張 敏,王愛玲,楊 軍,杜 娟,廖新福
(新疆維吾爾自治區(qū)葡萄瓜果研究所,新疆 鄯善838200)
甜瓜‘黃醉仙’果實(shí)采后軟化過程中細(xì)胞壁水解酶的變化
張 敏,王愛玲,楊 軍,杜 娟,廖新福
(新疆維吾爾自治區(qū)葡萄瓜果研究所,新疆 鄯善838200)
【目的】 研究甜瓜品種‘黃醉仙’果實(shí)采后用1-MCP處理后細(xì)胞壁水解酶的變化規(guī)律,為提高其商品性、延長(zhǎng)其貨架期提供參考。【方法】 以達(dá)到商品成熟度的‘黃醉仙’甜瓜果實(shí)為試材,用1 μL/L 1-MCP室溫熏蒸24 h后常溫貯藏,以不處理果實(shí)為對(duì)照,測(cè)定果實(shí)硬度及β-半乳糖苷酶 (β-Gal)、 α-L-阿拉伯呋喃糖苷酶 (α-Af)、纖維素酶、多聚半乳糖醛酸酶 (PG)、果膠甲酯酶(PME)活性,分析‘黃醉仙’果實(shí)的軟化機(jī)制?!窘Y(jié)果】 ‘黃醉仙’果實(shí)采后硬度降低,經(jīng)1-MCP處理后果實(shí)的硬度顯著高于對(duì)照;對(duì)照果實(shí)β-Gal、α-Af、纖維素酶活性分別在采后1,5,6 d達(dá)到最高,而1-MCP處理果實(shí)β-Gal、α-Af、纖維素酶活性峰值均在采后10 d出現(xiàn);對(duì)照果實(shí)PG活性在采后4 d達(dá)到最高,1-MCP處理果實(shí)在采后8 d達(dá)到最高;對(duì)照果實(shí)PME活性持續(xù)下降,1-MCP處理果實(shí)PME活性高于對(duì)照。【結(jié)論】 甜瓜‘黃醉仙’果實(shí)采后軟化是β-Gal、α-Af、PG、PME、纖維素酶共同作用的結(jié)果,其中,β-Gal和PME主要參與早期成熟,而PG、纖維素酶、α-Af則影響中后期成熟軟化;1-MCP抑制了β-Gal、α-Af、纖維素酶、PG活性,延緩了PME活性的下降趨勢(shì),這可能也是1-MCP能對(duì)果實(shí)進(jìn)行保鮮的原因之一。
甜瓜;采后生理;細(xì)胞壁水解酶;1-MCP
甜瓜品種‘黃醉仙’以其外觀金黃、肉質(zhì)細(xì)軟、香氣濃郁而深受消費(fèi)者的喜愛。但該品種采后易過度軟化,使其只能在生產(chǎn)地附近消費(fèi),限制了其商品性和貨架期。果實(shí)軟化是一個(gè)程序化發(fā)育的成熟進(jìn)程,與多聚半乳糖醛酸酶(PG)、果膠甲酯酶(PME)、β-半乳糖苷酶(β-Gal)等引起的細(xì)胞壁成分水解有關(guān)[1]。Brummell等[2]認(rèn)為,在果實(shí)成熟早期,β-Gal可能限制或者控制著引起果實(shí)軟化的其他成熟相關(guān)酶的活性。β-Gal和α-L-阿拉伯呋喃糖苷酶(α-Af)活性與蘋果果實(shí)質(zhì)地軟化及細(xì)胞壁組分的變化相關(guān)性顯著,果實(shí)耐貯性越差,2種酶活性越高[3]。α-Af起誘導(dǎo)桃、香蕉果實(shí)成熟的作用,在果實(shí)軟化中作用明顯[4-6]。桃果實(shí)硬度與PG和纖維素酶活性呈極顯著負(fù)相關(guān)[7]。目前,國(guó)內(nèi)針對(duì)甜瓜軟化相關(guān)水解酶的研究多集中在PG、PME、纖維素酶和β-Gal等[8-11]上,對(duì)α-Af在甜瓜軟化中的作用尚鮮見報(bào)道。本研究以軟化迅速的甜瓜品種‘黃醉仙’為材料,用保鮮劑1-MCP進(jìn)行處理,分析β-Gal、α-Af、纖維素酶、PG和PME等5種重要的細(xì)胞壁水解酶在采后不同時(shí)間的活性變化,探究其在‘黃醉仙’果實(shí)軟化過程中的作用,以期為提高‘黃醉仙’果實(shí)的商品性、延長(zhǎng)其貨架期提供參考。
1.1 試材及處理
甜瓜品種‘黃醉仙’(CucumismeloL.‘Huangzuixian’) 來自新疆維吾爾自治區(qū)葡萄瓜果研究所基地,選取達(dá)到商品成熟度、無日灼、傷病及果型、果色一致的果實(shí),用 1 μL/L 1-MCP室溫熏蒸24 h后,儲(chǔ)于溫度25 ℃、相對(duì)濕度70%的地下室。
