国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

碎屑電氣石的LA-MC-ICPMS硼同位素原位微區(qū)分析及其源區(qū)示蹤: 以哀牢山構造帶為例

2015-07-02 05:27聶小松夏小平任鐘元
地球化學 2015年5期
關鍵詞:電氣石盆系哀牢山

聶小松, 夏小平, 張 樂, 任鐘元, 李 玲

(1. 中國科學院 廣州地球化學研究所 同位素地球化學國家重點實驗室, 廣東 廣州 510640; 2. 中國科學院大學, 北京 100049)

0 引 言

硼有兩個穩(wěn)定同位素10B和11B, 是自然界中同位素相對質(zhì)量差最大的元素之一(Δm/m≈10%), 在自然過程中同位素分餾效應十分顯著。目前文獻報道的自然界中不同儲庫的δ11B值變化范圍為–37‰ ~+58‰[1–4], 其中較負的δ11B值常見于非海相蒸發(fā)硼酸鹽礦物和某些電氣石, 而較正的δ11B值則常見于某些鹽湖鹵水和蒸發(fā)海水[4–5]。硼同位素已廣泛應用于地熱與水環(huán)境地球化學[6–9]、殼-幔演化作用[10–12]、礦床成礦環(huán)境及物質(zhì)來源[13–18]、海陸相形成環(huán)境[19–21]、重建古海洋環(huán)境與古氣候演變[22–25]以及天體地球化學[1,24]研究之中。

目前最廣泛使用的硼同位素分析方法為表面熱電離質(zhì)譜(TIMS)法, 該方法具有較高的分析精度但化學分離提純過程繁瑣, 而且該過程可能產(chǎn)生硼同位素分餾[26–27]。近些年硼同位素微區(qū)原位分析方法取得了很大的發(fā)展, 用離子探針或激光剝蝕多接收電感耦合等離子體質(zhì)譜(LA-MC-ICPMS)直接對地質(zhì)樣品進行原位硼同位素比值測定可以取得很好的分析結果[28–32]。原位微區(qū)分析方法不僅避免了常規(guī)熱電離質(zhì)譜法繁雜的化學分離純化流程, 提高了工作效率, 而且可以對礦物的環(huán)帶和微層等進行原位分析, 揭示礦物形成的多期次精細過程和不同的形成條件[31–32]。

電氣石是常見的副礦物之一, 可以在近地表到上地幔的溫壓范圍內(nèi)保持穩(wěn)定, 它硬度大, 物理化學性質(zhì)非常穩(wěn)定, 能在巖石風化、沉積物搬運、成巖過程中保持穩(wěn)定, 是沉積巖中常見的重礦物之一,與鋯石、金紅石合稱為沉積巖中的三大“超穩(wěn)定的礦物”。這種優(yōu)良的物理化學穩(wěn)定性使得碎屑電氣石能夠準確地指示源區(qū)組成, 有效地保留原巖信息[33–35],是物源分析的理想指針礦物[36–37]。巖漿成因和變質(zhì)成因的電氣石具有不同的 Mg、Ca、Fe、Al[34–35]和F、Li[34]組成。這一特征已廣泛應用于沉積巖物源研究之中[37–39]。電氣石是自然界中硼的主要載體之一,硼含量高(~3%), 因此也是一個硼同位素分析和示蹤的理想礦物。

電氣石的硼同位素在礦床成因和成巖物質(zhì)來源[13,15,33,40,41]等方面的研究顯示它能很好地保存其形成時的地球化學和同位素信息, 對其寄主巖組成具有良好指示作用[33–35]。結合電氣石穩(wěn)定的物理化學性質(zhì), 電氣石的硼同位素可以用來對沉積巖進行源區(qū)分析, 對沉積巖的源區(qū)分析提供新的工具。因此本文利用中國科學院廣州地球化學研究所同位素地球化學國家重點實驗室建立的LA-MC-ICPMS電氣石硼同位素原位微區(qū)分析方法, 以哀牢山構造帶縫合線兩側碎屑巖為例, 對兩側志留系-泥盆系沉積巖中的碎屑電氣石進行原位硼同位素測定, 結合已有的碎屑鋯石年代學數(shù)據(jù), 嘗試反演其物源信息, 為哀牢山構造帶的古特提斯演化提供新的制約,探討碎屑電氣石的硼同位素對碎屑巖源區(qū)示蹤的意義。

