丁道芳,杜國慶,李玲慧,宋 奕,徐勤光,曹月龍,,詹紅生,,鄭昱新,上海中醫(yī)藥大學(xué)附屬曙光醫(yī)院石氏傷科醫(yī)學(xué)中心;上海市中醫(yī)藥研究院骨傷科研究所,上海 003
骨關(guān)節(jié)炎(OA)是一種慢性的退行性的關(guān)節(jié)疾病,是老年人致殘的主要的病因之一,以關(guān)節(jié)軟骨的破壞,軟骨下骨的硬化和滑膜的炎癥為特征,目前對(duì)此病的治療以減輕疼痛和抗炎為主,還無特效藥物阻止對(duì)關(guān)節(jié)結(jié)構(gòu)的破壞,因此阻止或延緩關(guān)節(jié)結(jié)構(gòu)的破壞是骨關(guān)節(jié)炎治療的目標(biāo)。
關(guān)節(jié)結(jié)構(gòu)的破壞主要是細(xì)胞外基質(zhì)成份的合成和降解平衡失調(diào)造成,軟骨細(xì)胞是關(guān)節(jié)軟骨中的主要細(xì)胞,其主要負(fù)責(zé)膠原蛋白,蛋白多糖和非膠原成份的合成。目前對(duì)OA的發(fā)病和進(jìn)展的機(jī)制仍不明確,研究發(fā)現(xiàn),眾多因素如生長因子、炎癥因子和信號(hào)通路均參與這個(gè)過程。以下就生長因子、相關(guān)炎癥因素和重要的信號(hào)通路做一概述,為OA的治療提供一些理論依據(jù)。
研究發(fā)現(xiàn),一些生長因子在募集軟骨細(xì)胞,刺激細(xì)胞增殖和增加胞外基質(zhì)的合成方面發(fā)揮重要作用。目前認(rèn)為IGFs(insulin-like growth factors,IGFs)是關(guān)節(jié)軟骨基質(zhì)合成中起主要調(diào)控作用的細(xì)胞因子,其作用可被IGFBPs(IGF-binding protein)結(jié)合后抑制,通過小分子抑制劑抑制IGF-1和IGFBPs的結(jié)合,可恢復(fù)人OA軟骨細(xì)胞中的蛋白多糖的合成[1]。其它的生長因子如BMPs(Bone morphogenetic proteins,BMPs)和 TGFβ(Transforming growth factors,TGFβ)除了促進(jìn)軟骨中蛋白多糖的合成,同時(shí)發(fā)現(xiàn)誘導(dǎo)軟骨細(xì)胞的肥大化、骨贅形成和纖維化,可能阻止它們在軟骨修復(fù)中的應(yīng)用[2]。盡管TGFβ3表現(xiàn)出增加軟骨形成的潛力[3],但在實(shí)驗(yàn)性O(shè)A動(dòng)物中,導(dǎo)致早期骨贅的形成[4]。在OA中,軟骨及釋放入滑膜液中的堿性成纖維細(xì)胞因子(basic fibroblast growth factors,bFGFs)的表達(dá)量明顯增加,bFGF通過激活MAPK和NF-?B信號(hào)通路,增加MMP13的表達(dá),誘導(dǎo)軟骨細(xì)胞基質(zhì)的降解[5]。
基質(zhì)金屬蛋白降解酶(matrix metalloproteinases,MMPs)可降解細(xì)胞外所有的基質(zhì)成份,合成的MMP抑制劑在動(dòng)物OA模型中表現(xiàn)出治療效果,但在臨床上,由于廣譜的MMP抑制劑的使用,出現(xiàn)嚴(yán)重的骨骼肌副作用[6],發(fā)展特異性的MMP抑制劑將有可能解決這些問題。新型的MMP13抑制劑ALS 1-0635在體外可抑制關(guān)節(jié)軟骨的降解,且在內(nèi)側(cè)半月板切除的OA大鼠中,未出現(xiàn)骨骼肌副作用[7]。
ADAMTS4和ADAMTS5是負(fù)責(zé)軟骨中蛋白多聚糖aggrecan降解的主要蛋白酶,ADAMTS5-/-基因敲除小鼠關(guān)節(jié)軟骨損傷降低,并且軟骨下骨出現(xiàn)輕微的改變,說明ADAMTS5在OA的發(fā)生和發(fā)展中發(fā)揮重要作用[8]。以ADAMTS5為治療靶點(diǎn)的新型化合物正處在不斷的研發(fā)和試驗(yàn)過程中。
金屬蛋白組織抑制劑(Tissue Inhibitor of metalloproteinases,TIMPs),體內(nèi)實(shí)驗(yàn)表明TIMP3的缺陷導(dǎo)致類似于OA改變的軟骨降解[9]。TIMP3除了抑制MMPs還抑制ADAMTSs蛋白酶的活性,尤其對(duì)ADAMTS4/5有強(qiáng)烈的抑制作用[10]。近年來,從山毛櫸提取出的CaPPS,可同時(shí)抑制ADAMTS4和ADAMTS5,同時(shí)增加TIMP3對(duì)ADAMTS4和ADAMTS5的親和性,而在TIMP3敲除的小鼠中,發(fā)現(xiàn)CaPPS抑制aggrecan的降解依賴于TIMP3的存在[11]。