對(duì)照每天取樣1次,共取樣10次;1-MCP處理前5次為每天取樣,第6次起為隔天取樣,共取樣10次。每次隨機(jī)選取12個(gè)瓜,將樣品迅速切塊、混合均勻后,于-70 ℃保存。
1.2 果實(shí)硬度及細(xì)胞酶活性的測(cè)定
果實(shí)硬度用GY-4型果實(shí)硬度計(jì)測(cè)定,單位為“kg/cm2”;細(xì)胞壁水解酶的提取參照 Jeong等[12]的方法;β-Gal活性測(cè)定按Brummell等[13]的方法,α-Af活性測(cè)定參考Sozzi等[14]的方法,分別以對(duì)硝基酚半乳糖苷和對(duì)硝基酚阿拉伯呋喃糖苷(Sigma公司)為底物,37 ℃反應(yīng)30 min,于波長(zhǎng)400 nm下定量分析酶水解生成的對(duì)硝基酚(PNP)含量,以對(duì)硝基酚作標(biāo)準(zhǔn)曲線,以每g鮮樣每min水解生成1 nmol對(duì)硝基酚為一個(gè)酶活;纖維素酶活性通過羥甲基纖維素釋放的還原端來測(cè)定[15],其還原端以D-葡萄糖為標(biāo)準(zhǔn),每g鮮樣每h產(chǎn)生相當(dāng)于1 μg葡萄糖的還原糖為一個(gè)酶活單位;PG 活性測(cè)定參考曹建康等[16]的方法;PME活性測(cè)定參照 Rastegar等[15]的方法,活性單位以每 g鮮質(zhì)量每 min 吸光度值(OD620)的變化表示,即“ΔOD620/(g·min)”。
1.3 數(shù)據(jù)分析
試驗(yàn)數(shù)據(jù)均用Excel 2003進(jìn)行處理,用SAS 8.1統(tǒng)計(jì)軟件進(jìn)行差異顯著性分析。
2.1 甜瓜果實(shí)采后軟化過程中的硬度變化
甜瓜‘黃醉仙’果實(shí)采后軟化過程中的硬度變化見圖1。
圖1 甜瓜‘黃醉仙’果實(shí)采后軟化過程中的硬度變化Fig.1 Changes in firmness of ‘Huangzuixian’ melons during post-harvest softening
如圖1所示,‘黃醉仙’果實(shí)采后貯藏期間硬度降低迅速,保鮮劑1-MCP處理顯著延緩了這種趨勢(shì)(P<0.05)。果實(shí)起始硬度為3.01 kg/cm2,采后6 d,對(duì)照果實(shí)硬度降至2.46 kg/cm2,下降了18.1%;而經(jīng)1-MCP處理的‘黃醉仙’果實(shí)硬度則降至2.79 kg/cm2,僅下降了7.5%。采后14 d 時(shí),1-MCP處理的‘黃醉仙’果實(shí)硬度為2.49 kg/cm2,仍高于對(duì)照采后6 d的硬度水平。
2.2 甜瓜果實(shí)采后軟化過程中相關(guān)酶活性的變化
β-Gal是與細(xì)胞壁多糖組分降解相關(guān)的重要糖苷酶之一,可通過降解具有支鏈的多聚醛酸使細(xì)胞壁組分變得不穩(wěn)定,從而使果膠降解或溶解。如圖2-A所示,對(duì)照甜瓜‘黃醉仙’β-Gal的活性在采后第1 天迅速達(dá)到峰值,之后下降;而經(jīng)1-MCP處理后,其β-Gal活性一直緩慢上升,峰值在第10 天才出現(xiàn),且峰值與對(duì)照的活性峰值相差不大,之后活性緩慢下降??梢?,1-MCP處理顯著抑制了β-Gal的活性,但并不顯著改變其活性峰值。
α-Af 作為重要的糖苷酶之一,與植物細(xì)胞壁果膠、半纖維素多聚體中阿拉伯糖支鏈的降解密切相關(guān)。由圖2-B可見,對(duì)照甜瓜‘黃醉仙’α-Af酶活性在采后前3 d上升緩慢,4 d后開始迅速上升,5 d達(dá)到峰值,之后下降;而經(jīng)1-MCP處理后,其活性峰值在采后10 d才出現(xiàn),且峰值與對(duì)照峰值相當(dāng),之后活性迅速下降??梢?,1-MCP處理顯著延遲了α-Af活性峰的出現(xiàn)時(shí)間,但并不改變其峰值。