1 區(qū)域地質(zhì)背景及樣品描述

哀牢山構造帶夾持于思茅-印支地塊與揚子陸塊之間[42–43], 經(jīng)歷了哀牢山古特提斯洋或者弧后盆地的打開與閉合, 是理解古特提斯演化最關鍵的地區(qū)之一。該構造帶總體呈北西-南東向展布, 北西窄,南東寬, 在云南省中西部延伸上千千米[42,44–47]。哀牢山構造帶是一個由不同時代地質(zhì)單元組合構成的復合構造帶, 其組成多樣、結構復雜, 經(jīng)歷了長時期、多期次的地塊拼貼和改造。該構造帶可沿哀牢山斷裂分為東西兩個部分, 西部主要為奧陶系-早三疊沉積地層, 而東部為元古代哀牢山深變質(zhì)巖系,而整個區(qū)域都發(fā)育有大量不同時期的火山-沉積巖、基性-超基性和中-酸性巖(圖1)[43]。

哀牢山構造帶鄰區(qū)主要地質(zhì)單元和斷裂邊界可依次自西向東劃分為: 蘭坪-思茅盆地、李仙江-阿墨江斷裂、哀牢山構造帶、紅河斷裂、揚子板塊(圖1)。揚子板塊具有太古代-古元古代的結晶基底, 靠近哀牢山構造帶的揚子板塊西緣結晶基底僅在大紅山、東川等地方出露, 大部分區(qū)域被新元古代火山-沉積巖、未變質(zhì)-弱變質(zhì)古生代地層和二疊紀峨眉山溢流玄武巖所覆蓋[43,48]。

圖1 哀牢山構造帶及鄰區(qū)區(qū)域地質(zhì)簡圖Fig.1 Simplified geological map of the Ailaoshan belt and its adjacent region據(jù)1990年云南區(qū)域地質(zhì)圖[48]及Wang et al.[49]改編

此次的研究地區(qū)位于綠春墨江地區(qū)和相鄰揚子西緣的建水地區(qū)。綠春-墨江地區(qū)志留系-泥盆系地層出露較完整, 巖性上主要為中細粒砂巖及粉砂巖夾少量頁巖(圖1, 圖2); 建水地區(qū)志留系-泥盆系主要為一套中細粒砂巖及粉砂巖夾少量頁巖(圖1, 圖2)。在綠春-墨江地區(qū)和建水地區(qū)分別采集了樣品CLX55、CLX61、CLX63和 CLX04、CLX05、CLX19,所有樣品均為中細粒砂巖, 其具體采樣層位及位置見圖1和圖2。

2 實驗方法

野外采集的新鮮巖石樣品送河北廊坊區(qū)調(diào)研究所實驗室通過機械破碎, 淘洗、 磁選和重液分選后,每個樣品分離出約1000粒碎屑電氣石。然后在雙目鏡下每個樣品隨機挑選 200粒, 固定在玻璃板上,以環(huán)氧樹脂充填固結制成靶, 將其進行拋光。隨后將樣品靶進行透/反射光以及BSE照相, 獲得其內(nèi)部結構, 以便分析測試時避開破裂或含有包裹體的位置, 并區(qū)分可能不同期次形成的環(huán)帶結構, 篩選出最佳的分析點位(圖3)。

電氣石的LA-MC-ICPMS微區(qū)原位硼同位素分析測定在中國科學院廣州地球化學研究所同位素地球化學國家重點實驗室完成。分析所使用的儀器為Thermo Scientific公司生產(chǎn)的Neptune Plus多接收等離子體質(zhì)譜儀及與之相連接的美國 Resonetics LLC公司生產(chǎn)的RESOlution M-50激光剝蝕系統(tǒng)。激光剝蝕條件為: 束斑直徑45 μm, 剝蝕頻率5 Hz, 激光輸出能量100 mJ, 經(jīng)過50%的衰減后作用于樣品表面。剝蝕產(chǎn)生的氣溶膠以He氣作為載氣帶出, 通過三通與Ar氣混合載入MC-ICPMS進行離子化。10B和11B分別以法拉第杯L3和H3同時靜態(tài)接收。正式測定之前先以線掃描國際原子能機構的電氣石硼同位素標樣IAEA B4[26–27]對儀器參數(shù)進行調(diào)試, 使之達到最佳狀態(tài)。數(shù)據(jù)采集所用的積分時間為0.131 s,共采集400組數(shù)據(jù), 包括200組氣體空白測試(不開激光), 共耗時約為54 s。每個點分析完成后等待30 s清洗時間再開始下一個點的分析。10B和11B的信號強度在0.5 V和2.3 V左右, 背景信號強度分別小于0.003 V和0.01 V。在分析過程中采用每10個未知樣品點前后分別分析 2個標樣點, 以 4個標樣點的平均值校正未知樣品的方法, 來校正儀器質(zhì)量歧視和同位素分餾。以 IAEA B4 ((δ11B=(–8.71 ± 0.18)‰)為校正標準, 以中國地質(zhì)科學院礦產(chǎn)資源研究所電氣石標樣 IMR RB1作為監(jiān)控標樣, 本實驗測試中25個IMR RB1分析點給出的δ11B結果(表1)加權平均值為(–13.34±0.20)‰ (1σ, 圖 4), 跟侯可軍等[32]報道的(–12.96±0.49)‰ (1σ)在誤差范圍內(nèi)一致。