前炎癥細(xì)胞因子IL-1β和TNFa在OA中,是引起滑膜炎癥和軟骨降解的誘導(dǎo)因素,其中IL-1β是導(dǎo)致關(guān)節(jié)軟骨破壞最主要的細(xì)胞因子,IL-1β激活降解酶(MMP3,MMP13)促進(jìn)Ⅱ型膠原和蛋白多糖Aggrecan的降解。目前出現(xiàn)了針對(duì)IL-1β受體拮抗劑、抗IL-1β抗體和抗IL-1β受體抗體的藥物,例如IL-1β受體拮抗劑進(jìn)行OA病人的膝關(guān)節(jié)腔內(nèi)注射,和安慰劑組相比并無顯著療效[12],但對(duì)于嚴(yán)重手關(guān)節(jié)炎的病人的疼痛的和功能的恢復(fù)取得一些較好的前期結(jié)果[13],目前抗IL-1β的受體的單克隆抗體正在膝關(guān)節(jié)炎的患者身上進(jìn)行Ⅱ期臨床試驗(yàn)[14]。針對(duì)TNF因子也出現(xiàn)了相應(yīng)的抗體,例如adalimumab在進(jìn)行三個(gè)月的臨床治療觀察,雖沒有表現(xiàn)出顯著的療效[15],但從Ⅱ期臨床試驗(yàn)的初步數(shù)據(jù)可看出有減輕關(guān)節(jié)破壞的趨勢[16],目前Ⅲ期臨床試驗(yàn)正在進(jìn)行中。
在OA中,隨著年齡增長,氧壓增加,持續(xù)的氧壓的存在對(duì)軟骨細(xì)胞和基質(zhì)的損傷,可能是其病理改變的機(jī)制之一。NO和其代謝物在代謝過程中起到雙刃劍的作用,NO的產(chǎn)生對(duì)于很多生理過程是必要的,但其同時(shí)又表現(xiàn)出對(duì)細(xì)胞的毒性作用和損傷細(xì)胞外基質(zhì)。相對(duì)于正常和類風(fēng)濕軟骨細(xì)胞,OA軟骨細(xì)胞表達(dá)和產(chǎn)生大量的NO和iNOS(一氧化氮合成酶)[17]。存在OA軟骨細(xì)胞中的NO和活性氧(ROS)降低IGF-1因子刺激軟骨細(xì)胞的基質(zhì)的合成[18]。氧自由基清除劑如C60富勒烯可抑制人軟骨細(xì)胞在氧化條件下MMP蛋白的表達(dá)以及對(duì)手術(shù)誘導(dǎo)的兔OA模型具有保護(hù)效應(yīng)[19]。在人的OA軟骨,IL-1β、TNFa和氧化損傷均引起缺氧誘導(dǎo)因子(hypoxia-inducible factor1a,HIF1a)的表達(dá),HIF1a的表達(dá)和關(guān)節(jié)軟骨的退變的呈現(xiàn)相關(guān)[20]。
血紅素加氧酶HO-1在很多細(xì)胞中,都起到對(duì)抗氧化反應(yīng)的作用,OA軟骨細(xì)胞中的HO-1的表達(dá)被IL-1β、TNFa等下調(diào),被IL-10上調(diào)[21]。通過HO-1的誘導(dǎo)劑CoPP處理后,HO-1的表達(dá)上調(diào)可以顯著抑制IL-1β介導(dǎo)蛋白多聚糖的降解,增加OA原代軟骨細(xì)胞中的蛋白多聚糖的合成和Ⅱ型膠原的合成[22],同樣Copp處理軟骨-軟骨下骨后,發(fā)現(xiàn)可以拮抗IL-1β誘導(dǎo)的iNOS、COX2和mPGES-1等炎性因子的表達(dá)[23]。這些結(jié)果表明HO-1在調(diào)控OA軟骨細(xì)胞外基質(zhì)的合成和降解過程中發(fā)揮重要作用。
相關(guān)證據(jù)表明,活化wnt/β-catenin通路導(dǎo)致過度的骨重塑和軟骨基質(zhì)的降解及和OA的進(jìn)展有密切關(guān)系[24],在人的OA軟骨中發(fā)現(xiàn)Wnt-1誘導(dǎo)的分泌蛋白(wnt-1induced secreted protein-1,WISP-1)的表達(dá)增加,在實(shí)驗(yàn)性的OA中,此蛋白表達(dá)明顯上調(diào),可能通過誘導(dǎo)分解代謝因子如MMPs和aggrecase的活性來發(fā)揮誘導(dǎo)OA的作用[25]。
調(diào)控wnt/β-catenin通路主要有四類分子,分泌型卷曲相關(guān)蛋白(secreted frizzled related protein,sFRPs),Wnt抑制因子(wnt inhibitory factors,Wifs),Dickkopf(DKK)分子和sclerostin。其中sclerostin和DKK結(jié)合到LRP5/6分子,而Wifs和sFRPs直接結(jié)合于Wnt分子發(fā)揮抑制信號(hào)通路的作用。sFRPs基因的單核酸多態(tài)性引起的功能改變和髖關(guān)節(jié)炎的高風(fēng)險(xiǎn)有關(guān)聯(lián)[26]。而增加血清中的DKK-1水平和減緩白色人種的髖關(guān)節(jié)炎的進(jìn)展有一定的關(guān)聯(lián)[27]。
