地電阻測量值的影響,并將所得測量引線最佳鋪設(shè)方案運(yùn)用到某實(shí)際水電站地網(wǎng)接地電阻測量中,驗(yàn)證了其具有一定的普適性。研究結(jié)果表明,坡面分層土壤模型下,若采用30°夾角法測量地網(wǎng)接地電阻,應(yīng)使兩條測量引線夾角的角平分線與土壤地表分界線平行布置,且電壓極靠近地表分界線時(shí)接地電阻測量值誤差最小。
水電站;坡面分層;三極補(bǔ)償法;接地電阻;測量
接地網(wǎng)接地電阻是接地系統(tǒng)的重要技術(shù)指標(biāo),依據(jù)接地電阻值可以確定故障時(shí)的地電位升,保障接地裝置的安全可靠性,因此在復(fù)雜土壤條件下方便、準(zhǔn)確地測量地網(wǎng)接地電阻值對水電站接地網(wǎng)安全設(shè)計(jì)和運(yùn)行意義重大。
測量地網(wǎng)接地電阻普遍采用0.618法和30°夾角法,統(tǒng)稱為三極補(bǔ)償法[4-6]。在實(shí)際測量中,由于地形復(fù)雜、土壤各向異性等原因,會造成按上述方法測量的地網(wǎng)接地電阻誤差較大。大量研究表明,測量精度與土壤不均勻系數(shù)、土壤分層結(jié)構(gòu)、測量引線的鋪設(shè)方向等緊密相關(guān)。土壤垂直分層情況下,文獻(xiàn)[7-9]通過數(shù)值分析研究了0.618法的適應(yīng)性問題,當(dāng)電流極處于高阻層時(shí),測量值會大于真實(shí)值;當(dāng)電流極處于低阻層時(shí),測量值會小于真實(shí)值。在水平分層土壤模型下,0.618法和30°夾角法的測量誤差隨著土壤不均勻系數(shù)變化而變化,當(dāng)下層土壤電阻率大于上層土壤電阻率時(shí),測量結(jié)果偏??;當(dāng)下層土壤電阻率小于上層土壤電阻率時(shí),測量結(jié)果偏大[9]。實(shí)際情況中,土壤模型不局限于簡單的垂直分層和水平分層,且當(dāng)?shù)鼐W(wǎng)模型發(fā)生改變或者針對復(fù)雜地網(wǎng)模型時(shí),上文提出的數(shù)值分析方法的公式可能會不適用或需要重新推導(dǎo),較為繁瑣,考慮到此類問題,本文將基于三極法,運(yùn)用CDEGS軟件研究坡面分層的土壤模型下測量引線的最佳鋪設(shè)方法,從而獲得較精確的測量值。
CDEGS軟件是加拿大SES公司歷經(jīng)十余年開發(fā)出來的一款工具軟件,可用于分析土壤阻抗和土壤結(jié)構(gòu),仿真任意頻率和暫態(tài)下的接地情況,其中MALT模塊是CDEGS中最先開發(fā)出來的模塊,MALT可以仿真多種土壤模型,有均勻結(jié)構(gòu)、水平雙層和多層結(jié)構(gòu)、垂直雙層和多層結(jié)構(gòu)、半球狀結(jié)構(gòu)、半圓狀水平和垂直結(jié)構(gòu)、任意六面體土壤塊結(jié)構(gòu),其中任意六面體土壤塊電阻率可以任意設(shè)定。本文討論的是坡面分層土壤模型,此模型不能用CDEGS軟件中自帶的土壤分層模型直接建立,針對這一問題,本文采用任意六面體不同土壤電阻率型模型來等值建立。
設(shè)一簡單坡面分層土壤結(jié)構(gòu)如圖1、2所示。坡面分界面與水平地面夾角設(shè)為θ,接地網(wǎng)結(jié)構(gòu)為11× 11根導(dǎo)體均勻分布、邊長為100 m的正方形水平網(wǎng)格,埋深0.5 m,導(dǎo)體半徑R=0.006 m,地網(wǎng)所在土壤的土壤電阻率ρ1=100 Ω·m,坡面左側(cè)土壤的電阻率ρ2=500 Ω·m,接地網(wǎng)中心和土壤地表分界點(diǎn)O點(diǎn)的水平距離為a。
圖1 土壤結(jié)構(gòu)示意圖Fig.1Diagram of the soil structure
圖2 土壤結(jié)構(gòu)正視圖Fig.2Front view of the soil structure