圖3 樣品碎屑電氣石BSE圖像及對應的δ11B值Fig.3 BSE images of some detrital tourmalines and corresponding δ11B valuesδ11B (‰) = [(11B/10B)樣品/(11B/10B)NIST SRM 951-1]×1000, 紅色圓圈代表分析點位, 紅色數(shù)值為 δ11B 值The red circles indicate the analytical spots. Numbers near the analytical spots are the δ11B values

表1 電氣石標樣IMR RB1硼同位素測試結果Table 1 Analytical results of the tourmaline standard IMR RB1

圖4 電氣石標樣IMR RB1 δ11B分析結果Fig.4 Analytical results of the tourmaline standard IMR RB1

3 分析結果

樣品中的碎屑電氣石多呈長柱狀, 自形到半自形, 長 80~200 μm, 長寬比約為 1∶1 到 2∶1。反射光圖像下顏色較為均一, 可見部分包裹體及裂縫。大部分顆粒磨圓較好, 呈次棱角狀到次圓狀, 顯示其在水動力搬運過程中經(jīng)歷了較強的磨蝕作用(圖3)。

依據(jù)透反射光及BSE圖像, 在每個碎屑巖樣品中隨機挑選了約 60顆碎屑電氣石進行原位微區(qū)硼同位素分析測試, 其詳細結果見表 2, 并利用ISOPLOT version 4.7軟件[50]對每個樣品的碎屑電氣石硼同位素繪制概率密度圖(圖5)。

來自哀牢山構造帶內(nèi)的 3個樣品(CLX55,CLX61, CLX63)中的碎屑電氣石硼同位素δ11B值均較為分散(圖 5a, 圖 5b, 圖 5c), 大多數(shù)電氣石δ11B值集中在–21‰ ~ –1‰之間。其中下泥盆統(tǒng)樣品CLX63共測定了 60個數(shù)據(jù)點, 計算的δ11B值介于–24.91‰ ~ 8.73‰之間, 在概率密度圖上呈多峰狀,主要峰值有–13.51‰和–16.68‰(圖 5a); 中志留統(tǒng)樣品CLX61共測試了60個數(shù)據(jù)點, 計算的δ11B值介于–20.04‰~ 9.09‰之間, 在概率密度圖上呈多峰狀,主要峰值有–12.54‰、–14.80‰和–16.84‰(圖 5b);下志留統(tǒng)樣品 CXL55共測試了 60個數(shù)據(jù)點, 計算的δ11B 值在–19.4‰~4.16‰之間, 在概率密度圖上呈多峰狀, 主要峰值有–13.72‰和–17.64‰ (圖 5c)。

來自揚子西緣建水地區(qū)的 3個樣品(CLX04,CLX05, CLX19)碎屑電氣石硼同位素δ11B值均較為集中(圖 5d, 圖 5e, 圖 5f), 大多數(shù)電氣石δ11B值集中在–14‰ ~ –4‰之間。其中中泥盆統(tǒng)樣品CXL04共測試了 60個數(shù)據(jù)點, 計算的δ11B值在–17.41‰~14.65‰之間, 在概率密度圖上呈 1個峰值為–11.38‰主峰和幾個較小的峰(圖 5d); 中志留統(tǒng)樣品CLX05共分析了56個數(shù)據(jù)點, 計算的δ11B值介于–17.20‰ ~ 0.91‰之間, 在概率密度圖上呈1個峰值為–11.44‰的主峰和幾個較小峰值(圖5e); 下泥盆統(tǒng)樣品 CLX19共測定了 60個數(shù)據(jù)點, 計算的δ11B值介于–18.55‰ ~ –4.01‰之間, 在概率密度圖上呈一個峰值為峰值為–12.69‰主峰(圖5f)。