除了wnt/β-catenin信號(hào)通路,Hh通路在骨關(guān)節(jié)炎病理中也發(fā)揮重要作用[38],在機(jī)械應(yīng)力的作用下,軟骨細(xì)胞上的配體Ihh(Indian Hh)和Shh(Sonic Hh)表達(dá)[29],這些配體結(jié)合至Ptch1受體上,抑制另一個(gè)細(xì)胞上的受體Smo(smoothened),導(dǎo)致調(diào)節(jié)軟骨肥大分化的蛋白R(shí)UNX2的表達(dá),間接調(diào)控ADAMTS5和MMP13等蛋白的表達(dá)水平,從而引起OA的改變,抑制Hh通路將減輕OA的嚴(yán)重性[30]。
NF-?B轉(zhuǎn)錄因子決定關(guān)節(jié)中炎癥因子和基質(zhì)分解因子的表達(dá),調(diào)控軟骨分化過程至肥大化的階段。在軟骨中,NF-?B調(diào)控著COX2和MMP的表達(dá)[31]。基于腺病毒的靶向干擾NF-?bp65抑制了手術(shù)誘導(dǎo)的大鼠OA的進(jìn)展[32],RO100藥物拮抗NF-?B對(duì)OA滑膜中的成纖維細(xì)胞的IL-16、MMP1和MMP3的表達(dá)抑制效應(yīng),和IL-1β及TNFa的抗體具有類似的效應(yīng)[33]。目前這些通過干擾NF-?B通路的治療方法遇到的最大的問題即這些藥物的副反應(yīng)影響了正常細(xì)胞的功能發(fā)揮,如何找到只作用于靶細(xì)胞的藥物尤為必要。
在兔OA模型中,抑制MAPK-MEK-ERK1/2信號(hào)通路可有效抑制OA過程中軟骨結(jié)構(gòu)的病理性改變[34],激活MAPK-MEK-ERK1/2信號(hào)通路誘導(dǎo)軟骨的降解[35]。應(yīng)用透明質(zhì)酸和MAPK-MEK-ERK1/2信號(hào)通路抑制劑協(xié)同治療大鼠OA模型,可顯著下調(diào)軟骨退變標(biāo)志基因COL10和RUNX2及基質(zhì)降解酶ADAMTS5和MMP13的表達(dá),同時(shí)將上調(diào)軟骨標(biāo)志基因Ⅱ型膠原表達(dá)(COL2a1)[36]。表明MAPK-MEK-ERK1/2信號(hào)通路在調(diào)控軟骨退變中發(fā)揮重要作用。
信號(hào)通路的抑制劑、選擇性的抑制基質(zhì)蛋白酶和抗炎等方法在OA的治療過程中均取得一定的進(jìn)展。隨著對(duì)OA過程中的軟骨和骨的改變的分子通路的不斷認(rèn)識(shí)和理解,越來越多的潛在OA治療靶點(diǎn)將得到進(jìn)一步的評(píng)估,即進(jìn)行體外的細(xì)胞學(xué)實(shí)驗(yàn)和體內(nèi)的動(dòng)物學(xué)實(shí)驗(yàn),以此發(fā)現(xiàn)活性的分子來阻止OA的進(jìn)展和減輕疼痛。目前多學(xué)科交叉的方法和大范圍的分子生物學(xué)篩查加強(qiáng)了對(duì)OA這種多因素疾病的病理過程的認(rèn)識(shí)以及對(duì)目前的治療策略發(fā)揮重要作用。
[1] De Ceuninck F,Caliez A,Dassencourt L,et al.Pharmacological disruption of insulin-like growth factor 1 binding to IGF-binding proteins restores anabolic responsesin human osteoarthritic chondrocytes[J].Arthritis Res Ther,2004,6(5):R393-403.
[2] Goldring MB.Are bone morphogenetic proteins effective inducers of cartilage repair?Ex vivo transduction of muscle-derived stem cells[J].Arthritis Rheum,2006,54(2):387-9.
[3] Tang QO,Shakib K,Heliotis M,et al.TGFbeta3:A potential biological therapy for enhancing chondrogenesis[J].Expert Opin Biol Ther,2009,9(6):689-701.
[4] Blaney DE,Vitters EL,van der Kraan PM,et al.Expression of transforming growth factor-beta(TGFbeta)and the TGFbeta signaling molecule Smad-2P in spontaneous and instability-induced osteoarthritis:role in cartilage degradation,chondrogenesis and osteophyte formation[J].Ann Rheum Dis,2006,65(11):1414-21.
