陳晨,曹笑歌,張立國(guó),么安亮,劉健,康紹叁,高偉興,韓會(huì),曹鳳宏,李治國(guó)
基于文獻(xiàn)挖掘的前列腺癌蛋白組學(xué)與基因組學(xué)差異基因的生物信息學(xué)分析
陳晨,曹笑歌,張立國(guó),么安亮,劉健,康紹叁,高偉興,韓會(huì),曹鳳宏,李治國(guó)
目的通過(guò)前列腺癌(PCa)蛋白組學(xué)與基因組學(xué)文獻(xiàn),挖掘與PCa存在相關(guān)性并缺乏具體研究的差異基因,并分析其參與的生物過(guò)程與通路。方法計(jì)算機(jī)檢索PubMed數(shù)據(jù)庫(kù),檢索策略:“(prostate cancer[Title]) AND Proteomics”“(prostate cancer[Title])AND Genomics”,時(shí)間限定為建庫(kù)至2015年1月。按照PCa與前列腺增生(BPH)組織(A組)、PCa與鄰近良性組織(B組)、PCa高Gleason評(píng)分與低Gleason評(píng)分(C組)蛋白譜和基因譜的比較提取差異蛋白或基因,輸入“The Protein Information Resource(PIR,Georgetown University Medical Center,Washington,DC 20007,USA)”,按照“official gene symbol”統(tǒng)一名稱(chēng)。采用“DAVID Bioinformatics Resources 6.7 (National Institute of Allergy and Infectious Diseases,NIH,USA)”在線(xiàn)工具對(duì)差異基因進(jìn)行GO(Gene Ontology)、KEGG等生物信息學(xué)分析。結(jié)果共納入35篇文獻(xiàn),提取差異基因764個(gè),其中A組差異基因162個(gè),B組差異基因423個(gè),C組差異基因209個(gè),3組共同差異基因21個(gè)。A組差異基因中DES報(bào)道最多,為6次;B組差異基因ACPP報(bào)道最多,為4次;C組差異基因ACTN1、HSPB1、LMNA報(bào)道最多,均為3次。GO分析結(jié)果顯示,差異基因涉及的生物過(guò)程主要有細(xì)胞死亡調(diào)控、細(xì)胞增殖調(diào)控、創(chuàng)傷反應(yīng)、蛋白質(zhì)轉(zhuǎn)運(yùn)、穩(wěn)態(tài)過(guò)程(差異基因頻數(shù)≥72,頻率≥9.4%),細(xì)胞成分主要涉及胞外區(qū)、膜封閉腔、細(xì)胞骨架、囊泡以及線(xiàn)粒體(差異基因頻數(shù)≥85,頻率≥11.1%),分子功能主要涉及核苷酸結(jié)合、鈣離子結(jié)合、相同蛋白結(jié)合以及酶結(jié)合(差異基因頻數(shù)≥60,頻率≥7.9%)。KEGG通路分析發(fā)現(xiàn),差異基因主要參與癌癥通路、黏著斑、肌動(dòng)蛋白細(xì)胞骨架調(diào)控、MAPK信號(hào)等生物學(xué)通路(差異基因頻數(shù)≥29,頻率≥3.8%)。對(duì)各組差異基因進(jìn)行KEGG通路分析結(jié)果顯示,各組差異基因共同參與的KEGG通路主要有黏著斑、補(bǔ)體及凝血級(jí)聯(lián)、ECM受體相互作用等生物學(xué)通路。結(jié)論差異基因DES、ACTN1、ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1報(bào)道次數(shù)較多,而其參與PCa發(fā)生發(fā)展的具體機(jī)制未見(jiàn)報(bào)道,值得進(jìn)一步實(shí)驗(yàn)驗(yàn)證。黏著斑、肌動(dòng)蛋白細(xì)胞骨架的調(diào)控以及MAPK信號(hào)通路可能在PCa發(fā)生發(fā)展過(guò)程中發(fā)揮重要作用,對(duì)其進(jìn)一步分析將為臨床治療PCa提供新的靶點(diǎn)。
前列腺腫瘤;基因組學(xué);蛋白組學(xué);生物信息學(xué)
陳晨,曹笑歌,張立國(guó),等.基于文獻(xiàn)挖掘的前列腺癌蛋白組學(xué)與基因組學(xué)差異基因的生物信息學(xué)分析[J].中國(guó)全科醫(yī)學(xué),2015,18(32):4011-4016.[www.chinagp.net]
Chen C,Cao XG,Zhang LG,etal.Bioinformatics analysis of differentially expressed genes of prostate cancer proteomics and genomics based on literaturemining[J].Chinese General Practice,2015,18(32):4011-4016.
