王田娥,李 健,牛太陽,李俊杰
(吉林農(nóng)業(yè)大學(xué) 信息技術(shù)學(xué)院,長春 130118)
?
漸近線性p-Kirchhoff型方程解的多重性
王田娥,李 健,牛太陽,李俊杰
(吉林農(nóng)業(yè)大學(xué) 信息技術(shù)學(xué)院,長春 130118)
考慮有界區(qū)域上p-Kirchhoff型方程在Dirichlet邊界條件下解的存在性,應(yīng)用山路定理得到了當(dāng)非線性項滿足漸近線性增長條件時p-Kirchhoff型方程兩個非平凡解的存在性.
多重性;山路定理;p-Kirchhoff型方程
Kirchhoff[1]在研究彈性弦的自由振動時,提出了如下模型:
一般稱該模型為Kirchhoff型方程,它在非牛頓力學(xué)、彈性理論和生物數(shù)學(xué)等諸多領(lǐng)域應(yīng)用廣泛.文獻(xiàn)[2-5]研究了Kirchhoff方程所對應(yīng)的穩(wěn)態(tài)方程:
(1)
本文考慮如下p-Kirchhoff型方程:
(2)
其中:Ω是N(N≥3)中有界光滑區(qū)域;Δpu=div(u),1
(3)
目前,對p-Laplacian方程邊值問題的研究已有許多結(jié)果[6-9].
對于問題(2),當(dāng)非線性項f滿足各種增長條件時,應(yīng)用變分法對其進(jìn)行研究已得到了豐富的結(jié)果.文獻(xiàn)[10-12]研究了問題(2)在非線性項f滿足超線性次臨界增長時解的存在性與多重性;文獻(xiàn)[13-14]在臨界增長情形研究了問題(2)解的存在性;文獻(xiàn)[15]在非線性項滿足漸近線性增長時得到了問題(2)解的多重性.本文進(jìn)一步研究在非線性項f滿足漸近線性增長時問題(2)解的多重性.
對于特征值問題
已知其存在一列特征值0<λ1<λ2≤λ3≤…≤λn→+∞,其中第一特征值λ1是簡單的、孤立的特征值,具有相應(yīng)的特征函數(shù)φ1>0.假設(shè):
(H1)存在常數(shù)m2>m1>0,使得m1≤M(s)≥m2,?s∈+;
(H2)存在s1>0,使得M(s)=m2,?s>s1;
(H5)存在μ1,μ2∈(λ1,+∞),使得
關(guān)于x∈Ω一致成立.
定理1如果(H1)~(H5)滿足,則問題(2)至少有一個正解和一個負(fù)解.
定義
定義1如果
顯然若u為J的臨界點,則u是問題(2)的弱解.
定理2[16]設(shè)X為實Banach空間,Φ∈C1(X,)并且滿足(PS)條件.此外,存在ρ,α,β∈(0,+∞)和u0∈X,使得
定義
首先證明泛函J+具有山路幾何,即:
引理1在定理1的假設(shè)下,有:
因此,應(yīng)用Sobolev嵌入與Poincare不等式,并結(jié)合假設(shè)(H1)和q>p,可得常數(shù)δ1,C1>0,使得
從而存在充分小的ρ>0使得結(jié)論1)成立.
又由(H1)可得
因此,存在充分大的t1,使得u1=t1φ1滿足結(jié)論2).
下面證明J+滿足(PS)條件.
引理2在定理1的假設(shè)下,泛函J+滿足(PS)條件.
證明:對任意的c>0,假設(shè){un}n∈?滿足:
(4)
(5)
由式(5)可得
取v=un,由假設(shè)(H3)~(H5)知,存在α>0,使得
因此,z0是問題
(6)
ζφ1(x)≤z0(x), ?x∈Ω.
(7)
取φ=δφ1,β∈(λ1,λ1+ε),則有
(8)
應(yīng)用上下解方法,再結(jié)合式(7),(8),可得問題
由假設(shè)(H3)~(H5)與Sobolev嵌入定理可得
(9)
記
則
此外,由|((J+)′(un),un-u0)|→0,并結(jié)合式(9)可得Qn→0.再結(jié)合弱收斂un?u0與不等式
下面證明定理1.應(yīng)用定理2,J+存在臨界點u+滿足J+(u+)≥η>0;再應(yīng)用最大值原理可知u+>0.因此u+為問題(2)的正解.類似地,問題(2)存在負(fù)解u-<0.
[1] Kirchhoff G.Mechanik [M].Leipzig:Teubner,1883.