4 討 論

哀牢山構造帶內(nèi) 3個不同時代的樣品(CLX55,CLX61, CLX63)的碎屑電氣石δ11B值主要集中在–21‰ ~ –1‰, 均呈現(xiàn)多個峰值(圖 5a, 圖 5b, 圖 5c和圖 6a), 說明哀牢山構造帶內(nèi)下志留統(tǒng)-下泥盆系碎屑巖可能接受大致相同物源區(qū)的剝蝕供給, 而δ11B值分布范圍廣, 且呈多峰狀則可能指示了物源

區(qū)組成較為復雜多樣。樣品中有37%~42%(平均39%)的碎屑電氣石δ11B值與來自殼源花崗巖的原生電氣石的δ11B 值(–14‰ ~ –10‰)一致[4,13,41,51–53], 反映這些電氣石可能來源于殼源花崗巖[4,40]。此前的研究表明 ,結 晶 于 變 質(zhì) 流 體 中 的 電 氣 石 (–16.0‰ ~–17.1‰)[4,40]、經(jīng)歷強烈去氣作用演化晚期巖漿中結晶的電氣石 (–23‰ ~ –13.9‰)[4,54,55]以及與非海相蒸發(fā)巖相關的電氣石[56–57]具有輕的硼同位素組成, 因此樣品中 30%~44% (平均 38%)具有較輕硼同位素組成(小于–14‰)的碎屑電氣石可能來自這些環(huán)境。

表2 碎屑電氣石硼同位素測試結果Table 2 LA-MC-ICPMS in-situ boron isotopic analyses of detrital tourmalines

(續(xù)表 2)

(續(xù)表 2)

圖5 哀牢山構造帶與揚子西緣志留系-泥盆系碎屑巖樣品碎屑電氣石硼同位素概率密度圖Fig.5 Detrital tourmalines δ11B probability histograms for the analyzed samples from the Ailaoshan belt and the western margin of the Yangtze Block

圖6 哀牢山構造帶與揚子西緣志留-泥盆系樣品碎屑鋯石年齡(Nie et al., in review)及碎屑電氣石硼同位素概率密度圖Fig.6 Summary of detrital tourmalines δ11B distributions for this study and detrital zircon age distributions for previous study of sedimentary rocks from the Ailaoshan belt and the western margin of the Yangtze Block

而揚子板塊西緣 3個樣品(CLX04, CLX05,CLX19)的碎屑電氣石硼同位素概率密度圖分布較為集中,δ11B 主要集中在–16‰ ~ –1‰, 概率密度圖中呈現(xiàn)一個顯著主峰, 峰值大約在–12‰(圖5d,圖5e,圖5f, 圖6b), 可能指示主要物源較為穩(wěn)定。3個樣品中有 47%~78%(平均 58%)的碎屑電氣石具有的δ11B值在來自殼源花崗巖的原生電氣石的δ11B(–14‰ ~ –10‰)范圍內(nèi), 接近大陸地殼值[4], 反映其物源可能主要為殼源花崗巖來源[40]; 揚子西緣樣品中小于–14‰的碎屑電氣石比例為 10%~16%(平均13%), 明顯低于哀牢山構造帶內(nèi)樣品, 可能說明這些電氣石的寄主巖對物源貢獻較低; 而這些樣品中較高比例(平均27%)的電氣石具有較重硼同位素(大于–10%), 可能其源區(qū)受到來自俯沖板片流體[58–60]或者海相碳酸鹽巖、蒸發(fā)巖的影響更為明顯[4,5,61]。

對比兩側碎屑電氣石硼同位素數(shù)據(jù)可以發(fā)現(xiàn),哀牢山構造帶內(nèi)樣品所具有的特征與揚子西緣樣品顯著不同, 哀牢山構造內(nèi)樣品δ11B值較為分散, 相對較輕, 而揚子西緣樣品的δ11B值較為集中, 相對較重, 指示兩者物源存在明顯差異(圖5,圖6)。這與利用碎屑鋯石方法得出的結論較為一致, 即認為特提斯縫合線哀牢山藤條河斷裂兩側古生代沉積巖中碎屑鋯石年齡譜存在顯著差異(圖6c,圖6d), 縫合線以西思茅一側志留系-泥盆系碎屑鋯石年齡譜極為相似, 年齡主要集中在400~500 Ma和900~1000 Ma,指示碎屑巖物源較為穩(wěn)定, 但是源區(qū)組成較為復雜,可能來自印支地塊及岡瓦那大陸北緣[49,62,63]; 而縫合線以東揚子西緣志留系-泥盆系碎屑鋯石年齡主要集中在 730~1000 Ma, 指示碎屑巖物源較為穩(wěn)定且單一, 揚子西緣新元古代漢南-攀西-元江新元古代巖漿弧[45,63–66]可能為其主要源區(qū)[63]。