運(yùn)用CDEGS軟件中MALT模塊的六面體模型來等效建立該坡面分層結(jié)構(gòu)下的土壤模型,設(shè)六面體土壤塊表面邊長為L,如圖3、4所示,取a為200 m,θ= 30°~150°,分別計(jì)算L為地網(wǎng)邊長100倍和200倍時(shí)的接地電阻值R10000、R20000及其誤差ζ如表1所示;又取θ=30°,改變a的大小為200 m、1 000 m、5 000 m、10 000 m、20 000 m,分別計(jì)算L為地網(wǎng)邊長100倍和200倍時(shí)的接地電阻值R′10000、R′20000及其誤差ζ′如表2所示,誤差公式分別為:
圖3 等值土壤模型示意圖Fig.3Diagram of the equivalent soil model
圖4 等值土壤模型正視圖Fig.4Front view of the equivalent soil model
表1 不同θ值下地網(wǎng)接地電阻計(jì)算值與誤差Tab.1Calculated value and error of the groundingresistance for different angle θ
表2 不同a值下地網(wǎng)接地電阻計(jì)算值與誤差Tab.2Calculated value and error of the groundingresistance for different‘a(chǎn)’
由表1數(shù)據(jù)可見,θ從30°變化到150°時(shí),地網(wǎng)接地電阻值已差別較大,也說明了本文提出坡面分層土壤結(jié)構(gòu)的必要性。另外當(dāng)六面體塊的表面邊長L越大,模型越接近于真實(shí)的土壤情況,但L數(shù)值的增大會導(dǎo)致CDESG運(yùn)算時(shí)間過長。表1、表2中L為10 000 m(地網(wǎng)邊長的100倍)和20 000 m(地網(wǎng)邊長的200倍)的數(shù)據(jù)相對誤差很小,且經(jīng)多組ρ1/ρ(21/5~ 10)參數(shù)的計(jì)算結(jié)果表明其誤差都能控制在0.5%以內(nèi)。因此,在采用坡面分層土壤結(jié)構(gòu)進(jìn)行地網(wǎng)接地電阻計(jì)算時(shí),取六面體塊的表面邊長L=100倍地網(wǎng)邊長能夠滿足工程計(jì)算的要求。
在上節(jié)所示地網(wǎng)和土壤模型下,取坡面分界面與水平面夾角θ為30°,a為200 m,由上文得該模型下接地電阻理論值Rtrue為0.597 26 Ω,下面分別用0.618法和30°夾角法對此土壤模型下的地網(wǎng)接地電阻值進(jìn)行測量分析。
2.10.618法的測量引線布線分析
用0.618法測量地網(wǎng)接地電阻的布線俯視示意圖如圖5所示,測試電流極位于圖中的1~5點(diǎn),分別對應(yīng)方案1到方案5。設(shè)D為接地網(wǎng)對角線長度,d為電流極到接地網(wǎng)邊緣的距離,為了使測量誤差達(dá)到工程上可接受水平,需取d≥4D[5],這里使d=5D,通過CDEGS得出不同方案下的接地電阻測量值R0.618與接地電阻理論值Rtrue的誤差如表3所示,誤差公式為:
圖5 0.618法測量接地電阻布線俯視示意圖Fig.5Plan form of the grounding resistance of measuring lead wire’s arrangement for 0.618 method
表3 不同布線方案下0.618法的測量結(jié)果Tab.3Measuring results of 0.618 method for different wires’arrangements
由表3可得,由于土壤水平方向電阻率分布不均勻,用0.618法測量地網(wǎng)接地電阻產(chǎn)生的誤差絕對值最高可達(dá)10%以上。當(dāng)測量引線垂直于土壤地表分界線布置時(shí),誤差較小,且當(dāng)測量極位置靠近地表分界線時(shí)誤差最小,即方案2是0.618法的最優(yōu)布線方案。
2.230°夾角法的測量引線布線分析
用30°夾角法測量時(shí)的布線俯視示意圖如圖6所示,方案6~方案9反映了測量引線的不同鋪設(shè)方向。設(shè)x為電壓極距地網(wǎng)邊緣的距離,使x=d=5D,測得接地電阻值R30°及其誤差見表4,誤差公式為:
