喬剛
【摘 要】 問題向?qū)Ы虒W的模式是在傳統(tǒng)教學的基礎(chǔ)上進一步強化提問這一功能,教師的提問會貫穿教學的始終,本文分析了以下三個方面:應(yīng)用數(shù)學問題提高學生的學習興趣,應(yīng)用數(shù)學問題培養(yǎng)學生的思維能力,應(yīng)用數(shù)學問題拓展學生的數(shù)學視野。
【關(guān)鍵詞】 小學;數(shù)學;問題向?qū)J?;研?/p>
在傳統(tǒng)的數(shù)學教學中,教師會用提問的方法引導學生學習,問題向?qū)Ы虒W的模式是在傳統(tǒng)教學的基礎(chǔ)上進一步強化提問這一功能,在該種教學模式中,教師的提問會貫穿教學的始終,應(yīng)用提問交流的方法引導學生自主的學習知識。為了說明問題向?qū)J皆谛W數(shù)學教學中應(yīng)用的方法,現(xiàn)用《初步認識平行四邊形》這一課的教學為例。
一、應(yīng)用數(shù)學問題提高學生的學習興趣
在傳統(tǒng)的數(shù)學教學中,教師習慣將學生當作學習的客體,他們要求學生必須記住教師教授的知識、課本所述的知識等。這種教學方法存在兩個問題。第一個問題,學生會由于失去學習的主體性,因此失去學習的興趣;第二個問題,在被強行灌輸知識的過程中,學生的特長、優(yōu)勢未被激發(fā),由于學生得不到學習的成就感,因此學習數(shù)學知識的態(tài)度非常消極。在應(yīng)用問題向?qū)J降慕虒W中,教師要給學生一個發(fā)現(xiàn)數(shù)學問題的平臺,引導學生對數(shù)學問題產(chǎn)生好奇心,讓學生愿意自主的探究數(shù)學問題。
有一名數(shù)學教師曾在《初步認識平形四邊形》的教學中,用這樣的方法引導學生學習數(shù)學知識:
(教學背景:教師在課堂教學引導的環(huán)節(jié)引導學生看七巧板積木,然后教師拿起一塊平行四邊形的積木給學生看。)
師:這是一個長方形吧。
(學生開始哄笑。)
生A:它不是長方形,它是平形四邊形。
師:哦,平行四邊形?誰給老師講講平行四邊形是個什么幾何圖形?教師要看誰講得又清楚、又明白。
(教師將學生分成數(shù)個學習小組,學習小組的成員開始畫圖討論。)
在傳統(tǒng)的數(shù)學教學中,教師常常把自己視為“有知者”,把學生視為“無知者”,向?qū)W生灌輸數(shù)學知識。這名教師看到了傳統(tǒng)數(shù)學教學模式的不足,就應(yīng)用問題向?qū)У慕虒W模式,轉(zhuǎn)換一個角色位置,把自己變?yōu)椤盁o知者”,要求學生通過探索變?yōu)椤坝兄摺?。教師提出的問題激發(fā)了學生的好奇心、責任感,使他們愿意積極的掌握數(shù)學知識。
應(yīng)用問題向?qū)J綉?yīng)用的第一個要點為,教師要退出主導者的位置,把學習的主體地位還給學生,通過引導激發(fā)學生學習數(shù)學知識的興趣。
二、應(yīng)用數(shù)學問題培養(yǎng)學生的思維能力
在傳統(tǒng)的數(shù)學教學中,教師的教學重點為引導學生掌握解題的技巧,即引導學生學會數(shù)學概念、掌握性質(zhì)判定公式,當學生遇到數(shù)學問題以后,能靈活的應(yīng)用數(shù)學解題技巧解決數(shù)學問題??墒窃趯嶋H的教學過程中,教師會發(fā)現(xiàn)學生常常學了很多解題技巧,卻不會靈活的應(yīng)用。學生不能靈活應(yīng)用數(shù)學解題技巧,是由于學生思維能力不足的緣故,數(shù)學教師應(yīng)用問題向?qū)J綍r,要通過提問培養(yǎng)學生的思維能力。
依然以那名數(shù)學教師引導學生學習《平行四邊形》的知識為例。當學生們被分為數(shù)個學習小組以后,學生小組的成員紛紛提出證明平行四邊形性質(zhì)的方法。
生B:平行四邊形的性質(zhì)就是有四條邊,對邊的邊相等。
生C:長方形也同樣有這樣的性質(zhì),那不是平行四邊形獨有的性質(zhì)。
生D:平形四邊形對邊角相等,并且所有的角都不是90°
生E:你怎么知道平形四邊形的角對邊相等?你量過了?
