張 強(qiáng), 詹 詠, 董 濱, 呂煒杰, 李 響, 杜小天
(1.上海理工大學(xué)環(huán)境與建筑學(xué)院,上海 200093;2.寧波理工學(xué)院土木建筑工程學(xué)院,寧波 315100)
油田回注水質(zhì)的腐蝕性模擬試驗(yàn)研究
張 強(qiáng)1, 詹 詠1, 董 濱2, 呂煒杰1, 李 響1, 杜小天1
(1.上海理工大學(xué)環(huán)境與建筑學(xué)院,上海 200093;2.寧波理工學(xué)院土木建筑工程學(xué)院,寧波 315100)
針對(duì)油田回注水質(zhì)惡化的問(wèn)題,用室內(nèi)試驗(yàn)對(duì)現(xiàn)場(chǎng)管線注水的全過(guò)程進(jìn)行模擬,試驗(yàn)管線裝置與現(xiàn)場(chǎng)注水管線比例相等.試驗(yàn)分別獲取了不同材質(zhì)管線的水樣,測(cè)定了各水樣的相關(guān)水質(zhì)指標(biāo)和水中懸浮物的元素組成,并探討了回注水質(zhì)對(duì)注水管線的腐蝕和水質(zhì)逐漸變差的原因.結(jié)果表明,管線的腐蝕對(duì)于回注水質(zhì)中含油量和總懸浮固體含量的影響較大,通過(guò)對(duì)懸浮固體進(jìn)行EDS能譜分析可得出管線腐蝕的產(chǎn)物對(duì)于回注水質(zhì)惡化的影響作用,最終得出管線的腐蝕是引起回注水質(zhì)惡化的主要原因.
回注水質(zhì);管線腐蝕;懸浮物;水質(zhì)分析
近年來(lái),油田注水驅(qū)油技術(shù)已得到了廣泛的應(yīng)用[1-3],油田污水作為注水水源回注地層,既有利于保護(hù)環(huán)境,又具有比其它水源更好的驅(qū)油效果,因而被廣泛采用.但是油田污水中含有較高的懸浮固體[4]、浮化油[5]、細(xì)菌[6]及有害離子[7]等.大量的油田開(kāi)發(fā)實(shí)踐表明,注水水質(zhì)是影響注水工藝和效果的主要因素之一[8-10].因此,對(duì)注水水質(zhì)的研究具有十分重要的現(xiàn)實(shí)意義.
目前,油氣田腐蝕的研究主要集中在引起腐蝕的氣體[11-13]、離子[14]、微生物[15],對(duì)腐蝕過(guò)程及產(chǎn)物的影響[16],模型的建立[17]以及對(duì)過(guò)程的控制上[18-19].研究注水水質(zhì)的問(wèn)題尤顯重要,水質(zhì)中含油量和懸浮固體含量的增加會(huì)嚴(yán)重堵塞微細(xì)注水孔,直接影響注水壓力,注水難度增大,因此,含油量和懸浮固體含量也常常作為水質(zhì)是否惡化的標(biāo)志[16].從國(guó)內(nèi)外的油田污水回注資料[20-22]來(lái)看,各國(guó)對(duì)水質(zhì)的具體要求各不一樣,油田的注水水質(zhì)標(biāo)準(zhǔn)各不相同,因此對(duì)回注水水質(zhì)惡化的原因研究較少.
本文針對(duì)當(dāng)前油田回注水水質(zhì)惡化的問(wèn)題進(jìn)行了研究,所研究的水質(zhì)主要來(lái)源于遼河油田,隨著回注注水的深入,管線中回注水質(zhì)中的含油量和總懸浮物含量嚴(yán)重超出了石油天然氣行業(yè)標(biāo)準(zhǔn)SY/ T5329—94中碎屑巖油藏注水水質(zhì)推薦指標(biāo)及分析方法中的B1級(jí)標(biāo)準(zhǔn)[21].為了科學(xué)地解釋水質(zhì)惡化的原因和現(xiàn)象,利用室內(nèi)試驗(yàn)?zāi)M現(xiàn)場(chǎng)注水流程中管線注水的過(guò)程,研究了回注水質(zhì)對(duì)15Cr Mo合金鋼的腐蝕作用,驗(yàn)證了管線的腐蝕對(duì)回注水質(zhì)中含油量和總懸浮固體含量的影響,探討了管線的腐蝕對(duì)回注水質(zhì)的惡化作用以及解決方法.