前列腺癌(PCa)是男性最常見(jiàn)的癌癥之一。2014年,美國(guó)新增PCa患者23萬(wàn)例,死亡患者近3萬(wàn)例[1]。目前,針對(duì)PCa的蛋白組學(xué)和基因組學(xué)研究非常廣泛,發(fā)現(xiàn)表達(dá)差異具有統(tǒng)計(jì)學(xué)意義的基因數(shù)以千計(jì),但其中僅少數(shù)可能與PCa的發(fā)生發(fā)展相關(guān)[2]。通過(guò)文獻(xiàn)挖掘?qū)Π┌Y相關(guān)基因進(jìn)行提取和整理,是癌癥分子機(jī)制研究的良好方法。但若文獻(xiàn)挖掘只局限于摘要,且利用自動(dòng)文獻(xiàn)挖掘工具未免機(jī)械,在文章題目和摘要中未出現(xiàn)的差異基因可能被漏掉。本研究通過(guò)檢索PCa蛋白組學(xué)及基因組學(xué)相關(guān)文獻(xiàn),閱讀全文人工提取差異基因,并對(duì)其進(jìn)行GO(Gene Ontology)、KEGG通路等生物信息學(xué)分析,進(jìn)一步挖掘可能與PCa相關(guān)的基因和通路,從而為PCa發(fā)生的分子機(jī)制研究提供依據(jù)。
1.1文獻(xiàn)納入與排除標(biāo)準(zhǔn)納入標(biāo)準(zhǔn):(1)研究對(duì)象為人PCa組織或人PCa細(xì)胞株;(2)提供差異蛋白或基因名稱(chēng)。排除標(biāo)準(zhǔn):(1)某種干預(yù)措施對(duì)PCa蛋白譜變化的影響研究; (2)未提供差異蛋白或基因名稱(chēng);(3)文獻(xiàn)綜述。
1.2文獻(xiàn)檢索計(jì)算機(jī)檢索PubMed數(shù)據(jù)庫(kù),檢索策略:“(prostate cancer[Title])AND Proteomics”“(prostate cancer[Title])AND Genomics”,時(shí)間限定建庫(kù)至2015年1月。
1.3資料提取文獻(xiàn)中涉及PCa與前列腺增生(BPH)組織或細(xì)胞(A組)、PCa與鄰近良性組織(B組)、PCa高Gleason評(píng)分與低Gleason評(píng)分(C組)蛋白譜和基因譜的比較,提取差異基因或蛋白輸入“The Protein Information Resource(PIR,Georgetown University Medical Center,Washington,DC 20007,USA)”,按照“official gene symbol”統(tǒng)一名稱(chēng)。
1.4生物信息學(xué)分析
1.4.1差異基因的GO分析采用“DAVID Bioinformatics Resources 6.7(National Institute of Allergy and Infectious Diseases,NIH,USA)”在線(xiàn)工具分別對(duì)差異基因及各組的差異基因進(jìn)行GO分析,探索共同出現(xiàn)的生物過(guò)程、細(xì)胞成分以及分子功能。
1.4.2差異基因的KEGG通路分析通過(guò)“DAVID Bioinformatics Resources 6.7(National Institute of Allergy and Infectious Diseases,NIH,USA)”在線(xiàn)工具分別對(duì)差異基因及各組的差異基因進(jìn)行KEGG通路分析,探索共同出現(xiàn)的生物學(xué)通路。
2.1文獻(xiàn)篩選結(jié)果檢索PubMed數(shù)據(jù)庫(kù)獲得文獻(xiàn)564篇,排除重復(fù)文獻(xiàn)179篇,閱讀文題和摘要排除282篇,閱讀全文排除文獻(xiàn)68篇,共納入35篇文獻(xiàn)[3-37],文獻(xiàn)篩選流程見(jiàn)圖1。
2.2差異基因納入文獻(xiàn)提取差異基因764個(gè),其中A組差異基因162個(gè),B組差異基因423個(gè),C組差異基因209個(gè),3組共同差異基因21個(gè)(見(jiàn)表1)。報(bào)道大于4次的差異基因共14個(gè),其中DES報(bào)道8次,HSPB1、VCL各報(bào)道7次,ACPP、ACTN1、AZGP1、ENO1、HSPA5和HSPD1各報(bào)道6次,ANXA1、EZR、KRT8、LMNA和SERPINF1各報(bào)道5次。A組差異基因DES報(bào)道最多,為6次;B組差異基因ACPP報(bào)道最多,為4次;C組差異基因ACTN1、HSPB1、LMNA報(bào)道最多,均為3次。
圖1 文獻(xiàn)篩選流程圖Figure 1 Flow chart of literature screening
表1 各組共同差異基因及其被報(bào)道次數(shù)(次)Table 1 Co-occurrence of the differentially expressed genes in different groups and the reported frequency