5 結 論

(1) 測定標樣 IMR RB1δ11B 值為(–13.34±0.20)‰ (1σ), 與前人報道在誤差范圍內(nèi), 證明我們在中國科學院廣州地球化學研究所開發(fā)的電氣石LA-MC-ICPMS硼同位素分析方法準確可靠。

(2) 哀牢山構造帶內(nèi)古特提斯縫合線以西思茅側志留系-泥盆系碎屑巖中碎屑電氣石硼同位素組成偏輕, 較為分散, 指示源區(qū)組成較為復雜。

(3) 古特提斯縫合線以東揚子西緣建水地區(qū)志留系-泥盆系碎屑巖中碎屑電氣石硼同位素組成偏重, 較為集中, 指示源區(qū)較為單一, 且源區(qū)可能受到了來自俯沖板片流體或者海相碳酸鹽巖、蒸發(fā)巖的影響。

(4) 哀牢山構造帶古特提斯縫合線兩側碎屑電氣石硼同位素特征顯著不同, 顯示兩者物源有明顯差異, 哀牢山構造帶內(nèi)的志留系-泥盆系碎屑巖并不是前人所認為的揚子被動大陸邊緣的斜坡沉積。

本研究受國家自然科學基金項目(41173007)資助。中國地質(zhì)科學院礦產(chǎn)資源研究所侯可軍博士提供了本次實驗中使用的標準電氣石樣品IAEA B4和IMR RB1; 野外和實驗過程中得到了龍曉平研究員、蔡永峰博士的支持和幫助, 在此一并表示感謝。

:

[1] Palmer M R, Swihart G H. Boron isotope geochemistry: An overview[J]. Rev Mineral, 1996, 33(1): 709–744.

[2] Jiang S Y, Palmer M R. Boron isotope systematics of tourmaline from granites and pegmatites: A synthesis[J]. Eur J Mineral, 1998, 10(6): 1253–1265.

[3] Barth S. Boron isotope variations in nature: A synthesis[J].Geol Rundsch, 1993, 82(4): 640–651.

[4] Marschall H R, Jiang S Y. Tourmaline isotopes: No element left behind[J]. Elements, 2011, 7(5): 313–319.

[5] 蔣少涌. 硼同位素及其地質(zhì)應用研究[J]. 高校地質(zhì)學報,2000, 6(1): 1–16.Jiang Shao-yong. Boron isotope and its geological applications[J]. Geol J China Univ, 2000, 6(1): 1–16 (in Chinese with English abstract).

[6] Eppich G R, Singleton M J, Wimpenny J B, Yin Q Z, Bradley K E. California GAMA Special Study: Stable isotopic composition of boron in groundwater-San Diego County Domestic Well Data[R]. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2012.

[7] Wei G J, McCulloch M T, Mortimer G, Deng W F, Xie L H.Evidence for ocean acidification in the Great Barrier Reef of Australia[J]. Geochim Cosmochim Acta, 2009, 73(8):2332–2346.

[8] Wei H Z, Jiang S Y, Tan H B, Zhang W J, Li B K, Yang T L.Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: Boron budget and sources[J]. Chem Geol, 2014, 380: 74–83.

[9] Yuan J, Guo Q, Wang Y. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. J Geochem Explor,2014, 140: 11–22.

[10] Bast R, Scherer E E, Mezger K, Austrheim H, Ludwig T,Marschall H R, Putnis A, L?wen K. Boron isotopes in tourmaline as a tracer of metasomatic processes in the Bamble sector of Southern Norway[J]. Contrib Mineral Petrol, 2014,168(4): 1–21.

[11] Genske F S, Turner S P, Beier C, Beier C, Chu Mei-Fei,Tonarini S, Pearson N J, Haase K M. Lithium and boron isotope systematics in lavas fromthe Azores islands reveal crustal assimilation[J]. Chem Geol, 2014, 373: 27–36.

[12] Jones R E, de Hoog J C M, Kirstein L A, Kasemann S A,Hinton R, Elliott T, Litvak V D, EIMF. Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics[J]. Earth Planet Sci Lett, 2014, 408: 390–401.

[13] Yang S Y, Jiang S Y. Chemical and boron isotopic omposition of tourmaline in the Xiangshan volcanic-intrusive complex,Southeast China: Evidence for boron mobilization and infiltration during magmatic-hydrothermal processes[J].Chem Geol, 2012, 312: 177–189.

[14] Hu Guyue, Li Yanhe, Fan Changfu, Hou Kejun, Zhao Yue,Zeng Lingsen.In situLA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China[J]. Ore Geol Rev, 2015, 65: 1127–1141.