1.1 試驗(yàn)材料
模擬試驗(yàn)的原水采用低溫(<4℃)保存,從遼河油田采油廠運(yùn)回.管線選取2種材料,一種是有機(jī)玻璃;一種是與現(xiàn)場(chǎng)相同的管材15Cr Mo合金鋼.注水動(dòng)力方面采用蠕動(dòng)泵,整個(gè)注水管線經(jīng)蠕動(dòng)泵的部分采用軟管,而其它部分采用不同材質(zhì)的管線.模擬試驗(yàn)連續(xù)進(jìn)行60天,在此期間保持裝置的連續(xù)穩(wěn)定運(yùn)行.為了方便對(duì)上述2種不同管材的對(duì)比,對(duì)其分別命名,用有機(jī)玻璃做成的裝置命名為P#,用15Cr Mo合金鋼做成的裝置命名為S#.
1.2 水質(zhì)分析和懸浮固體測(cè)定方法
采用哈希儀器DR2800和ICP-IC分析測(cè)定回注水中的陰、陽(yáng)離子;硅鉬藍(lán)分光光度法測(cè)定含硅量;紅外測(cè)油儀MAI-50G測(cè)定含油量;采用馬爾文MS-2000激光粒度分布儀來(lái)測(cè)定油滴粒徑中值.懸浮固體分析測(cè)定采用EDS-SEM能譜分析對(duì)其元素進(jìn)行測(cè)定,型號(hào)Hitachi S-4800.
2.1 試驗(yàn)的水質(zhì)變化結(jié)果及分析
連續(xù)運(yùn)行60天后,將原水與經(jīng)過(guò)P#和S#的水質(zhì)進(jìn)行相關(guān)指標(biāo)的檢測(cè)測(cè)定,其結(jié)果如表1所示.
表1 模擬試驗(yàn)各水質(zhì)相關(guān)指標(biāo)測(cè)定Tab.1 List of measured water quality indexes in simulation experiment
由表1的分析結(jié)果可知,采用合金鋼制作的注水管線中總鐵的含量明顯增大,是原水的2倍多,表明水質(zhì)的腐蝕性較強(qiáng).采用合金鋼制作的注水管線中,含油量、總懸浮固體(TSS)含量和油滴粒徑中值都明顯大于原水含量,表明水質(zhì)已經(jīng)惡化.采用有機(jī)玻璃制作的注水管線中總鐵含量基本不變,含油量、總懸浮固體含量和油滴粒徑中值也與原水的含量基本一致,說(shuō)明水質(zhì)并沒(méi)有惡化.試驗(yàn)表明,含油量、總懸浮固體含量和油滴粒徑中值的增大與水質(zhì)中總鐵含量具有正相關(guān)性,總鐵含量的增大直接影響了水質(zhì)的惡化,這是由于鐵離子能夠破壞乳化油滴的穩(wěn)定性,導(dǎo)致乳化油滴破乳.
2.2 試驗(yàn)產(chǎn)生的懸浮物元素成分及結(jié)果分析
將模擬試驗(yàn)中產(chǎn)生的懸浮固體利用能譜分析儀(EDS)進(jìn)行元素成分分析,其測(cè)定結(jié)果如圖1—3所示.
圖1 原水微量懸浮固體EDS分析Fig.1 EDS analysis of the suspended solids in raw water
圖2 P#裝置出水中總懸浮固體EDS分析Fig.2 EDS analysis of the total suspended solids in P#effluent
根據(jù)上述能譜測(cè)定的元素成分結(jié)果,分別對(duì)原水、P#水質(zhì)和S#水質(zhì)的懸浮物進(jìn)行元素和化合物分類分析,并選取摩爾含量最多的9種元素進(jìn)行對(duì)比,結(jié)果如表2所示.