2.3差異基因的GO分析GO分析結(jié)果顯示,差異基因涉及的生物過(guò)程主要有細(xì)胞死亡調(diào)控、細(xì)胞增殖調(diào)控、創(chuàng)傷反應(yīng)、蛋白質(zhì)轉(zhuǎn)運(yùn)、穩(wěn)態(tài)過(guò)程(差異基因頻數(shù)≥72,頻率≥9.4%),細(xì)胞成分主要涉及胞外區(qū)、膜封閉腔、細(xì)胞骨架、囊泡以及線(xiàn)粒體(差異基因頻數(shù)≥85,頻率≥11.1%),分子功能主要涉及核苷酸結(jié)合、鈣離子結(jié)合、相同蛋白結(jié)合以及酶結(jié)合(差異基因頻數(shù)≥60,頻率≥7.9%,見(jiàn)表2)。
表2 差異基因的GO分析Table 2 GO analysis of differentially expressed genes in PCa
對(duì)各組差異基因進(jìn)行GO分析結(jié)果顯示,各組差異基因共同涉及的生物過(guò)程主要有細(xì)胞死亡調(diào)控、細(xì)胞增殖調(diào)控、創(chuàng)傷反應(yīng)以及穩(wěn)態(tài)過(guò)程;共同涉及的細(xì)胞成分主要有胞外區(qū)、膜封閉腔、細(xì)胞骨架、囊泡以及線(xiàn)粒體;共同涉及的分子功能主要有鈣離子結(jié)合、相同蛋白結(jié)合、結(jié)構(gòu)分子活性以及肌動(dòng)蛋白結(jié)合。
2.4差異基因的KEGG通路分析KEGG通路分析發(fā)現(xiàn),差異基因主要參與癌癥通路、黏著斑、肌動(dòng)蛋白細(xì)胞骨架調(diào)控、MAPK信號(hào)等生物學(xué)通路(差異基因頻數(shù)≥29,頻率≥3.8%,見(jiàn)表3)。
表3 所有差異基因的KEGG通路分析Table 3 KEGG pathway analysis of all differentially expressed genes in PCa
對(duì)各組差異基因進(jìn)行KEGG通路分析結(jié)果顯示,各組差異基因共同參與的KEGG通路主要有黏著斑、補(bǔ)體及凝血級(jí)聯(lián)、ECM受體相互作用等生物學(xué)通路。
目前,尚缺少通過(guò)文獻(xiàn)挖掘?qū)Ca蛋白組學(xué)及基因組學(xué)差異基因數(shù)據(jù)進(jìn)行整理并開(kāi)展生物信息學(xué)分析的研究。Hu等[2]采用MedGene文獻(xiàn)挖掘工具對(duì)乳腺癌及正常組織蛋白組學(xué)和基因組學(xué)數(shù)據(jù)進(jìn)行分析,確定了一組研究相對(duì)充分、在雌激素受體陰性腫瘤高表達(dá)的基因。李鐵求等[38]通過(guò)文獻(xiàn)挖掘?qū)π奂に胤且蕾?lài)型PCa特異表達(dá)基因進(jìn)行生物信息學(xué)分析,發(fā)現(xiàn)MMP9、EGFR等基因在雄激素依賴(lài)型轉(zhuǎn)變?yōu)樾奂に胤且蕾?lài)型PCa過(guò)程中可能發(fā)揮重要作用。本研究首次將PCa與蛋白組學(xué)及基因組學(xué)數(shù)據(jù)整合,對(duì)更新至2015年1月的相關(guān)文獻(xiàn)進(jìn)行差異基因挖掘,并觀察其在PCa與BPH、PCa與鄰近良性組織、PCa高低Gleason評(píng)分不同分類(lèi)比較中差異基因出現(xiàn)的頻率,更直觀地了解差異基因與癌癥發(fā)生、發(fā)展、轉(zhuǎn)移過(guò)程中的關(guān)聯(lián)性。
本研究發(fā)現(xiàn),所有差異基因中DES報(bào)道次數(shù)最多,同時(shí)也是PCa與BPH比較報(bào)道最多的差異基因,提示其可能與PCa存在一定聯(lián)系。目前表明,高表達(dá)的DES是結(jié)腸癌、胃腸道間質(zhì)瘤、子宮內(nèi)膜癌等內(nèi)皮細(xì)胞分化和腫瘤侵襲的高度敏感標(biāo)志物[39]。也有研究發(fā)現(xiàn),DES在腫瘤早期毛細(xì)血管形成過(guò)程中持續(xù)高表達(dá)[40]。然而,PCa組學(xué)實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),與BPH組織比較,DES在PCa組織中表達(dá)下調(diào);同時(shí),與局限性PCa相比,DES在淋巴結(jié)轉(zhuǎn)移PCa中表達(dá)同樣下調(diào)[5]。這似乎與上文所述DES參與腫瘤血管內(nèi)皮細(xì)胞形成互相矛盾,具體機(jī)制值得后續(xù)進(jìn)一步研究。另外,HSPB1、VCL、ACPP、ACTN1、AZGP1、ENO1、HSPA5、HSPD1、ANXA1、EZR、KRT8、LMNA以及SERPINF1等差異基因被報(bào)道5次及以上,提示上述差異基因可能參與PCa的發(fā)生發(fā)展過(guò)程。ACPP在PCa與鄰近良性組織比較中被報(bào)道次數(shù)最多,其編碼前列腺酸性磷酸酶,由前列腺上皮細(xì)胞分泌并受雄激素調(diào)節(jié)。ACTN1、HSPB1、LMNA在PCa高Gleason評(píng)分與低Gleason評(píng)分比較中被報(bào)道次數(shù)最多,提示其可能在PCa進(jìn)展轉(zhuǎn)移的過(guò)程中發(fā)揮重要作用。多篇研究報(bào)道了HSPB1與PCa的相關(guān)性,其參與PCa發(fā)展過(guò)程的機(jī)制也已被廣泛探討[41]。LMNA也已發(fā)現(xiàn)在PCa組織中高表達(dá),并通過(guò)PI3K/AKT/PTEN通路促進(jìn)腫瘤細(xì)胞生長(zhǎng)、遷移和入侵[42]。HSPA5、AZGP1、EZR參與PCa的機(jī)制研究比較深入[43-46],ENO1、HSPD1、ANXA1、SERPINF1、VCL以及KRT8參與PCa的具體機(jī)制有待進(jìn)一步探討和多角度分析。