圖2 甜瓜‘黃醉仙’果實(shí)采后β-Gal(A)和α-Af(B)活性的變化Fig.2 Changes in β-Gal(A) and α-Af(B) activities of ‘Huangzuixian’ melons after harvest
從圖3-A可見,采后貯藏期間,‘黃醉仙’對(duì)照果實(shí)纖維素酶活性迅速上升,到采后6 d達(dá)到峰值,之后下降,但其活性一直保持在較高水平。而經(jīng)1-MCP處理后,其上升趨勢(shì)明顯減緩,活性峰值在第10 天才出現(xiàn),峰值比對(duì)照峰值明顯偏低,之后活性緩慢下降,但仍處于較高的活性水平??梢?-MCP處理顯著延遲了纖維素酶活性峰的出現(xiàn)時(shí)間,并降低了活性峰值。
從圖3-B可見,采后2 d,甜瓜‘黃醉仙’對(duì)照果實(shí)PG活性變化不大,采后3 d迅速上升, 4 d達(dá)到峰值,之后下降,但總體活性較高。而經(jīng)1-MCP處理后,其活性峰在采后8 d才出現(xiàn),峰值與對(duì)照峰值相當(dāng),之后活性緩慢下降,但也處于較高的活性水平。1-MCP處理顯著延遲了PG酶活性峰的出現(xiàn)時(shí)間,對(duì)其峰值影響不大。
圖3 甜瓜‘黃醉仙’果實(shí)采后纖維素酶(A)和PG(B)活性的變化Fig.3 Changes in Cellulase(A) and PG(B) activities of ‘Huangzuixian’ melons after harvest
從圖4可見,在整個(gè)貯藏期,甜瓜‘黃醉仙’果實(shí)采后PME活性迅速下降,對(duì)照下降速度顯著高于1-MCP處理組。1-MCP處理顯著延緩了PME酶活性的下降趨勢(shì)。
圖4 甜瓜‘黃醉仙’果實(shí)采后PME活性的變化Fig.4 Changes in PME activity of ‘Huangzuixian’ melons after harvest
硬度決定著果實(shí)的品質(zhì),在果實(shí)軟化過程中,細(xì)胞壁水解酶降解細(xì)胞壁組分,導(dǎo)致果實(shí)硬度降低。本研究選用的‘黃醉仙’是軟肉型甜瓜品種,采收時(shí)硬度就不高,僅為3.01 kg/cm2,采后其硬度迅速下降,與之呼應(yīng),β-Gal、α-Af、纖維素酶、PG等4種重要細(xì)胞壁水解酶的活性逐漸上升。
在對(duì)照果實(shí)軟化過程中,β-Gal活性在采后1 d即達(dá)到最高,而α-Af活性在采后5 d最高,PG活性在采后4 d 最高,纖維素酶活性在采后6 d 達(dá)到最高,但PME活性一直下降。而經(jīng)過1-MCP處理后,β-Gal、α-Af和纖維素酶活性高峰在采后10 d出現(xiàn),PG活性高峰出現(xiàn)在采后8 d,4個(gè)酶活性峰值出現(xiàn)時(shí)間均延遲,除纖維素酶活性峰值明顯低于對(duì)照外,其余酶活性峰值與對(duì)照差異不大;而其PME活性緩慢下降,且高于對(duì)照。相比對(duì)照,用1-MCP處理過的‘黃醉仙’果實(shí)硬度明顯得到了保持。
有研究表明,β-Gal與桃果實(shí)成熟前期果實(shí)的軟化啟動(dòng)密切相關(guān)[13,17],而α-Af是桃果實(shí)成熟后期果肉軟化的重要作用酶[4,6];香蕉α-Af活性在果實(shí)成熟初期的變化很小,在果實(shí)硬度急劇下降時(shí)達(dá)到最大[5];纖維素酶活性可能引起難溶性的半纖維素向易溶性的半纖維素轉(zhuǎn)化,從而導(dǎo)致青梅果肉硬度迅速下降[18];進(jìn)入后熟軟化階段后,蘋果果實(shí)PG活性提高[3],桃PG活性高峰出現(xiàn)于成熟后期[17];龍眼果肉貯藏過程中PME活性下降[19]。結(jié)合本研究結(jié)果,推測(cè)β-Gal、PME可能在成熟早期對(duì)于啟動(dòng)果實(shí)軟化起作用,而α-Af、纖維素酶、PG在果實(shí)軟化后期發(fā)揮作用。
