葛 琦,侯成敏
(延邊大學(xué) 理學(xué)院,吉林 延吉 133002)
?
一類有序分?jǐn)?shù)階q-差分方程解的存在性
葛 琦,侯成敏
(延邊大學(xué) 理學(xué)院,吉林 延吉 133002)
考慮一類有序分?jǐn)?shù)階q-差分方程解的存在性和唯一性.先利用q-指數(shù)給出該方程解的表達(dá)式,再分別利用Banach壓縮映像原理、Krasnoselskii不動(dòng)點(diǎn)定理、Leray-Schauder選擇定理證明該方程解的存在性和唯一性.
有序分?jǐn)?shù)階q-差分;不動(dòng)點(diǎn)定理;解的存在性
其中:1<α<2;0<λ<1;β>0;f∈C([0,1]×,)表示Caputo型分?jǐn)?shù)階q-導(dǎo)數(shù)(0 定義2[9]函數(shù)f(x)在區(qū)間[0,b]上的q-積分定義為 定義3[9]Riemann-Liouville型分?jǐn)?shù)階q-積分定義為 Caputo型分?jǐn)?shù)階q-導(dǎo)數(shù)定義為 引理1[9]設(shè)α≥0,I是包含原點(diǎn)的實(shí)區(qū)間,且a,b∈I,f(x),g(x)是定義在I到上的函數(shù),則: 2)[a(x-t)](α)=aα(x-t)(α),xDq(x-t)(α)=[α]q(x-t)(α-1); 3)Dq[fg](x)=Dq[f](x)g(x)+f(qx)Dq[g](x); 這里iDq表示與變量i有關(guān)的q-導(dǎo)數(shù). 定義4[10]定義標(biāo)準(zhǔn)q-指數(shù)函數(shù)如下: 其中:q>0;z是復(fù)數(shù); [n]!=[1][2]…[n]; [k]=1+q+q2+…+qk-1; 引理2[9]如果f:[0,1]→是連續(xù)函數(shù),則Iq[f]是連續(xù)函數(shù). 引理3(Banach壓縮映像原理)[11]設(shè)X是實(shí)Banach空間E上的非空閉子集,T:X→X是壓縮算子,則T在X內(nèi)存在唯一的不動(dòng)點(diǎn). 引理4(Krasnoselskii不動(dòng)點(diǎn)定理)[11]設(shè)K是Banach空間E的有界凸閉子集,而T,S:K→E滿足: 1)對(duì)任意x,y∈K有Tx,Tx+Sy∈K; 2)T是壓縮映像; 3)S在K上是全連續(xù)的. 則T+S在K內(nèi)至少存在一個(gè)不動(dòng)點(diǎn). 2)存在一個(gè)x∈?U,對(duì)于λ∈(0,1)有x=λTx. 引理6(Arzela-Ascoli定理)[9]設(shè)D?n是一個(gè)有界域,如果K?)有界,且對(duì)于任意的ε>0,存在δ>0,使得‖x-y‖<δ?|u(x)-u(y)|<ε,??u∈K,則是緊的. 引理7方程(1)-(2)與如下積分方程等價(jià): 其中 (3) 由y(0)=Dq[y](0)=0,得c0=0.由于 所以 又由于 因此 于是 從而有 進(jìn)而由Dq[y](1)=β得 因此 為了證明方程(1)-(2)解的存在性和唯一性,對(duì)Banach空間C([0,1],)賦范數(shù)‖y‖|y(x)|,對(duì)于y∈C([0,1],),定義C([0,1],)上的算子F: (4) 其中Ky定義見式(3). 定理1假設(shè)存在一個(gè)q-可積的函數(shù)L:[0,1]→,使得對(duì)于?x∈[0,1]及?y1,y2∈,有 |f(x,y1)-f(x,y2)|≤L(x)|y1-y2|, 設(shè) 如果Ω<1,則方程(1)-(2)有唯一解. 證明:先證明由式(4)定義的算子F是一個(gè)壓縮映射.事實(shí)上,對(duì)于?y1,y2∈C([0,1],),有 因此,當(dāng)Ω<1時(shí),算子F是一個(gè)壓縮映射.由引理3知方程(1)-(2)有唯一解. 特別地,當(dāng)定理1中的函數(shù)L是常數(shù)時(shí),即對(duì)?x∈[0,1],L(x)=L,有 又由于 所以,可取 定理2假設(shè): 1)存在一個(gè)q-可積的函數(shù)L:[0,1]→,使得對(duì)于?x∈[0,1]及?y1,y2∈,有|f(x,y1)-f(x,y2)|≤L(x)|y1-y2|; 2)存在一個(gè)連續(xù)函數(shù)G:[0,1]→,使得對(duì)于?x∈[0,1]及?y∈,有|f(x,y)|≤G(x); 則方程(1)-(2)至少有一個(gè)解. 證明:為應(yīng)用引理4,定義函數(shù) 取正實(shí)數(shù)M1,滿足 其次,類似定理1的證明,易證F2是壓縮映射,即‖F(xiàn)2[y1]+F2[y2]‖≤ψ‖y1-y2‖. 定理3假設(shè): 1)存在連續(xù)函數(shù)G1,G2:[0,1]→和單調(diào)遞增的函數(shù)使得對(duì)于?x∈[0,1]及?y∈,有|f(x,y)|≤G1(x)φ(|y|)+G2(x); 2)存在一個(gè)正常數(shù)N滿足 (5) 其中 則方程(1)-(2)至少有一個(gè)解. [1] Page D N.Information in Black Hole Radiation [J].Phys Rev Lett,1993,71(23):3743-3746. [2] Youm D.q-Deformed Conformal Quantum Mechanics [J].Phys Rev D,2000,62(9):095009. [3] Jackson F H.q-Difference Equations [J].Amer J Math,1910,32(4):305-314. [4] Ferreira