表2 原水、P#水質(zhì)和S#水質(zhì)懸浮固體的EDS分析結(jié)果Tab.2 EDS analysis of the suspended solids in raw water,water of P#and S#
圖3 S#裝置出水中總懸浮固體EDS分析Fig.3 EDS analysis of the total suspended solids in S#effluent
從表中可以看出,C含量最大,說(shuō)明懸浮物的組成物質(zhì)中有機(jī)物的含量最高,從而也證明了懸浮物的大部分是由油滴顆粒參與形成.O含量?jī)H次于C,并且具有大量的金屬元素,說(shuō)明懸浮物的組成中必然有大量的金屬氧化物或氫氧化物;由于金屬元素中,F(xiàn)e含量較多,故絕大部分為鐵的氧化物或氫氧化物,即金屬中的主要組成是由腐蝕引起的.此外,Al含量也較多,說(shuō)明懸浮物的形成與鋁離子及其氫氧化物的絮凝聚合有關(guān).在懸浮物元素組成中,還存在一定量的Ca,Mg,Si等物質(zhì),說(shuō)明懸浮物質(zhì)中存在結(jié)垢物質(zhì).再將上述列表中的元素組成進(jìn)行分析,如圖4所示.
圖4 不同水質(zhì)中總懸浮固體的元素百分含量對(duì)比圖Fig.4 Comparison chart of the total suspended solids contents in different water quality
由圖4可知,3種不同水質(zhì)產(chǎn)生的總懸浮固體的元素含量中,F(xiàn)e含量變化最為明顯,其它元素所占的比例相當(dāng),并且沒(méi)有明顯變化.其中,原水和P#水質(zhì)形成的懸浮固體中的C,O,Ca,F(xiàn)e等的百分含量相當(dāng),S#水質(zhì)中的Fe含量明顯高于原水和P#水質(zhì).這說(shuō)明由于水質(zhì)對(duì)于15Cr Mo合金鋼的腐蝕作用明顯,使得產(chǎn)生的部分腐蝕產(chǎn)物與乳化油滴發(fā)生了某種反應(yīng)而形成了懸浮固體.
注水水質(zhì)對(duì)15Cr Mo合金鋼管線產(chǎn)生了腐蝕,在管線中產(chǎn)生了一定量的腐蝕產(chǎn)物,所產(chǎn)生的腐蝕產(chǎn)物對(duì)于注水水質(zhì)的惡化具有最主要的作用.回注水中含有的細(xì)菌(如硫酸鹽還原菌、鐵細(xì)菌)、溶解性有害離子(如Cl-,HCO-3)、溶解性氣體(如CO2,O2,H2S),都會(huì)導(dǎo)致注水管線的腐蝕.
部分腐蝕產(chǎn)物對(duì)于注水水質(zhì)中的乳化油滴具有脫穩(wěn)作用,促使油滴粒徑增大,可測(cè)的含油量數(shù)值增大,并且與油滴發(fā)生反應(yīng)而形成大量的懸浮物.可見(jiàn)部分懸浮物的形成是由于破乳后的油與結(jié)垢物質(zhì)發(fā)生聚集作用,建議對(duì)含油量的控制執(zhí)行B1級(jí)以上標(biāo)準(zhǔn).
減小管線的腐蝕程度,對(duì)于保障回注水質(zhì)具有重要意義.注水管線的腐蝕會(huì)進(jìn)一步引起溶解性油含量和懸浮固體增加,即腐蝕是引起水質(zhì)惡化的主要原因,為解決當(dāng)前油田回注水水質(zhì)惡化的問(wèn)題,建議控制管線腐蝕.
參考文獻(xiàn):
[1] Herrera L K,Videla H A.Role of iron-reducing bacteria in corrosion and protection of carbon steel [J].International Biodeterioration&Biodegradation,2009,63(7):891-895.
[2] 吳紅軍,張鐵鍇,王寶輝,等.油田回注水水質(zhì)劣化原因及機(jī)理分析[J].油氣田地面工程,2005,24(1): 25-27.
[3] Muthukumar N.Petroleum products transporting pipeline corrosion——a review[M]//Fanun M.The Role of Colloidal Systems in Environmental Protection.Amsterdam:Elsevier,2014:325-334.
[4] Nesic S.Key issues related to modelling of internal corrosion of oil and gas pipelines——a review[J]. Corrosion Science,2007,49(12):4308-4338.
[5] Hilleary J,DeWitt J.Corrosion rate monitoring in pipeline casings[J].Materials Performance,2014,53 (3):28-33.
[6] 萬(wàn)泰力,劉金可,門秀華.大慶油田采油污水腐蝕因素分析[J].油氣田地面工程,2008,27(2):29-30.
[7] 周海剛.勝利油田回注水沿程水質(zhì)變化因素分析及對(duì)策措施[J].中國(guó)科技信息,2012(20):73.
[8] Ma Y T,Li Y,Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J].Corrosion Science,2009,51(5):997-1006.