本研究發(fā)現(xiàn),21個(gè)差異基因在各組均有報(bào)道,提示其可能在PCa發(fā)生、進(jìn)展以及轉(zhuǎn)移的過(guò)程中均發(fā)揮重要作用。其中,HSP90AA1、S100A9、POSTN、ANXA3、ANXA7、AKT1與PCa的相關(guān)性研究較為深入[47-49],而MCCC2僅初步證實(shí)其高表達(dá)可提升PCa細(xì)胞的遷移能力[50],但其確切機(jī)制缺乏具體闡述。ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1參與PCa的機(jī)制尚未見(jiàn)報(bào)道。部分被報(bào)道次數(shù)較高且在各組中頻繁出現(xiàn)的差異基因,如DES、ACTN1、ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1,提示其可能與PCa存在潛在的聯(lián)系,同時(shí)又缺乏具體的相關(guān)性報(bào)道,有進(jìn)一步開(kāi)展研究的價(jià)值,以驗(yàn)證其參與PCa差異表達(dá)的真實(shí)性,以及詳細(xì)闡明其參與PCa發(fā)生、發(fā)展、轉(zhuǎn)移的具體機(jī)制。
本研究KEGG通路分析發(fā)現(xiàn),差異基因主要參與癌癥通路、黏著斑、肌動(dòng)蛋白細(xì)胞骨架的調(diào)控、MAPK信號(hào)通路,提示這些通路可能涉及PCa的發(fā)生發(fā)展過(guò)程。黏著斑是細(xì)胞外基質(zhì)黏附在細(xì)胞膜某個(gè)特殊的區(qū)域[38],是黏著斑激酶(FAK)介導(dǎo)的重要細(xì)胞過(guò)程。FAK在PCa中常高表達(dá)和過(guò)度活躍,通過(guò)主要致癌途徑的激活,F(xiàn)AK促進(jìn)雄激素非依賴(lài)PCa的生長(zhǎng)、存活、遷移及轉(zhuǎn)移[51]。肌動(dòng)蛋白細(xì)胞骨架的調(diào)控提供了PCa分子機(jī)制研究的新靶點(diǎn),Wang等[52]通過(guò)研究Wnt/Ca2+信號(hào)在PCa中的機(jī)制,發(fā)現(xiàn)癌細(xì)胞特異性抑制CaMKⅡ(Wnt/ Ca2+信號(hào)的一個(gè)主要傳感器)可引起肌動(dòng)蛋白細(xì)胞骨架的重構(gòu),CaMKⅡ可能通過(guò)肌動(dòng)蛋白結(jié)合蛋白的中間信號(hào)傳導(dǎo),導(dǎo)致癌細(xì)胞中細(xì)胞骨架的重構(gòu)。Zhang等[53]認(rèn)為,腫瘤抑制蛋白ZNF185通過(guò)調(diào)節(jié)PCa中的肌動(dòng)蛋白細(xì)胞骨架動(dòng)力學(xué)發(fā)揮其功能??梢灶A(yù)見(jiàn),未來(lái)對(duì)肌動(dòng)蛋白細(xì)胞骨架的研究,將為臨床腫瘤靶向治療帶來(lái)巨大的導(dǎo)向作用。MAPK信號(hào)通路近年來(lái)也是PCa分子研究的熱點(diǎn),PCa的發(fā)生與發(fā)展、癌細(xì)胞的增殖、癌癥的復(fù)發(fā)與信號(hào)轉(zhuǎn)導(dǎo)與MAPK信號(hào)通路密切相關(guān)[54]。在未經(jīng)雄激素阻斷治療的PCa最初階段,雄激素的刺激通過(guò)激活PCa細(xì)胞MAPK信號(hào)通路,誘導(dǎo)細(xì)胞增殖[55],激活的MAPK水平隨PCa的進(jìn)展而升高。此外,研究證實(shí),在PCa進(jìn)展到后期階段,生長(zhǎng)因子信號(hào)、神經(jīng)多肽信號(hào)、致癌基因HER2/Neu等均可作用于MAPK信號(hào)通路,使PCa不依賴(lài)雄激素繼續(xù)發(fā)展,即進(jìn)展到雄激素非依賴(lài)型PCa[54]。盡管目前MAPK信號(hào)通路的作用及具體機(jī)制有待進(jìn)一步的研究和探索,但可以確定,MAPK信號(hào)轉(zhuǎn)導(dǎo)調(diào)控機(jī)制的闡明將為臨床提供治療PCa的新思路。此外,本研究通過(guò)對(duì)各組差異基因的KEGG通路分析結(jié)果發(fā)現(xiàn),黏著斑、補(bǔ)體及凝血級(jí)聯(lián)、ECM受體相互作用通路在各組均有出現(xiàn),提示其可能與PCa存在一定的相關(guān)性,其中補(bǔ)體及凝血級(jí)聯(lián)、ECM受體相互作用參與PCa的具體機(jī)制尚未見(jiàn)報(bào)道。Spans等[56]也發(fā)現(xiàn)在LNCaP和C4-2B PCa細(xì)胞株中,黏著斑與ECM受體相互作用通路發(fā)生變化,具體機(jī)制值得持續(xù)關(guān)注和深入調(diào)查研究。