[15] Slack J F, Trumbull R B. Tourmaline as a recorder of ore-forming processes[J]. Elements, 2011, 7(5): 321–326.

[16] Swihart G H, Carpenter S B, Xiao Yun, McBay E H, Smith D H, Xiao Yingkai. A boron isotope study of the Furnace Creek,California, borate district[J]. Econ Geol, 2014, 109(3):567–580.

[17] Wang F L, Wang C Y, Zhao T P. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dikes in the ~260 Ma Emeishan large igneous province (SW China)[J]. Ore Geol Rev, 2015, 65: 1110–1126.

[18] Yan X, Chen B. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: Implications for the origin of borate deposit[J]. J Asian Earth Sci, 2014, 94: 252–266.

[19] MacGregor J R, Grew E S, de Hoog J C M, Harley S L,Kowalski P M, Yates M G, Carson C J. Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, PrydzBay, East Antarctica: Evidence for a non-marine evaporite source[J]. Geochim Cosmochim Acta, 2013, 123: 261–283.

[20] Tan Hongbing, Ma Haizhou, Li Binkai, Zhang Xiying, Xiao Yingkai. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos[J]. Chinese Sci Bull, 2010, 55(27/28):3181–3188.

[21] Zhang X, Ma H, Ma Y, Tang Q, Yuan X. Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos:δ11B evidence from borates[J]. J Asian Earth Sci,2013, 62: 812–818.

[22] Kasemann S A, Schmidt D N, Bijma J, Foster G L.In situboron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH[J]. Chem Geol,2009, 260(1): 138–147.

[23] Liu Y, Liu W, Peng Z, Xiao Y K, Wei G J, Sun W D, He JF,Liu G J, Chou C L. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals[J]. Geochim Cosmochim Acta, 2009, 73(5): 1264–1272.

[24] Wei H Z, Lei F, Jiang S Y, Lu H Y, Xiao Y K, Zhang H Z, Sun X F. Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China[J]. Quatern Res, 2015, 83(1): 243–255.

[25] Pagani M, Lemarchand D, Spivack A, Gaillardet J. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates[J]. Geochim Cosmochim Acta,2005, 69(4): 953–961.

[26] Tonarini S, Pennisi M, Adorni-Braccesi A, Dini A, Ferrara G,Gonfiantini R, Wiedenbeck M, Gr?ning M. Intercomparison of boron isotope and concentration measurements. Part I:Selection, preparation and homogeneity tests of the intercomparison materials[J]. Geostand Newslett, 2003, 27(1):21–39.

[27] Gonfiantini R, Tonarini S, Gr?ning M, Adorni-Braccesi A,Al-Ammar A S, Astner M, B?chler S, Barnes R M, Bassett R L, Cocherie A. Intercomparison of boron isotope and concentration measurements. Part II: Evaluation of results[J].Geostand Newslett, 2003, 27(1): 41–57.

[28] Chaussidon M, Robert F, Mangin D, Hanon P, Rose E F.Analytical procedures for the measurement of boron isotope compositions by ion microprobe in meteorites and mantle rocks[J]. Geostand Newslett, 1997, 21(1): 7–17.

[29] Fietzke J, Heinemann A, Taubner I, B?hm F, Erez J,Eisenhauer A. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material[J]. J Anal Atom Spectrom, 2010, 25(12):1953–1957.

[30] Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E.Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: Evidence for recycled components in the Hawaiian plume[J]. Chem Geol,2004, 212(1): 143–161.

[31] Le Roux P, Shirey S, Benton L, Hauri E, Mock T.In situ,multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level[J].Chem Geol, 2004, 203(1): 123–138.

[32] 侯可軍, 李延河, 肖應凱, 劉峰, 田有榮. LA-MC-ICP-MS硼同位素微區(qū)原位測試技術[J]. 科學通報, 2010, 55(22):2207–2213.Hou Kejun, Li Yanhe, Xiao Yingkai, Liu Feng, Tian Yourong.LA-MC-ICP-MSin-situboron isotope measure technique[J].Chinese Sci Bull, 2010, 55(22): 2207–2213 (in Chinese).

[33] van Hinsberg V J, Henry D J, Dutrow B L. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past[J]. Elements, 2011, 7(5): 327–332.

[34] Henry D J, Dutrow B L. Metamorphic tourmaline and its petrologic applications[J]. Rev Mineral, 1996, 33(1): 503–557.

[35] Henry D J, Guidotti C V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine[J]. Am Mineral, 1985, 70(1/2): 1–15.