[5] Muddasani P,Norman JC,Ellman M,et al.Basic fibroblast growth factor activates the MAPK and NFkappaB pathways that converge on Elk-1 to control production of matrix metalloproteinase-13 by human adult articular chondrocytes[J].J Biol Chem,2007,282(43):31409-21.
[6] Li X,Wu JF.Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases(MMPs).Recent Pat Anticancer Drug Discov 2010[J].5(2):109-41.
[7] Baragi VM,Becher G,Bendele AM,et al.A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis:Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models[J].Arthritis Rheum,2009,60(7):2008-18.
[8] Botter SM,Glasson SS,Hopkins B,et al.ADAMTS5-/-mice have less subchondral bone changes after induction of osteoarthritis through surgical instability:implications for a Link between cartilage and subchondral bone changes[J].Osteoarthritis Cartilage,2009,17(5):636-45.
[9] Sahebjam S,Khokha R,Mort JS.Increased collagen and aggrecan degradation with age in the joints of Timp3(-/-)mice[J].Arthritis Rheum,2007,56(3):905-9.
[10]Kashiwagi M,Tortorella M,Nagase H,et al.TIMP-3 is a potent inhibitor of aggrecanase 1(ADAM-TS4)and aggrecanase 2(ADAMTS5).J Biol Chem 2001[J].276(16):12501-4.
[11] Troeberg L,Fushimi K,Khokha R,et al.Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases[J].FASEB J,2008,22(10):3515-24.
[12]Chevalier X,Goupille P,Beaulieu AD,et al.Intra articular injection of anakinra in osteoarthritis of the knee:a multicenter,randomized,double-blind,placebo controlled study[J].Arthritis Rheum,2009,61(3):344-352.
[13]Bacconnier L,Jorgensen C,Fabre S.Erosive osteoarthritis of the hand:clinical experience with anakinra[J].Ann Rheum Dis,2009,68(6):1078-9.
[14]Cohen SB,Proudman S,Kivitz AJ,et al.A randomized,doubleblind study of AMG 108(a fully human monoclonal antibody to IL-1R1)in patients with osteoarthritis of the knee[J].Arthritis Res Ther,2011,13(4):R125.
[15]Magnano MD,Chakravarty EF,Broudy CA,et al.A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands[J].J Rheumatol,2007,34(6):1323-7.