[2] CHENG Bitao,WU Xian,LIU Jun.Multiple Solutions for a Class of Kirchhoff Type Problems with Concave Nonlinearity [J].Nonlinear Differ Equ Appl,2012,19(5):521-537.
[3] MAO Anmin,ZHANG Zhitao.Sign-Changing and Multiple Solutions of Kirchhoff Type Problems without the P.S.Condition [J].Nonlinear Anal,2009,70(3):1275-1287.
[4] Perera K,ZHANG Zhitao.Nontrivial Solutions of Kirchhoff-Type Problems via the Yang Index [J].J Differential Equations,2006,221(1):246-255.
[5] 萬保成,李健,李士軍.一類Kirchhoff型方程解的多重性 [J].吉林大學(xué)學(xué)報:理學(xué)版,2013,51(2):233-236.(WAN Baocheng,LI Jian,LI Shijun.Multiplicity of Solutions to Kirchhoff Type of Equations [J].Journal of Jilin University:Science Edition,2013,51(2):233-236.)
[6] Gasiński L,Papageorgiou N S.Multiple Solutions for Asymptotically (p-1)-Homogeneousp-Laplacian Equations [J].J Funct Anal,2012,262(5):2403-2435.
[7] ZHANG Zhitao,LI Shujie,LIU Shibo,et al.On an Asymptotically Linear Elliptic Dirichlet Problem [J].Abstr Appl Anal,2002,7(10):509-516.
[8] OU Zengqi,LI Chun.Existence of Solutions for Dirichlet Problems withp-Laplacian [J].Nonlinear Anal,2012,75(13):4914-4919.
[9] SHI Linsong,CHANG Xiaojun.Multiple Solutions top-Laplacian Problems with Concave Nonlinearities [J].J Math Anal Appl,2010,363(1):155-160.
[10] Corrêa F J S A,Figueiredo G M.On an Elliptic Equation ofp-Kirchhoff Type via Variational Methods [J].Bull Austral Math Soc,2006,74(2):263-277.
[11] Corrêa F J S A,Figueiredo G M.On ap-Kirchhoff Equation via Krasnoselskii’s Genus [J].Appl Math Lett,2009,22(6):819-822.
[12] 李健,杜泊船,趙昕,等.p-Kirchhoff型方程解的多重性 [J].吉林大學(xué)學(xué)報:理學(xué)版,2013,51(4):580-584.(LI Jian,DU Bochuan,ZHAO Xin,et al.Multiplicity of Solutions of ap-Kirchhoff Type Equation [J].Journal of Jilin University:Science Edition,2013,51(4):580-584.)
[13] Ourraoui A.On ap-Kirchhoff Problem Involving a Critical Nonlinearity [J].C R Math Acad Sci Paris,2014,352(4):295-298.
[14] Hamydy A,Massar M,Tsouli N.Existence of Solutions forp-Kirchhoff Type Problems with Critical Exponent [J].Electron J Differential Equations,2011,2011(105):1-8.
[15] Bensedik A,Bouchekif M.On an Elliptic Equation of Kirchhoff-Type with a Potential Asymptotically Linear at Infinity [J].Math Comput Modelling,2009,49(5/6):1089-1096.
[16] Rabinowitz P H.Minimax Methods in Critical Point Theory with Applications to Differential Equations [M].Washington DC:American Mathematical Society,1986.
(責(zé)任編輯:趙立芹)
MultiplicityofSolutionsofAsymptoticallyLinear
p-KirchhoffTypeEquations
WANG Tian’e,LI Jian,NIU Taiyang,LI Junjie
(CollegeofInformationTechnology,JilinAgriculturalUniversity,Changchun130118,China)
This paper deals with the existence of solutions forp-Kirchhoff type equations in bounded domains under Dirichlet boundary condition.When the nonlinearity is asymptotically linear at infinity,there exist two nontrivial solutions of thep-Kirchhoff type equation which can be proved with the aid of the mountain pass theorem.
multiplicity;mountain pass theorem;p-Kirchhoff type equation
10.13413/j.cnki.jdxblxb.2015.03.05
2014-10-13.
王田娥(1977—),女,漢族,碩士,講師,從事微分方程和最優(yōu)化的研究,E-mail:443988941@qq.com.通信作者:李 健(1981—),男,漢族,博士,講師,從事空間推理和微分方程的研究,E-mail:liemperor@163.com.
吉林省青年科研基金(批準(zhǔn)號:20130522110JH)、吉林省重點科技攻關(guān)項目(批準(zhǔn)號:20140204045NY)和吉林省教育廳“十二五”科學(xué)技術(shù)研究項目(批準(zhǔn)號:[2014]第468號).
O175.25
:A
:1671-5489(2015)03-0372-05