用乙烯處理果實(shí)可促進(jìn)成熟、降低硬度,因此乙烯也被稱為催熟激素。乙烯在細(xì)胞質(zhì)內(nèi)誘導(dǎo)胞壁水解酶的合成并輸向細(xì)胞壁,從而促進(jìn)胞壁水解軟化。作為乙烯強(qiáng)有力的競(jìng)爭(zhēng)性抑制劑,1-MCP的應(yīng)用成為果蔬保鮮上的熱點(diǎn)。研究表明,蘋果采后β-Gal、α-Af活性和PG基因表達(dá)受1-MCP的強(qiáng)烈抑制[3]。1-MCP處理對(duì)鱷梨果實(shí)PG活性上升的抑制長(zhǎng)達(dá)12 d[12];1-MCP 處理可降低番茄果實(shí)PG活性和果實(shí)硬度,延緩果實(shí)成熟,但 1-MCP 只是推遲成熟相關(guān)變化的進(jìn)程,而并不顯著改變其峰值[20]。經(jīng)1-MCP處理,鱷梨PME活性下降趨勢(shì)減緩[21-22],這與本研究結(jié)論一致。據(jù)此推測(cè),1-MCP可能是通過延緩果實(shí)細(xì)胞壁水解酶活性的上升而達(dá)到保持硬度的目的,從而實(shí)現(xiàn)延長(zhǎng)貨架期的作用。
本研究中,隨著甜瓜品種‘黃醉仙’果實(shí)軟化的推進(jìn),細(xì)胞壁水解酶活性上升。但果實(shí)軟化是一個(gè)復(fù)雜的過程,仍需結(jié)合細(xì)胞壁成分變化、細(xì)胞超微結(jié)構(gòu)等來進(jìn)一步闡明。
[1] Payasi A,Mishra N N,Chaves A L S,et al.Biochemistry of fruit softening:An overview [J].Physiology and Molecular Biology of Plants,2009,15(2):103-113.
[2] Brummell D A,Harpster M H.Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants [J].Plant Molecular Biology,2001,47(1):311-339.
[3] 魏建梅.蘋果(MalusdomesticaBorkh.)果實(shí)質(zhì)地品質(zhì)發(fā)育及采后調(diào)控的生理和分子基礎(chǔ) [D].陜西楊凌:西北農(nóng)林科技大學(xué),2009.
Wei J M.Study on physiological and molecular mechanism of fruit texture development and post-harvest regulation of apple (MalusdomesticaBorkh.) [D].Yangling,Shaanxi:Northwest A&F University,2009.(in Chinese)
[4] 索 標(biāo).桃果實(shí)軟化過程中細(xì)胞壁多糖降解特性的研究 [D].揚(yáng)州:揚(yáng)州大學(xué),2006.
Suo B.Studies on degradation characteristic of cell-wall polysaccharide during peach fruit ripening [D].Yangzhou:Yangzhou University,2006.(in Chinese)
[5] Zhuang J P,Su J,Li X P,et al.Changes in α-L-arabinofuranosidase activity in peel and pulp of banana(Musasp.)fruits during ripening and softening [J].Journal of Plant Physiology and Molecular Bilology,2007,33(2):131-136.