R A C.Nontrivial Solutions for Fractionalq-Difference Boundary Value Problems [J].Electron J Qual Theory Differ Equ,2010(70):1-10. [5] Ferreira R A C.Positive Solutions for a Class of Boundary Value Problems with Fractionalq-Differences [J].Comput Math Appl,2011,61(2):367-373. [6] ZHAO Yulin,CHEN Haibo,ZHANG Qiming.Existence Results for Fractionalq-Difference Equations with Nonlocalq-Integral Boundary Conditions [J/OL].Advances in Difference Equations,2013,doi:10.1186/1687-1847-2013-48. [7] ZHAO Yulin,YE Guobing,CHEN Haibo.Multiple Positive Solutions of a Singular Semipositione Integral Boundary Value Problem for Fractionalq-Derivatives Equation [J/OL].Abstract and Applied Analysis,2013.http://dx.doi.org/10.1155/2013/643571. [8] 孫明哲,韓筱爽.一類分?jǐn)?shù)階q-差分邊值問題的正解 [J].延邊大學(xué)學(xué)報(bào):自然科學(xué)版,2013,39(4):252-255.(SUN Mingzhe,HAN Xiaoshuang.Positive Solutions for a Class of Boundary Value Problems with Fractionalq-Differences [J].Journal of Yanbian University:Natural Science,2013,39(4):252-255.) [9] Almeida R,Martins N.Existence Results for Fractionalq-Difference Equations of Orderα∈[2,3] with Three-Point Boundary Conditions [J].Commun Nonlinear Sci Numer Simul,2014,19(6):1675-1685. [11] 時(shí)寶,張德存,蓋明久.微分方程理論及其應(yīng)用 [M].北京:國防工業(yè)出版社,2005:4;14.(SHI Bao,ZHANG Decun,GAI Mingjiu.The Theory and Application of Differential Equations [M].Beijing:National Defense Industry Press,2005:4;14.) [12] WANG Jinhua,XIANG Hongjun,LIU Zhigang.Positive Solution to Nonzero Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations [J/OL].Int J Differ Equ,2010.http://dx.doi.org/10.1155/2010/186928. (責(zé)任編輯:趙立芹) ExistenceofSolutionsforaClassofSequentialFractionalq-DifferencesEquation GE Qi,HOU Chengmin (CollegeofScience,YanbianUniversity,Yanji133002,JilinProvince,China) We studied the existence and uniqueness of solutions for a class of the sequential fractionalq-differences equation.Firstly,a representation for the solution to this equation was given viaq-exponential.Then the existence and uniqueness of solutions were proven by means of Banach fixed point theorem,Krasnoselskii fixed point theorem and Leray-Schauder alternative theorem. sequential fractionalq-difference;fixed point theorem;existence of solutions 10.13413/j.cnki.jdxblxb.2015.03.06 2014-07-03. 葛 琦(1975—),女,漢族,碩士,副教授,從事微分方程理論及應(yīng)用的研究,E-mail:geqi9688@163.com. 國家自然科學(xué)基金(批準(zhǔn)號(hào):11161049)和吉林省教育廳“十二五”科學(xué)技術(shù)研究項(xiàng)目. O175.6 :A :1671-5489(2015)03-0377-061 預(yù)備知識(shí)
2 主要結(jié)果