[36] Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J].Sediment Geol, 1999, 124(1): 3–29.

[37] Morton A C, Whitham A G, Fanning C M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data[J]. Sediment Geol, 2005, 182(1):3–28.

[38] Salata D. Detrital tourmaline as an indicator of source rock lithology: An example from the Ropianka and Menilite formations (Skole Nappe, Polish Flysch Carpathians)[J]. Geol Q, 2013, 58(1): 19–30.

[39] Morton A C, Meinhold G, Howard J P, Phillips R J, Strogen D,Abutarruma Y, Elgadry M, Thusu B, Whitham A G. A heavy mineral study of sandstones from the eastern Murzuq Basin,Libya: Constraints on provenance and stratigraphic correlation[J]. J Afr Earth Sci, 2011, 61(4): 308–330.

[40] Jiang S Y, Radvanec M, Nakamura E, Palmer M, Kobayashi K,Zhao H X, Zhao K D. Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution[J]. Lithos, 2008, 106(1): 1–11.

[41] 郭海鋒, 夏小平, 韋剛健, 王強, 趙振華, 黃小龍, 張海祥,袁超, 李武顯. 湘南上堡花崗巖中電氣石 LA-MC-ICPMS原位微區(qū)硼同位素分析及地質(zhì)意義[J]. 地球化學, 2014,43(1): 11–19.Guo Hai-feng, Xia Xiao-ping, Wei Gang-jian, Wang Qiang,Zhao Zhen-hua, Huang Xiao-long, Zhang Hai-xiang, Yuan Chao, Li Wu-xian. LA-MC-ICPMSin situboron isotopic analyses of tourmalines from the turmaline-bearing granites in the Shangbao area (southern Hunan Province) and its geological significance[J]. Geochimica, 2014, 43(1): 11–19(in Chinese with English abstract).

[42] 鐘大賚. 滇川西部古特提斯造山帶[M]. 北京: 科學出版社,1998: 1–231.Zhong Da-lai. Paleotethyan Orogeny in the Western Yunnan and Sichuan[M]. Beijing: Science Press, 1998: 1–231 (inChinese with English abstract).

[43] 劉俊來, 唐淵, 宋志杰, 翟云峰, 吳文彬, 陳文. 滇西哀牢山構造帶: 結構與演化[J]. 吉林大學學報: 地球科學版,2011, 41(5): 1285–1303.Liu Jun-lai, Tang Yuan, Song Zhi-jie, Zhai Yun-feng, Wu Wen-bin, Chen Wen. The Ailaoshan belt in western Yunnan:Tectonic framework and tectonic evolution[J]. J Jilin Univ(Earth Sci), 2011, 41(5): 1285–1303 (in Chinese with English abstract).

[44] 董云鵬, 朱炳泉. 哀牢山縫合帶中兩類火山巖地球化學特征及其構造意義[J]. 地球化學, 2000, 29(1): 6–13.Dong Yun-peng, Zhu Bing-quan. Geochemistry of the two-type volcanic rocks from Ailaoshan suture zone and their tectonic implication[J]. Geochimica, 2000, 29(1): 6–13 (in Chinese with English abstract).

[45] Tapponnier P, Lacassin R, Leloup P H, Sch?rer U, Zhong Dalai,Wu Haiwei, Liu Xiaohan, Ji Shaocheng, Zhang Lianshang,Zhong Jiayou. The Ailao Shan/Red River metamorphic belt:Tertiary left-lateral shear between Indochina and South China[J].Nature, 1990, 343(6257): 431–437.

[46] Cai Yongfeng, Wang Yuejun, Cawood P A, Fang Weiming,Liu Huichuan, Xing Xiaowan, Zhang Yuzhi. Neoproterozoic subduction along the Ailaoshan zone, South China:Geochronological and geochemical evidence from amphibolite[J]. Precamb Res, 2014, 245: 13–28.

[47] Liu F, Wang F, Liu P, Liu, C. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau[J].Gondwana Res, 2013, 24(1): 429–450.

[48] 云南省地質(zhì)礦產(chǎn)局. 云南省區(qū)域地質(zhì)志[M]. 北京: 地質(zhì)出版社, 1990: 21.Bureau of Geology and Mineral Resources of Yunnan Province. Regional Geology of Yunnan Province[M]. Beijing:Geological Publishing House, 1990: 21 (in Chinese).

[49] Wang Q F, Deng J, Li C S, Li G J, Yu L, Qiao L. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons[J]. Gondwana Res, 2013, 26(2): 438–448.

[50] Ludwig K R. Isoplot 3.0 — A geochronological toolkit for Microsoft Excel[R]. Berkeley Geochronology Center Special Publication, 2003.