[6] 闞 娟.不同溶質(zhì)型桃果實(shí)成熟軟化機(jī)理研究 [D].揚(yáng)州:揚(yáng)州大學(xué),2011.
Kan J.Study on mechanism of ripening and softening of peach fruit [D].Yangzhou:Yangzhou University,2011.(in Chinese)
[7] 胡留申,董曉穎,李培環(huán),等.桃果實(shí)成熟前后細(xì)胞壁成分和降解酶活性的變化及其與果實(shí)硬度的關(guān)系 [J].植物生理學(xué)通訊,2007,43(5):837-841.
Hu L S,Dong X Y,Li P H,et al.Changes in cell wall components and degrading enzyme activity and their relation to hardness in fruits of peach (PrunuspersicaL.) before and after ripening [J].Plant Physiology Communications,2007,43(5):837-841.(in Chinese)
[8] 孫愛萍.1-甲基環(huán)丙烯延緩采后甜瓜果實(shí)衰老的研究 [D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2009.
Sun A P.A study on 1-methylcyclopropene delay postharvest senescence of Hami melon fruit [D].Urumqi:Xinjiang Agriculture University,2009.(in Chinese)
[9] 呂雙雙,李天來,吳志剛,等.采前噴鈣和采后浸鈣對(duì)網(wǎng)紋甜瓜采后果實(shí)軟化生理的影響 [J].江蘇農(nóng)業(yè)學(xué)報(bào),2009,25(2):346-350.
Lü S S,Li T L,Wu Z G,et al.Effect of pre-harvest and post-harvest calcium treatments on muskmelon softening physiology [J].Jiangsu Journal of Agricultural Sciences,2009,25(2):346-350.(in Chinese)
[10] 呂雙雙.鈣調(diào)控乙烯誘導(dǎo)網(wǎng)紋甜瓜果實(shí)軟化效果及其作用機(jī)制研究 [D].沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2009.
Lü S S.Study on regulation and mechanism of calcium on ethylene-induced muskmelon softening [D].Shenyang:Shenyang Agriculture University,2009.(in Chinese)
[11] 馬文平,倪志婧,任 賢.1-MCP對(duì)“玉金香”甜瓜采后果實(shí)軟化的作用機(jī)理 [J].西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2012,40(2):103-108.
Ma W P,Ni Z J,Ren X.Effect of 1-MCP on softening mechanism in “Yujinxiang” melon fruit during storage [J].Journal of Northwest A&F University:Natural Science Edition,2012,40(2):103-108.(in Chinese)
[12] Jeong J,Huber D J,Sargent S A.Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (Perseaamericana) fruit [J].Postharvest Biology and Technology,2002,25(3):241-256.
[13] Brummell D A,Dal Cin V,Crisosto C H,et al.Cell wall metabolism during maturation,ripening and senescence of peach fruit [J].Journal of Experimental Botany,2004,55(405):2029-2039.
[14] Sozzi G O,Fraschina A A,Navarro A A,et al.α-L-Arabinofuranosidase activity during development and ripening of normal and ACC synthase antisense tomato fruit [J].Hort Science,2002,37(3):564-566.
[15] Rastegar S,Rahemi M,Baghizadeh A,et al.Enzyme activity and biochemical changes of three date palm cultivars with different softening pattern during ripening [J].Food Chemistry,2012,134(3):1279-1286.
[16] 曹建康,姜微波,趙玉梅.果蔬采后生理生化實(shí)驗(yàn)指導(dǎo) [M].北京:中國(guó)輕工業(yè)出版社,2007:87-90.
Cao J K,Jiang W B,Zhao Y M.The physiological and biochemical experimental guide of postharvest fruits and vegetables [M].Beijing:China Light Industry Press,2007:87-90.(in Chinese)
[17] 闞 娟,金昌海,汪志君,等.β-半乳糖苷酶及多聚半乳糖醛酸酶對(duì)桃果實(shí)成熟軟化的影響 [J].揚(yáng)州大學(xué)學(xué)報(bào),2006,27(3):76-80.