圖6 30°夾角法測量接地電阻布線俯視示意圖Fig.6Plan form of grounding resistance in the measuring lead wire’s arrangement for 30°angel method
表4 不同布線方案下30°夾角法的測量結(jié)果Tab.4Measuring results of 30°angel method for different wires’arrangements
由表4可得采用方案9測量時(shí)誤差絕對值最小為0.58%,遠(yuǎn)遠(yuǎn)小于采用方案2測量的誤差絕對值7.41%,即采用30°夾角法,并將電流引線和電壓引線的角平分線沿土壤地表分界線平行布置,電位極靠近土壤地表分界線時(shí)測得的接地電阻誤差最小。
當(dāng)土壤分界面與水平面夾角θ分別為30°、45°、60°、90°、120°、150°時(shí),利用方案9分別測d=2D,3D,5D的接地電阻誤差。由表5可得誤差均小于5%,說明在絕大多數(shù)坡面分層土壤模型下采用方案9的測量方法可行,且在測量引線較短情況下也具有較高精確度,這樣可以為不易布置長線,具有類似土壤模型的接地系統(tǒng)提供測量建議。
表5 不同θ,d值下接地電阻的測量誤差Tab.5Measuring error of grounding resistance for different θ and d
某水電站的地網(wǎng)模型如圖7所示,地網(wǎng)對角線長度D=800 m。地形如圖8所示,該地網(wǎng)所在地地面海拔高度為560 m,所在地下方可以近似為一深170 m,坡角為45°的斜坡,當(dāng)?shù)赝寥离娮杪蕿?50 Ω·m。由上文分析,可用ρ=1E+18 Ω·m的高阻率六面體塊代替斜坡左邊的空氣模塊且空氣模塊表面邊長取地網(wǎng)相應(yīng)邊長的100倍,坡面與水平面夾角θ為135°。經(jīng)CDEGS軟件計(jì)算,地網(wǎng)接地電阻值為1.031 5 Ω。
圖7 某水電站地網(wǎng)示意圖Fig.7Diagram of one hydropower station grounding grid
圖8 某水電站地形側(cè)視圖Fig.8Side view of the hydropower station’s terrain
任意方向鋪設(shè)測量引線如圖9所示,設(shè)電流引線與電位引線成90°夾角,兩引線長度相等,都取地網(wǎng)對角線長度的5倍,測得接地電阻為0.935 0 Ω,誤差為-9.36%。若采用最佳方案方案9鋪設(shè)測量引線,如圖10所示,由于受地形限制,測量引線的長度取2倍地網(wǎng)對角線長度,在x=2D處測得接地電阻值為1.023 8 Ω,此時(shí)誤差為-0.75%。該方法與任意鋪設(shè)方案相比,不僅減少了測量誤差,而且大大縮短測量引線的總長度,降低了經(jīng)濟(jì)投資。
圖9 測量引線任意布線圖Fig.9Random wiring diagram of measuring lead wires
圖10 方案9測量引線布線圖Fig.10Scheme 9 wiring diagram of measuring lead wires
1)在復(fù)雜土壤模型下,用傳統(tǒng)測量方法測量接地電阻時(shí)誤差較大,需要在正確認(rèn)識當(dāng)?shù)赝寥赖刭|(zhì)分層結(jié)構(gòu)下,根據(jù)具體實(shí)際情況選擇合適的測量方法。
2)坡面分層土壤模型下可用文中方案9來實(shí)現(xiàn)測量引線的最優(yōu)布線,即使兩條測量引線的角平分線與土壤地表分界線平行,并讓電壓極位于靠近地表分界線的一側(cè),這樣能較大程度上減少測量誤差和測量引線長度。
[1]曹曉斌,胡勁松,余波.一類垂直雙層土壤中地網(wǎng)接地電阻的簡易計(jì)算公式[J].中國電機(jī)工程學(xué)報(bào),2009(1): 20-126. CAO Xiaobin,HU Jinsong,YU Bo.A simplified formula for grounding grids resistance in a type of vertical twolayer soil[J].Proceedings of the CSEE,2009(1):20-126(in Chinese).