師:還記不記得老師怎么教你們研究長方形的性質(zhì)的?
(學習小組的成員紛紛點頭。)
師:要不要嘗試下老師的教學方法?
(學生開始應(yīng)對對比歸納法研究平行四邊形,研究的結(jié)果如下。)
平行四邊形:邊——對邊平行并且相等;角——對角相等;對角線——互相平分;對稱性——中心對稱。
(矩形、菱形與正方形的對比歸納省略。)
這一名數(shù)學教師貌似只是在學生學習的時候提出一個問題,然而他給予了學生一個提示,當遇到一個新的數(shù)學知識時,可結(jié)合舊的數(shù)學知識,應(yīng)用類比推理、歸納總解的方法學習。以后學生遇到數(shù)學問題時,可應(yīng)用這種思路解決數(shù)學問題。
小學數(shù)學教師應(yīng)用問題向?qū)J綍r,要用提問的方法引導學生了解數(shù)形結(jié)合、類比推理等數(shù)學思想,讓學生能夠?qū)W會應(yīng)用宏觀的數(shù)學思維看待數(shù)學問題。
三、應(yīng)用數(shù)學問題拓展學生的數(shù)學視野
在傳統(tǒng)的數(shù)學教學中,教師的數(shù)學重點為引導學生做題,結(jié)果導致很多學生只會做數(shù)學題,而不會解決數(shù)學問題。數(shù)學教師應(yīng)用問題向?qū)J竭@一教學方法引導學生學習時,要通過提問引導學生觀注數(shù)學實踐、數(shù)學問題文化,讓學生在學習數(shù)學問題的時候開拓視野,當學生遇到數(shù)學問題時,能從多種視角看待數(shù)學問題。
依然以那名數(shù)學教師引導學生學習《平行四邊形》的知識為例。當那名教師完成平行四邊形的概念和性質(zhì)教學以后,讓學生思考一個習題:如下圖,在平形四邊形ABCD中,A1、A2、A3、A4與C1、C2、C3、C4分別為平行四邊形邊上的五等分點,B1、B2與D1、D2為平形四邊形上的三等分點。請問四邊形A4 B1 C1 D2是不是平形四邊形?如果平形四邊形ABCD的面積為1,四邊形A4 B1 C1 D2的面積為多少?學生在做這道習題的時候,會發(fā)現(xiàn)兩個問題:第一個問題,數(shù)學知識的概念和性質(zhì)常常會被應(yīng)用于數(shù)學問題中,它們是解決數(shù)學問題的重要利器;第二個問題,在遇到數(shù)學問題的時候,有時不僅要靠腦子解決問題,有時還要靠動手或其它的方法解決問題,比如割補法是解決數(shù)學問題的一條好途徑。
小學數(shù)學教師應(yīng)用問題向?qū)J綍r,要通過提問幫助學生拓展數(shù)學知識,讓學生能夠在解決數(shù)學問題的時候了解數(shù)學數(shù)學歷史、文化等,拓寬看待數(shù)學問題的視野。
在小學數(shù)學教學中,教師可通過應(yīng)用問題向?qū)J揭龑W生學習數(shù)學知識,這是一種能提高數(shù)學教學效率的教學模式。
【參考文獻】
[1]郭新春.小學生數(shù)學問題解決能力的培養(yǎng)研究[D].遼寧師范大學 2012
[2]冷少華.小學數(shù)學問題解決能力培養(yǎng)的研究[D].揚州大學 2013
[3]畢興玉.小學生數(shù)學問題解決能力培養(yǎng)平臺的開發(fā)與應(yīng)用[D].山東師范大學 2011
[4]張遠峰.促進小學生數(shù)學問題解決的教學設(shè)計研究[D].東北師范大學 2005
[5]程明喜.小學數(shù)學問題解決策略的研究[D].東北師范大學 2006
[6]劉志敏.圖式表征策略對小學生數(shù)學問題解決能力的影響[D].山東師范大學 2007