Kan J,Jin C H,Wang Z J,et al.The effect of β-galactosidase and polygalacturonase on peach ripening and softening [J].Journal of Yangzhou University,2006,27(3):76-80.(in Chinese)
[18] 陸勝民,席玙芳,張耀洲.梅果采后軟化與細(xì)胞壁組分及其降解酶活性的變化 [J].中國(guó)農(nóng)業(yè)科學(xué),2003,36(5):595-598.
Lu S M,Xi Y F,Zhang Y Z.Softening of green mume flesh and changes of cell wall components and activities of their regrading enzymes during the postharvest period [J].Scientia Agricultura Sinica,2003,36(5):595-598.(in Chinese)
[19] 林河通,趙云峰,席玙芳.龍眼果實(shí)采后果肉自溶過程中細(xì)胞壁組分及其降解酶活性的變化 [J].植物生理與分子生物學(xué)學(xué)報(bào),2007,33(2):137-145.
Lin H T,Zhao Y F,Xi Y F.Changes in cell wall components and cell wall-degrading enzyme activities of postharvest longan fruit during aril breakdown [J].Journal of Plant Physiology and Molecular Biology,2007,33(2):137-145.(in Chinese)
[20] Mostofi Y,Toivonen P,Lessani H,et al.Effects of 1-methylcyclopropene on ripening of greenhouse tomatoes at three storage temperatures [J].Postharvest Biology and Technology,2003,27(3):285-292.
[21] Jeong J,Huber D J.Suppression of avocado (PerseaamericanaMill.) fruit softening and changes in cell wall matrix polysaccharides and enzyme activities:Differential responses to 1-MCP and delayed ethylene application [J].Journal of the American Society for Horticultural Science,2004,129(5):752-759.
[22] Thumdee S,Manenoi A,Chen N J,et al.Papaya fruit softening:Role of hydrolases [J].Tropical Plant Biology,2010,3(2):98-109.
Changes of cell wall degrading enzymes during post-harvest softening of melon ‘Huangzuixian’
ZHANG Min,WANG Ai-ling,YANG Jun,DU Juan,LIAO Xin-fu
(XinjiangGrapesandMelonsResearchInstitute,Shanshan,Xinjiang838200,China)
【Objective】 This study investigated the changes of cell wall degrading enzymes after fruits of melon ‘Huangzuixian’ were harvested and treated by 1-MCP to provide information for marketability improving and shelf-life extending.【Method】 Fruits of melon ‘Huangzuixian’ harvested at commercial maturity were treated with 1 μL/L 1-MCP for 24 hours before being stored at room temperature.Fruit firmness and activities of β-galactosidase (β-Gal),α-L-arabinofuranosidase (α-Af),cellulase,polygalacturonase (PG),and pectinesterase (PME) during the softening process were measured and analyzed.【Result】 Fruit firmness decreased throughout the experimental period,and firmness of fruits treated with 1-MCP was significantly higher than the control.Activities of β-Gal,α-Af,cellulose,and PG peaked at 1 d,5 d,6 d,and 4 d after harvest while those of 1-MCP treated fruits peaked at 10 d,10 d,10 d,and 8 d after harvest,respectively.PME activities of fruits in both control and 1-MCP treatment declined,but 1-MCP treatment had higher levels.【Conclusion】 Softening of melon ‘Huangzuixian’ fruits resulted from interactions of β-Gal,α-Af,PG,PME,and cellulose.PME and β-Gal contributed to the initiation of softening,while PG,α-Af and cellulase remarkably contributed to middle and later fast-softening.1-MCP inhibited the activities of β-Gal,α-Af,PG and cellulose and slowed the decrease of PME activity.This was one possible reason why 1-MCP could keep fruits fresh.
melon;post-harvest physiology;cell wall degrading enzymes;1-MCP
2013-11-18
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-26-21)
張 敏(1983-),女,陜西高陵人,農(nóng)藝師,碩士,主要從事甜瓜采后研究。E-mail:minz@sina.cn
廖新福(1960-),男,新疆石河子人,研究員,碩士生導(dǎo)師,主要從事西瓜、甜瓜育種與栽培研究。
時(shí)間:2015-03-12 14:17
10.13207/j.cnki.jnwafu.2015.04.028
S652.301
A
1671-9387(2015)04-0113-05
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20150312.1417.028.html