[2]郭劍,鄒軍,何金良,等.水平分層土壤中點(diǎn)電流源格林函數(shù)的遞推算法[J].中國電機(jī)工程學(xué)報(bào),2004,24(7):101-05. GUO Jian,ZOU Jun,HE Jinliang,et al.Recursive method to obtain analytic expressions of green’s functions in multi-layer soil by computer[J].Proceedings of the CSEE,2004,24(7):101-105(in Chinese).
[3]潘卓洪,張露,譚波,等.水平層狀土壤接地問題的理論推導(dǎo)與數(shù)值分析[J].高電壓技術(shù),2011,37(4):860-866. PAN Zhuohong,ZHANG Lu,TAN Bo.Theoretical derivation and numerical analysis for grounding computation of horizontalmulti-layer soil[J].High Voltage Technology,2011,37(4):860-866(in Chinese).
[4]何金良,曾嶸.電力系統(tǒng)接地技術(shù)[M].北京:科學(xué)出版社.
[5]梁敏.變電站接地網(wǎng)接地電阻測量方法的應(yīng)用分析[J].廣西電力,2004(4):30-32. LIANG Min.Analysis about application of the measurement for grounding grid resistanse in the substation[J].Guangxi Electric Power,2004(4):30-32(in Chinese).
[6]張英文,耿曉陽,郭宏志.地網(wǎng)接地電阻測量方法分析與應(yīng)用[J].內(nèi)蒙古電力技術(shù),2006,24(2):41-42. ZHANG Yingwen,GENG Xiaoyang,GUO Hongzhi.Analysis and application on measuring method of grounding resistant for grounding grid[J].Inner Mongolia Electric Power Technology,2006,24(2):41-42(in Chinese).
[7]孫為民,何金良,曾嶸.季節(jié)因素對發(fā)變電站接地系統(tǒng)安全性能的影響[J].中國電機(jī)工程學(xué)報(bào),2000,20(1): 15-18. SUN Weimin,HE Jinliang,ZENG Rong.Influence of seasonal factor on safety of grounding system[J].Proceeding of the CSEE,2000,20(1):15-18(in Chinese).
[8]曾嶸,孫為民.垂直分層土壤中測試電極布置對變電站接地電阻測量值的影響[J].電網(wǎng)技術(shù),2000,24(10): 36-39. ZENG RONG,SUN Weimin.Influence of arrangement of electrodes on grounding resistance measuremnt of substation in vertical-layered soil[J].Power System Technology 2000,24(10):36-39(in Chinese).
[9]曾嶸,孫為民.電極位置對垂直三層土壤結(jié)構(gòu)中接地系統(tǒng)接地電阻測量結(jié)果的影響[J].清華大學(xué)學(xué)報(bào):自然科學(xué)版,2001,41(3):28-31. ZENG Rong,SUN Weimin.Effects of electrode placement on grounding resistance of grounding system measured in vertical three-layer soil[J].Journal of Tsinghu University: Natural Science Edition,2001,41(3):28-31(in Chinese).
