宋運(yùn)娜
(齊齊哈爾醫(yī)學(xué)院高等數(shù)學(xué)教研室,黑龍江 齊齊哈爾 161006)
具有耐藥性肺結(jié)核病模型的穩(wěn)定性分析
宋運(yùn)娜
(齊齊哈爾醫(yī)學(xué)院高等數(shù)學(xué)教研室,黑龍江 齊齊哈爾 161006)
研究具有耐藥性肺結(jié)核病模型的穩(wěn)定性,建立了8維傳染病模型.運(yùn)用基本再生矩陣的譜半徑和Lyapunov函數(shù),得到模型的無病平衡點(diǎn)、邊界平衡點(diǎn)和地方病平衡點(diǎn)存在性和穩(wěn)定性的充分條件.結(jié)果表明:減少耐藥性相關(guān)系數(shù)β2,k2,b2可以控制傳染病的蔓延.
耐藥性;肺結(jié)核;平衡點(diǎn);傳染病模型
耐藥性結(jié)核病具有治愈率低、治療時(shí)間長(zhǎng)、費(fèi)用高、傳染率高、傳染性強(qiáng)、對(duì)健康人群有較大威脅的特點(diǎn).根據(jù)世界衛(wèi)生組織調(diào)查,每10個(gè)結(jié)核病人中至少有1人是耐藥性的結(jié)核病.目前針對(duì)結(jié)核病的數(shù)學(xué)模型比較多,Yang等[1]研究了治療不充分的結(jié)核病模型的穩(wěn)定性;Zhou等[2]研究了受到健康教育和治療結(jié)核病模型的穩(wěn)定性;Mishra等[3]研究了伴隨接種的多重耐藥性肺結(jié)核疾??;Choi等[4]研究了防控肺結(jié)核傳播的最優(yōu)策略的數(shù)學(xué)模型;劉俊利等[5-6]分析了肺結(jié)核病模型的全局穩(wěn)定性;楊亞莉等[7]考慮了具有外源性感染的結(jié)核病模型;Ahmadin等[8]研究了具有耐藥性肺結(jié)核病模型及其治療策略.本文擬建立具有耐藥性的肺結(jié)核病數(shù)學(xué)模型,研究耐藥性對(duì)該傳染病傳播的影響.
根據(jù)病理過程可將人群分為易感染者S,敏感潛伏者E1,具有耐藥性的潛伏者E2,敏感的活動(dòng)性肺結(jié)核病人C1,具有耐藥性的活動(dòng)性肺結(jié)核病人C2,敏感的結(jié)核病人I1,具有耐藥性的結(jié)核病人I2,假設(shè)具有耐藥性的結(jié)核病人無法治愈,敏感結(jié)核病治愈者為R,可得
其中A表示人口的自然補(bǔ)充率;u,u1,u2分別表示人口的自然死亡率、患敏感肺結(jié)核病的死亡率和患耐藥肺結(jié)核病的死亡率;β1(N),β2(N)分別為敏感和耐藥結(jié)核桿菌傳播易感染者的傳染率,其中N為人群總數(shù);k1,k2為敏感和耐藥潛伏者轉(zhuǎn)變?yōu)榛顒?dòng)性肺結(jié)核病人的比率;d為敏感活動(dòng)性肺結(jié)核病人的恢復(fù)率;b1,b2為具有敏感和耐藥性的活動(dòng)性肺結(jié)核病人轉(zhuǎn)變?yōu)閭魅拘苑谓Y(jié)核病人的比率;敏感的傳染性肺結(jié)核病人以ap比率轉(zhuǎn)化為活動(dòng)性肺結(jié)核病人,因治療不當(dāng)轉(zhuǎn)變?yōu)榫哂心退幮曰顒?dòng)性肺結(jié)核病人的比率是a(1-p),式中a為敏感肺結(jié)核病人的轉(zhuǎn)移率.若(1)式中各參數(shù)初始值均大于0,則N′=(S+E1+E2+C1+C2+I(xiàn)1+I(xiàn)2+R)′=A-u N1-u1I′-u2I′2,故N′≤A-u N,從而0<N(t)≤A/u+N0e-ut,式中N0表示人口總數(shù)的初值,N(t)表示t時(shí)刻人口總數(shù).同理,S(t),E1(t),E2(t),C1(t),C2(t),I1(t),I2(t),R(t)分別表示t時(shí)刻各類人口數(shù).當(dāng)0<N(t)<A/u時(shí),(1)式中所有 解 進(jìn) 入 區(qū) 域Γ= {(S(t),E1(t),E2(t),C1(t),C2(t),I1(t),I2(t),R(t))∈R8+:N(t)<A/u}.因(1)式中第1~7方程中不含R,故可簡(jiǎn)化為
改變變量順序,即E1,C1,I1,E2,C2,I2,可得矩陣
則基本再生矩陣FV-1的主特征值的絕對(duì)值為
矩陣FV-1的譜半徑ρ(FV-1)=max{R1,R2},R1<1,R2<1,則ρ(FV-1)<1.由文獻(xiàn)[9]知無病平衡點(diǎn)p0是局部漸近穩(wěn)定的,下面證明p0的全局漸近穩(wěn)定性.構(gòu)造Lyapunov函數(shù)v1(E1,C1,I1,E2,C2,I2)=b2k2E2+(u+k2)u I2+k2b2E1+(u+k1)(u+d+b1)I1+(u+k1)b1C2,v′1=b2k2E′2+(u+k2)·u I′2+k2b2E′1+(u+k1)(u+d+b1)I′1+(u+k1)b1C′2=u(u+k2)(u+u2)(R1-1)I2+(u+u1)[u2+(b1+a+u1)u+da+b1u1+b1a+du1-ab1p](R1-1)I1-u(u+b2)b2C2+b2k2E2(u+d+b1)+(u+k1)(u+d+b1)b1C1-b2k2(u+k1)E1+b1(u+k1)[k2E2-(u+b2)C1+a I1].(2)式中不可治愈耐藥性肺結(jié)核病人的數(shù)量遠(yuǎn)遠(yuǎn)少于敏感性肺結(jié)核病人數(shù),即C2?C1,耐藥性主要因治療不當(dāng)引起,可設(shè)E2?C2,敏感性肺結(jié)核病中I1<C1?E1,則-u(u+b2)b2C2+b2k2E2(u+d+b1)<0,(u+k1)(u+d+b1)b1C1-b2k2(u+k1)E1<0,k2E2-(u+b2)C1+a I1<0.當(dāng)R1<1,R2<1時(shí),v′1<0.此時(shí)(2)式最大不變子集是無病平衡點(diǎn)p0.由LaSalle不變集原理知,(2)式無病平衡點(diǎn)p0(S0,0,0,0,0,0,0,0)全局漸近穩(wěn)定.