綜上所述,本研究通過(guò)對(duì)PCa蛋白組學(xué)及基因組學(xué)文獻(xiàn)進(jìn)行挖掘,篩選出可能與PCa有較大聯(lián)系且缺乏具體相關(guān)報(bào)道的差異基因,如DES、ACTN1、ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1,為下一步研究提供了方向。黏著斑、肌動(dòng)蛋白細(xì)胞骨架的調(diào)控、MAPK信號(hào)通路可能在PCa分子機(jī)制中發(fā)揮重要作用,對(duì)其進(jìn)一步分析有利于揭示PCa的發(fā)病機(jī)制,為臨床治療PCa提供新的靶點(diǎn)。
[1]Nandana S,Chung LW.Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting[J].Am JClin Exp Urol,2014,2(2):92-101.
[2]Hu Y,Hines LM,Weng H,et al.Analysis of genomic and proteomic data using advanced literature mining[J].J Proteome Res,2003,2(4):405-412.
[3]Saraon P,Musrap N,Cretu D,etal.Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer[J].JBiol Chem,2012,287(41):34019-34031.
[4]Sun C,Song C,Ma Z,et al.Periostin identified as a potentialbiomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy[J].Proteome Sci,2011,9(22):22.
[5]Pang J,Liu WP,Liu XP,et al.Profiling proteinmarkers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis[J].J Proteome Res,2010,9(1):216-226.
[6]Ummanni R,Junker H,Zimmermann U,et al.Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer[J].Cancer Lett,2008,266(2):171-185.
[7]Burgess EF,Ham AJ,Tabb DL,et al.Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes[J].Proteomics Clin Appl,2008,2(9):1223.
[8]Glen A,Gan CS,Hamdy FC,et al.iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression[J].JProteome Res,2008,7(3):897-907.
[9]Han ZD,Zhang YQ,He HC,et al.Identification of novel serological tumormarkers for human prostate cancer using integrative transcriptome and proteome analysis[J].Med Oncol,2012,29 (4):2877-2888.
[10]Kim Y,Ignatchenko V,Yao CQ,et al.Identification of differentially expressed proteins in direct expressed prostatic secretions ofmen with organ-confined versus extracapsular prostate cancer[J].Mol Cell Proteomics,2012,11(12):1870-1884.
[11]Chen P,Wang L,Li N,et al.Comparative proteomics analysis of sodium selenite-induced apoptosis in human prostate cancer cells[J].Metallomics,2013,5(5):541-550.
[12]Chen J,Huang P,Kaku H,et al.A comparison of proteomic profiles changes during17beta-estradiol treatment in human prostate cancer PC-3 cell line[J].Cancer Genomics Proteomics,2010,6(6):331-335.