[16]Verbruggen G,Wittoek R,Cruyssen BV.Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints:a double blind,randomised trial on structure modification[J].Ann Rheum Dis,2012,71(6):891-8.
[17]Mazzetti I,Grigolo B,Pulsatelli L,et al.Differential roles of nitric oxide and Oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis[J].Clin Sci(Lond),2001,101(6):593-9.
[18]Studer RK,Levicoff E,Georgescu H,et al.Nitric oxide inhibits chondrocyte response to IGF-I:inhibition of IGF-IRbeta tyrosine phosphorylation[J].Am J Physiol Cell Physiol,2000,279(4):C961-9.
[19]Yudoh K,Shishido K,Murayama H,et al.Water-soluble c60 fullerene prevents degeneration of articular cartilage in Osteoarthritis via down-regulation of chondrocyte catabolic activity and inhibition of cartilage degeneration during disease development[J].Arthritis Rheum,2007,56(10):3307-18.
[20]Yudoh K,Nakamura H,Masuko-Hongo K,et al.Catabolic stress induces expression of hypoxia-inducible factor(HIF)-1alpha in articular chondrocytes:involvement of HIF-1alpha in the pathogenesis of osteoarthritis[J].Arthritis Res Ther,2005,7(4):R904-14.
[21]Fernandez P,Guillen MI,Gomar F,et al.Expression of heme oxygenase-1 and regulation by cytokines in human osteoarthritic chondrocytes[J].Biochem Pharmacol,2003,66(10):2049-52.
[22]Guillen MI,Megias J,Gomar F,et al.Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes[J].J Pathol,2008,214(4):515-22.
[23]Clerigues V,Isabel Guillen M,Gomar FA.Haem oxygenase-1 counteracts the effects of interleukin-1 beta on inflammatory and senescence markers in cartilage-subchondral bone explants from osteoarthritic patients[J].Clin Sci(Lond),2012,122(5/6):239-50.
[24]Shortkroff S,Yates KE.Alteration of matrix glycosaminoglycans diminishes articular chondrocytes'response to a canonical Wnt signal[J].Osteoarthritis Cartilage,2007,15(2):147-54.
[25]Blom AB,Brockbank SM,van Lent PL,et al.Involvement of the Wnt signaling pathway in experimental and human osteoarthritis prominent role of Wnt-Induced signaling protein 1[J].Arthritis Rheum,2009,60(2):501-12.
[26]Loughlin J,Dowling B,Chapman K,et al.Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females[J].Proc Natl Acad Sci USA,2004,101(26):9757-62.
[27]Lane NE,Nevitt MC,Lui LY,et al.Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women[J].Arthritis Rheum,2007,56(10):3319-25.
[28]Ruiz-Heiland G,Horn A,Zerr P,et al.Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis[J].Ann Rheum Dis,2012,71(3):400-7.
[29]Ng TC,Chiu KW,Rabie AB,et al.Repeated mechanical loading enhances the expression of Indian hedgehog in condylar cartilage[J].Front Biosci,2006,11(11):943-8.
[30]Lin AC,Seeto BL,Bartoszko JM,et al.Modulating hedgehog signaling can attenuate the severity of osteoarthritis[J].Nat Med,2009,15(12):1U11-421.
[31]Shakibaei M,John T,Schulze-Tanzil GA,et al.Suppression of NF-kappa B activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis[J].Biochem Pharmacol,2007,73(9):1434-45.
[32]Chen LX,Lin L,Wang HJ,et al.Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vectormediated NF-kappaBp65-specific siRNA[J].Osteoarthritis Cartilage,2008,16(2):174–84.
[33]Lauder SN,Carty SM,Carpenter CE,et al.Interleukin-1 beta induced activation of nuclear factor-kappa b can be inhibited by novel pharmacological agents in osteoarthritis[J].Rheumatology(Oxford),2007,46(5):752-8.
[34] Pelletier JP,Fernandes JC,Brunet J,et al.In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis isassociated with a reduction in the development of structural changes[J].Arthritis Rheum,2003,48(6):1582-93.
[35]Appleton C,Usmani SE,Mort JS.Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation[J].Lab Invest,2010,90(1):20-30.
[36]Prasadam I,Mao XZ,Shi W,et al.Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on antihypertrophic and pro-chondrogenic activities in osteoarthritis treatment[J].J Mol Med(Berl),2013,91(3):369-80.