[9] Santosh P S,Etsushi T,Yoshitaka A,et al.Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte——understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation[J].Corrosion Science,2012,55:90-96.
[10] Zhang G A,Lu M X,Chai C W,et al.Effect of HCO-3concentration on CO2corrosion in oil and gas fields [J].Journal of University of Science and Technology Beijing,2006,13(1):44-49.
[11] Gao M,Pang X,Gao K.The growth mechanism of CO2corrosion product films[J].Corrosion Science,2011,53(2):557-568.
[12] Zhang Y C,Pang X L,Qu S P,et al.Discussion of the CO2corrosion mechanism between low partial pressure and supercritical condition[J].Corrosion science,2012,59:186-197.
[13] Dong B,Xu Y,Deng H,et al.Effects of pipeline corrosion on the injection water quality of low permeability in oilfield[J].Desalination,2013,326: 141-147.
[14] 周國(guó)信,雷寶艷.油田采出水對(duì)注水系統(tǒng)腐蝕機(jī)理的探討[J].遼寧化工,2011,40(3):304-306.
[15] Mao B.A systematic and comprehensive approach in analyzing produced water re-injection[J].Journal of Petroleum Science and Engineering,2011,80:14-15.
[16] Wang T,Yang S L,Zhu W H.Law and countermeasures for the casing damage of oil production wells and water injection wells in Tarim Oilfield[J].Petroleum Exploration and Development,2011,38(3):352-361.
[17] Liu D,Liu H Q,Li L,et al.Corrosion of water injection system in Shengli Oilfield[J].Anti-Corrosion Methods and Materials,2013,60(4):185-191.
[18] Bader M S H.Innovative technologies to solve oilfields injection sulfate problems.Desalination,2006,201:121-129.
[19] Ketrane R,Leleyter L,Baraud F,et al. Characterization of natural scale deposits formed in southern Algeria groundwater.Effect of its major ions on calcium carbonate precipitation[J].Desalination,2010,262(1/2/3):21-30.
[20] Bala N,Singh H.Accelerated hot corrosion studies of cold spray Ni--50Cr coating on boiler steels[J]. Materials and Design,2010,31(1):244-253.
[21] Fry A,Adams B.An investigation into the likely impact of oxy-coal retrofit on fire-side corrosion behavior in utility boilers[J].International Journal of Greenhouse Gas Control,2011,5:179-185.
[22] Revie W R,Uhlig H H.Corrosion and Corrosion Control[M].4th ed.Canada:Wiley-Interscience,2008.
(編輯:董 偉)
Experimental Simulation on the Ef fect of Corrosion on Oilfield Reinjection Water Quality
ZHANGQiang1, ZHAN Yong1, DONGBin2, LV Weijie1, LI Xiang1, DU Xiaotian1
(1.School of Environment and Architecture,University of Shanghai for Science and Technology,Shanghai 200093,China;2.School of CMI Engineering and Architecture,Ningbo Institute of Technology,Ningbo 315100,China)
Aiming at the problem of oilfield reinjection water quality deterioration,the water injection process in field pipeline was simulated as an injection process in an experimental pipeline in the lab.The simulative experimental facility was designed in strict proportion to the field water injection pipeline.Water samples in different material pipelines were collected in the experiment,the relevant water quality indexes were determined and the elements of suspended solids in water samples were analyzed.The reasons of why reinjection water results in the corrosion of water injection pipelines and poor water quality were probed.The results show that pipeline corrosion influences greatly the amount of oil and total suspended solid contaiminants in reinjection water. Through the EDS analyses of suspended solids,the effect of pipeline corrosion products on reinjection water quality deterioration was discussed.It is concluded that pipeline corrosion is the main cause of reinjection water quality deterioration.
reinjection water quality;pipeline corrosion;suspended solids;water quality analysis
X 5
A
2014-01-27
國(guó)家自然科學(xué)基金資助項(xiàng)目(51279108);上海市教委基礎(chǔ)研究重大項(xiàng)目(13DJ1400105);上海市大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(SH2013109,SH2014122);寧波市社會(huì)發(fā)展科技項(xiàng)目(2012C50038)
張 強(qiáng)(1983-),男,本科生.研究方向:水污染控制工程.E-mail:1010272680@qq.com
詹 詠(1971-),女,副教授.研究方向:水污染控制工程.E-mail:jannet6@163.com
1007-6735(2015)02-0169-05
10.13255/j.cnki.ju sst.2015.02.014