[13]Song DX,Chen AM,Guo FJ,etal.Differential proteomic analysis and function study of human prostate carcinoma cells with different osseousmetastatic tendency[J].NationalMedical JournalofChina,2008,88(17):1197-1201.(in Chinese)宋登新,陳安民,郭風(fēng)勁,等.人前列腺癌細(xì)胞骨轉(zhuǎn)移潛能差異表達(dá)蛋白的研究[J].中華醫(yī)學(xué)雜志,2008,88(17): 1197-1201.
[14]Zhang XM,Shen Y,Xianyu ZQ.Serum proteomic study of prostate cancer with bone metastasis[J].National Journal of Andrology,2010,16(8):721-725.(in Chinese)張雪梅,沈影,鮮于志群.前列腺癌骨轉(zhuǎn)移血清蛋白質(zhì)組學(xué)研究[J].中華男科學(xué)雜志,2010,16(8):721-725.
[15]Zhang XB,Tang ZY,Qi L,et al.Modified serum-guided immunoblotting for differential proteomic study of prostate cancer[J].National Journal of Andrology,2010,16(5):438-444.(in Chinese)張曉波,唐正嚴(yán),齊琳,等.改進(jìn)的血清免疫印跡引導(dǎo)的前列腺癌差異蛋白質(zhì)組學(xué)研究[J].中華男科學(xué)雜志,2010,16 (5):438-444.
[16]Pin E,F(xiàn)redolini C,Petricoin EF.The role of proteomics in prostate cancer research:biomarker discovery and validation[J].Clin Biochem,2013,46(6):524-538.
[17]Bigot P,Mouzat K,Lebdai S,et al.Quantitative proteomic determination of diethylstilbestrol action on prostate cancer[J].Asian JAndrol,2013,15(3):413-420.
[18]Everley PA,Krijgsveld J,Zetter BR,et al.Quantitative cancer proteomics:stable isotope labeling with amino acids in cell culture (SILAC)as a tool for prostate cancer research[J].Mol Cell Proteomics,2004,3(7):729-735.
[19]Alaiya AA,Al-Mohanna M,Aslam M,et al.Proteomics-based signature for human benign prostate hyperplasia and prostate adenocarcinoma[J].Int JOncol,2011,38(4):1047-1057.
[20]Skvortsov S,Sch?fer G,Stasyk T,et al.Proteomics profiling of microdissected low-and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker[J].J Proteome Res,2011,10(1):259-268.
[21]Wood SL,Knowles MA,Thompson D,et al.Proteomic studies of urinary biomarkers for prostate,bladder and kidney cancers[J].Nat Rev Urol,2013,10(4):206-218.
[22]Sandvig K,Llorente A.Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3[J].Mol Cell Proteomics,2012,11(7):M111.012914.
[23]Sardana G,Jung K,Stephan C,et al.Proteomic analysis of conditioned media from the PC3,LNCaP,and 22Rv1 prostate cancer cell lines:discovery and validation of candidate prostate cancer biomarkers[J].J Proteome Res,2008,7(8):3329-3338.
[24]Lee EK,Cho H,Kim CW.Proteomic analysis of cancer stem cells in human prostate cancer cells[J].Biochem Biophys Res Commun,2011,412(2):279-285.
[25]Sardana G,Marshall J,Diamandis EP.Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell cultureconditionedmedium[J].Clin Chem,2007,53(3):429-437.
[26]Kallioniemi O.Functional genomics and transcriptomics of prostate cancer:promises and limitations[J].BJU Int,2005,96(S2): 10-15.
[27]Rowehl RA,Crawford H,Dufour A,et al.Genomic analysis of prostate cancer stem cells isolated from a highly metastatic cell line[J].Cancer Genomics Proteomics,2009,5(6):301-310.
[28]Wiklund F.Prostate cancer genomics:can we distinguish between indolent and fatal disease using genetic markers?[J].Genome Med,2010,2(7):45.
[29]Nakagawa H,Akamatsu S,Takata R,et al.Prostate cancer genomics,biology,and risk assessment through genome-wide association studies[J].Cancer Sci,2012,103(4):607-613.
[30]Roychowdhury S,Chinnaiyan AM.Advancing precision medicine for prostate cancer through genomics[J].J Clin Oncol,2013,31(15):1866-1873.
[31]Chaudhary J,Schmidt M.The impact of genomic alterations on the transcriptome:a prostate cancer cell line case study[J].Chromosome Res,2006,14(5):567-586.
[32]Chow A,Amemiya Y,Sugar L,et al.Whole-transcriptome analysis reveals established and novel associations with TMPRSS2: ERG fusion in prostate cancer[J].Anticancer Res,2012,32 (9):3629-3641.