[10]何宏明,樊靈孟.分層土壤狀況下地網(wǎng)接地電阻測量誤差分析[J].廣東電力,2003,16(1):27-32. HE Hongming,F(xiàn)AN Lingmeng.Analysis on ground-ing resistance measurement error of grounding system in layered soil[J].Guangdong electrical power,2003,16(1): 27-32(in Chinese).
[11]高新智,李浩塵,仇煒.針對某水電站接地網(wǎng)改造方案的探討[J].電瓷避雷器,2010(4):30-33. GAO Xinzhi,LI Haochen,QIU Wei.Probe into grounding grid reconstruct programs of hydropower station[J].Lightning Arrester,2010(4):30-33(in Chinese).
[12]彭向陽.大型水電站接地網(wǎng)接地電阻的初步計(jì)算[J].中國電力,1997,30(7):10-13. PENG Xiangyang.Calculation of resistance of grounding grids inlarge-scale hydropower station[J].China Power,1997,30(7):10-13(in Chinese).
[13]張爾明.高土壤電阻率山區(qū)接地問題的探討[J].電工技術(shù),1997(4):29-32. ZHANG Erming.High mountain soil resistivity grounding problem discussed in this paper[J].Electrical Technology,1997(4):29-32(in Chinese).
[14]牛曉民.電力系統(tǒng)接地分析軟件CDEGS簡介[J].華北電力技術(shù),2005(12):29-31. NIUXiaomin.Summaryofpowersystemgrounding analysis[J].North China Electric Power,2005(12):29-31(in Chinese).
[15]卞志文.基于CDEGS對多輔助電流極法測量地網(wǎng)接地電阻的研究[D].武漢:華中科技大學(xué),2011.
[16]曾嶸.CDEGS軟件包及其在多層土壤接地設(shè)計(jì)中的應(yīng)用[J].華東電力,1998,26(6):27-32. ZENG Rong.CDEGS software package and its applicationin the design of multi-layer soil ground[J].East China Electrical Power,1998,26(6):27-32(in Chinese).
[17]郭振威,羅慶躍,袁旭龍,等.CDEGS在復(fù)雜大型接地網(wǎng)優(yōu)化設(shè)計(jì)中的應(yīng)用研究[J].湖南電力,2010,30(2): 4-8. GUO Zhenwei,LUO Qingyue,YUAN Xulong,et al. Application of CDEGS on complicated large grounding grid design[J].Hunan Electric Power,2010,30(2):4-8(in Chinese).
[18]李志忠,李媛媛,王森,等.一種實(shí)用的接地電阻測量新方法[J].陜西電力,2009,37(10):77-80. LI Zhizhong,LI Yuanyuan,WANG Sen.A practical method of measuring grounding resistance[J].Shaanxi Electric Power,2009,37(10):77-80(in Chinese).
[19]曾嶸,何金良,張波.電力系統(tǒng)接地技術(shù)研究新進(jìn)展[J].陜西電力,2007,35(2):1-535(2):1-5. ZENG Rong,HE Jinliang,ZHANG Bo.Power system groundingtechnologyresearchprogress[J].Journalof Shaanxi Electric Power,2007,35(2):1-5(in Chinese).
[20]李志忠,王森,陳瀟一.基于三極補(bǔ)償?shù)慕拥仉娮铚y試新方法[J].陜西電力,2010,38(8):35-38. LI Zhizhong,WANG Sen,CHEN Xiaoyi.Based on three pole compensation,a new method of grounding resistance test[J].Journal of Shaanxi Electric Power,2010,38(8): 35-38(in Chinese).
[21]舒曉麗,王博,艾慶遙,等.安康地區(qū)某110 kV變電站接地網(wǎng)優(yōu)化研究[J].陜西電力,2010,38(2):18-22. SHU Xiaoli,WANG Bo,AI Qinyao,et al.Ankang region of a 110 kV substation ground network optimization study[J]. Journal of Shaanxi Electric Power,2010,38(2):18-22(in Chinese).