[51] Kasemann S, Erzinger J, Franz G. Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina[J]. Contrib Mineral Petrol, 2000,140(3): 328–343.

[52] Talikka M, Vuori S. Geochemical and boron isotopic compositions of tourmalines from selected gold-mineralized and barren rocks in SW Finland[J]. Bull Geol Soc Finland,2010, 82(2): 113–128.

[53] Zhao K D, Jiang S Y, Nakamura E, Moriguti T, Palmer M R,Yang S Y, Dai B Z, Jiang Y H. Fluid-rock interaction in the Qitianling granite and associated tin deposits, South China:Evidence from boron and oxygen isotopes[J]. Ore Geol Rev,2011, 43(1): 243–248.

[54] Jiang S Y. Boron isotope geochemistry of hydrothermal ore deposits in China: A preliminary study[J]. Phys Chem Earth Solid Earth Geodes, 2001, 26(9): 851–858.

[55] Trumbull R B, Chaussidon M. Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland[J]. Chem Geol, 1999, 153(1): 125–137.

[56] Slack J F, Palmer M R, Stevens B P J. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits[J]. Nature, 342(6252): 913–916.

[57] Palmer M R, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J].Contrib Mineral Petrol, 1989, 103(4): 434–451.

[58] Altherr R, Topuz G, Marschall H, Zack T, Ludwig T.Evolution of a tourmaline-bearing lawsonite eclogite from the Elekda? area (Central Pontides, N Turkey): Evidence for infiltration of slab-derived B-rich fluids during exhumation[J].Contrib Mineral Petrol, 2004, 148(4): 409–425.

[59] Peacock S M, Hervig R L. Boron isotopic composition of subduction-zone metamorphic rocks[J]. Chem Geol, 1999,160(4): 281–290.

[60] Scambelluri M, Tonarini S. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle[J]. Geology, 2012, 40(10): 907–910.

[61] Pal D C, Trumbull R B, Wiedenbeck M. Chemical and boron isotope compositions of tourmaline from the Jaduguda U(-Cu-Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids[J]. Chem Geol, 2010, 277(3): 245–260.

[62] Burrett C, Zaw K, Meffre S, Lai C K, Khositanont S,Chaodumrong P, Udchachon M, Ekins S, Halpin J. The configuration of Greater Gondwana — Evidence from LA ICPMS, U-Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China[J].Gondwana Res, 2014, 26(1): 31–51.

[63] Nie Xiaosong, Xia Xiaoping, Lai Chun-Kit, Wang Yuejun,Long Xiaoping. Where was the Ailaoshan Ocean and when did it open: A perspective based on detrital zircon evidence from the Paleozoic sequences in the Ailaoshan Belt and western Yangtze Block[J]. Gondwana Res (in review).

[64] Sun W H, Zhou M F, Gao J F, Yang Y H, Zhao X F, Zhao J H.Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J].Precamb Res, 2009, 172(1): 99–126.

[65] Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precamb Res, 2007, 152(1): 27–47.

[66] Zhou M F, Yan D P, Kennedy A K, Li Y, Ding J. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth Planet Sci Lett,2002, 196(1): 51–67.

猜你喜歡
電氣石盆系哀牢山
游到山頂?shù)聂~(外一首)
四川盆地奉節(jié)地區(qū)上古生界古隆起特征及地質(zhì)意義
川西地區(qū)中部存在泥盆系—石炭系嗎?
——一個不整合面的地質(zhì)屬性推論
云南麻栗坡新廠沖-西疇興街一帶水系沉積物地球化學特征
聽哀牢山(外一首)
川西北地區(qū)ST3井泥盆系油氣地球化學特征及來源
淺析電氣石與鋰鈹?shù)V成因聯(lián)系
穿行于無量山與哀牢山之間
甲基丙烯酸電氣石酯-乙酸乙烯酯共聚物的制備與表征*
電氣石功能復合材料研究進展與發(fā)展前景分析
石泉县| 东宁县| 广昌县| 呼伦贝尔市| 甘南县| 彭阳县| 祁阳县| 孟村| 叶城县| 九江县| 中宁县| 河北区| SHOW| 柳河县| 长治市| 潜山县| 阳山县| 唐河县| 株洲市| 华容县| 东阿县| 高邮市| 云林县| 广元市| 通许县| 张家口市| 武强县| 青铜峡市| 博湖县| 新田县| 大兴区| 临高县| 泽州县| 福鼎市| 四会市| 麻栗坡县| 赣榆县| 津市市| 邻水| 成都市| 社旗县|