[33]Shipitsin M,Small C,Choudhury S,et al.Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error[J].Br JCancer,2014,111(6):1201-1212.
[34]Kiprijanovska S,Stavridis S,Stankov O,et al.Mapping and identification of the urine proteome of prostate cancer patients by 2D PAGE/MS[J].Int JProteomics,2014,2014:594761.
[35]Amaro A,Esposito AI,Gallina A,et al.Validation of proposed prostate cancer biomarkerswith gene expression data:a long road to travel[J].Cancer Metastasis Rev,2014,33(2/3):657-671.
[36]Bergamini S,Bellei E,Reggiani Bonetti L,et al.Inflammation: an important parameter in the search of prostate cancer biomarkers[J].Proteome Sci,2014,12:32.
[37]Williams KA,Lee M,Hu Y,et al.A systems genetics approach identifies CXCL14,ITGAX,and LPCAT2 as novel aggressive prostate cancer susceptibility genes[J].PLoS Genet,2014,10 (11):e1004809.
[38]Li TQ,F(xiàn)eng CQ,Zou YG,et al.Literature-mining and bioinformatic analysis of androgen-independent prostate cancerspecific genes[J].National Journal of Andrology,2009,15 (12):1102-1107.(in Chinese)李鐵求,馮春瓊,鄒亞光,等.基于文獻(xiàn)挖掘的雄激素非依賴(lài)型前列腺癌特異表達(dá)基因的生物信息學(xué)分析[J].中華男科學(xué)雜志,2009,15(12):1102-1107.
[39]Ma Y,Peng J,LiuW,etal.Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer[J].Mol Cell Proteomics,2009,8(8):1878-1890.
[40]Arentz G,Chataway T,Price TJ,et al.Desmin expression in colorectal cancer stroma correlates with advanced stage disease and marks angiogenic microvessels[J].Clin Proteomics,2011,8 (1):16.
[41]Shiota M,Bishop JL,Nip KM,et al.Hsp27 regulates epithelial mesenchymal transition,metastasis,and circulating tumor cells in prostate cancer[J].Cancer Res,2013,73(10):3109-3119.
[42]Kong L,Sch?fer G,Bu H,et al.Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth,migration and invasion through the PI3K/AKT/PTEN pathway[J].Carcinogenesis,2012,33(4): 751-759.
[43]Ruiz C,Holz DR,Oeggerli M,et al.Amplification and overexpression of vinculin are associated with increased tumour cell proliferation and progression in advanced prostate cancer[J].J Pathol,2011,223(4):543-552.
[44]Yu L,Shi J,Cheng S,et al.Estrogen promotes prostate cancer cellmigration via paracrine release of ENO1 from stromal cells[J].Mol Endocrinol,2012,26(9):1521-1530.
[45]Mu D,Gao Z,Guo G,et al.Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1[J].PLoS One,2013,8(9):e74922.
[46]Guan M,Jiang H,Xu C,et al.Adenovirus-mediated PEDF expression inhibits prostate cancer cell growth and results in augmented expression of PAI-2[J].Cancer Biol Ther,2007,6 (3):419-425.
[47]Altieri DC.Mitochondrial Hsp90 chaperones as novelmolecular targets in prostate cancer[J].Future Oncol,2010,6(4):487-489.
[48]Srivastava M,Leighton X,Starr J,etal.Diverse effects of ANXA7 and p53 on LNCaP prostate cancer cells are associated with regulation of SGK1 transcription and phosphorylation of the SGK1 target FOXO3A[J].Biomed Res Int,2014,2014:193635.
[49]Goc A,Liu J,Byzova TV,et al.Akt1 mediates prostate cancer cellmicroinvasion and chemotaxis tometastatic stimuli via integrinβ3 affinity modulation[J].Br J Cancer,2012,107(4):713-723.
[50]李科,陳怡,黃文濤,等.MCCC2在前列腺癌細(xì)胞系中的表達(dá)及其對(duì)前列腺癌轉(zhuǎn)移影響的初步研究[J].中華腔鏡泌尿外科雜志:電子版,2014,8(2):140-146.
[51]Figel S,Gelman IH.Focal adhesion kinase controls prostate cancer progression via intrinsic kinase and scaffolding functions[J].Anticancer Agents Med Chem,2011,11(7):607-616.
[52]Wang Q,Symes AJ,Kane CA,et al.A novel role for Wnt/Ca2+signaling in actin cytoskeleton remodeling and cellmotility in prostate cancer[J].PLoSOne,2010,5(5):e10456.
[53]Zhang JS,Gong A,Young CY.ZNF185,an actin-cytoskeletonassociated growth inhibitory LIM protein in prostate cancer[J].Oncogene,2007,26(1):111-122.