[22]楊方圓,王森,李志忠,等.垂直接地極的降阻性能研究[J].陜西電力,2010(1):1-5. YANG Fangyuan,WANG Sen,LI Zhizhong,et al.Vertical grounding resistance reduction performance study[J].Journal of Shaanxi Electric Power,2010(1):1-5(in Chinese).
[23]于培永,邵天宇,鄧?yán)?,?直流系統(tǒng)絕緣監(jiān)測裝置的改進(jìn)研究[J].節(jié)能技術(shù),2013,31(6):516-521. YU Peiyong,SHAO Tianyu,DENG Lei,et al.Dc system insulation monitoring device improvement study[J].Energy Saving Technology,2013,31(6):516-521(in Chinese).
[24]饒堯,邱澤晶,彭旭東.基于層次分析法的電網(wǎng)能效影響因子分析研究[J].節(jié)能技術(shù),2014,32(1):51-54. RAO Yao,QIU Zejing,PENG Xudong.Power grid based on analytic hierarchy process(ahp)analysis the influence factors of energy efficiency[J].Energy Saving Technology,2014,32(1):51-54(in Chinese).
[25]孫志.淺談油田電網(wǎng)的經(jīng)濟(jì)運(yùn)行[J].節(jié)能技術(shù),2002,20(4):30-31. SUN Zhi.Introduction to oil field[J].Journal of economic operation of power grid energy saving technology,2002,20(4):30-31(in Chinese).
[26]張趙青,朱建國,王雪,等.影響風(fēng)電場電能質(zhì)量的因素研究[J].節(jié)能技術(shù),2014(6):9. ZHANG Zhaoqing,ZHU Jianguo,WANG Xue,et al.The factors of wind power quality study[J].Energy Saving Technology,2014(6):9(in Chinese).
[27]李本劼.農(nóng)村配電網(wǎng)無功優(yōu)化補(bǔ)償方法研究[J].節(jié)能技術(shù),2009(5):423-426. LI Benxie.Rural power distribution network reactive power optimizationcompensationmethodresearch[J].Energy Saving Technology,2009(5):423-426(in Chinese).
[28]鐘建平,侯智斌,王志碩,等.地電阻率在新能源工程地質(zhì)勘察中的應(yīng)用探討[J].西北水電,2010(6):4-6. ZHONG Jianping,HOU Zhibin,WANG Zhishuo,et al. The application of resistivity in the new energy in the engineering geological investigation of[J].Northwest Hydropower,2010(6):4-6(in Chinese).
(編輯徐花榮)
Research on the Measurement Method of Grounding Grid Resistance in Sloping-Layered Soil Area
TANG Jing1,PAN Wenxia1,SONG Jingbo2,LIU Tongchui1,HUANG Tao1
(1.College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,Jiangsu,China;2.Economic Research Institute of Henan Electric Power Corporation,Zhengzhou 450052,Henan,China)
Hydropower station is usually built in the mountainous area of complex terrains,where soil is approximately sloping layered.In this case,the measurement result of the grounding grid resistance may have a large error if we use the traditional three-electrode compensation method.With Canadian SES’CDEGS software,this paper establishes a sloping-layered soil model according to the actual terrain of one hydropower station,then calculates the value of the grounding grid resistance and analyzes the effects of laying directions of measuring lead wires on the hydropower station grounding grid resistance through simulation.The results show that if 30°angle method is applied to measure the grounding grid resistance,the best measurement scheme of making minimum error is to lay the angle bisector of the two measuring lead wires parallel to the boundary of soil surface,and to make the voltage electrode closer to the surface boundary.
hydropower station;sloping-layered;threeelectrode compensation method;grounding resistance;measuring
1674-3814(2015)06-0111-06
835.4
A
2014-12-01。
唐靚(1991—),女,碩士研究生,研究方向?yàn)榉览着c接地技術(shù)。