[54]查樹(shù)偉,查佶,王興海.MAPK信號(hào)轉(zhuǎn)導(dǎo)通路與前列腺癌的發(fā)病及治療關(guān)系的研究進(jìn)展[J].中國(guó)男科學(xué)雜志,2008,22 (6):57-60.
[55]Gioeli D,Mandell JW,Petroni GR,et al.Activation ofmitogenactivated protein kinase associated with prostate cancer progression[J].Cancer Res,1999,59(2):279-284.
[56]Spans L,Helsen C,Clinckemalie L,et al.Comparative genomic and transcriptomic analyses of LNCaP and C4-2B prostate cancer cell lines[J].PLoSOne,2014,9(2):e90002.
(本文編輯:吳立波)
Bioinform atics Analysis of Differentially Expressed Genes of Prostate Cancer Proteom ics and Genom ics Based on Literature M ining
CHEN Chen,CAO Xiao-ge,ZHANG Li-guo,et al.School of Graduate,North China University of Science and Technology,Tangshan 063000,China
Objective To mine differentially expressed genes which have strong correlation with prostate cancer (PCa)but have not been specifically covered through literatures about proteomics and genomics of PCa and analyze the biological processes and pathways in which these genes are involved.M ethods With PubMed public database,we used the advanced search by inputting"(prostate cancer[Title])AND Proteomics""(prostate cancer[Title])AND Genomics"for literaturesbefore January 2015.We extracted differentially expressed proteins or genes according to the comparison of protein and gene expression profiles between PCa and benign prostatic hyperplasia(BPH)(Group A),between PCa and adjacent benign tissues (Group B)and between high and low Gleason scores of Pca(Group C).We input all the differentially expressed genes or proteins into"The Protein Information Resource(PIR,Georgetown University Medical Center,Washington,DC 20007,USA)"and unified all names according to"official gene symbol".Then we conducted the bioinformatics analysis of Gene Ontology and KEGG pathway by DAVID Bioinformatics Resources 6.7(National Institute of Allergy and Infectious Diseases,NIH,USA)online tool.Results A total of35 articleswere included.Throughmining,we obtained 764 differentially expressed genes totally,ofwhich 162 were in Group A,423 in Group B and 209 in Group C.In all the 3 groups,there were 21 common reported genes.DESwas reported themost in Group A,which appeared 6 times.ACPPwas reported themost in Group B,which appeared 4 times.ACTN1,HSPB1 and LMNA were reported themost in Group C,which all appeared 3 times.All these genes played important roles in biological processes of regulation of cell death,regulation of cell proliferation,response to wounding,protein transport and homeostatic process(genes count≥72,percentage≥9.4%),as well as in molecular function of nucleotide binding,calcium ion binding,identical protein binding and enzyme binding(genes count≥60,percentage≥7.9%).Their cellular componentsweremainly in extracellular region,membrane-enclosed lumen,cytoskeleton,vesicle and mitochondrion(genes count≥85,percentage≥11.1%).They weremainly involved in the biological pathways like pathways in cancer,focal adhesion,regulation of actin cytoskeleton and MAPK signaling(genes count≥29,percentage≥3.8%).The co-occurrence KEGG pathways from different groups were focal adhesion,complement and coagulation cascade and ECM-receptor interactions.Conclusion We found out there is strong association between DES,ACTN1,ATP5B,TLN1,COL6A2,MYH9,OGN,PGAM1 and PCa butwithout specific relevant reports,whichmeansmore experimental researches are needed to prove that.What'smore,focal adhesion,regulation of actin cytoskeleton and MAPK signaling pathwaymay play important roles in the development of PCa.Further analysiswill provide new targets for clinical prevention and treatment of PCa.
Prostatic neoplasms;Genomics;Proteomics;Bioinformatics
R 737.25 R 394
A
10.3969/j.issn.1007-9572.2015.32.028
063000河北省唐山市,華北理工大學(xué)研究生院(陳晨,韓會(huì));天津市濱海新區(qū)漢沽第一中學(xué)(曹笑歌);華北理工大學(xué)附屬醫(yī)院泌尿外科(張立國(guó),么安亮,劉健,康紹叁,高偉興,曹鳳宏);華北理工大學(xué)醫(yī)學(xué)實(shí)驗(yàn)研究中心,老年醫(yī)學(xué)國(guó)際科技合作基地(李治國(guó))
曹鳳宏,063000河北省唐山市,華北理工大學(xué)附屬醫(yī)院泌尿外科;E-mail:caofenghong@163.com。李治國(guó),063000河北省唐山市,華北理工大學(xué)醫(yī)學(xué)實(shí)驗(yàn)研究中心,老年醫(yī)學(xué)國(guó)際科技合作基地;E-mail:lzg1017@163.com
2015-05-18;
2015-08-28)