當(dāng)不存在耐藥性肺結(jié)核疾病時(shí),模型為
求解得
將(5)式代入(4)式第3個(gè)方程中,可得
令(2)式各方程為0,得
[1]YANG Yali,LI Jianquan,MA Zhien,et al.Global stability of two models with incomplete treatment for tuberculosis[J].Chaos Soliton Fract,2010,43(1/12):79-85.
[2]ZHOU Xueyong,SHI Xiangyun,CHENG Huidong.Modelling and stability analysis for a tuberculosis model with healthy education and treatment[J].Comp Appl Math,2013,32(2):245-260.
[3]MISHRA B K,SRIVASTAVA J.Mathematical model on pulmonary and multidrug-resistant tuberculosis patients with vaccination[J].J Egyptian Math Soc,2014,22(2):311-316.
[4]CHOI S,JUNG E.Optimal tuberculosis prevention and control strategy from a mathematical model based on real data[J].Bull Math Biol,2014,76(7):1566-1589.
[5]LIU Junli,ZHANG Tailei.Global stability for a tuberculosis model[J].Math Comput Model,2011,45(1/2):836-845.
[6]劉俊利.一個(gè)具有干預(yù)策略的肺結(jié)核模型的閾值動(dòng)力學(xué)行為 [J].生物數(shù)學(xué)學(xué)報(bào),2011,26(4):601-608.
[7]楊亞莉,郭晨平,黃利航,等.一類考慮外源性再感染的結(jié)核病模型 [J].生物數(shù)學(xué)學(xué)報(bào),2014,29(4):597-602.
[8]AHMADIN,F(xiàn)ATMAWATI.Mathematical modeling of drug resistance in tuberculosis transmission and optimal control treatment[J].Appl Math Sic,2014,8(92):4547-4559.
[9]DRIESSCHE P,WATMOUGH J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Math Biosci,2002,180(1/2):29-48.
Stability analysis of pulmonary tuberculosis model with resistance
SONG Yunna
(Math Staff Room,Qiqihar Med Coll,Qiqihar 161006,China)
The stability analysis of pulmonary tuberculosis model with resistance is investigated.Pulmonary tuberculosis is divided into three classes:lurker,activity in patients with pulmonary tuberculosis and infectious tuberculosis patients.8 dimensional model of infectious disease is established to study the patient’s drug resistance.Using the spectral radius of the basic reproduction matrix and the Lyapunov function,the sufficient conditions for the existence and stability of the disease-free equilibrium of the model,boundary equilibrium and the endemic equilibrium were obtained.The results show that the spread of pulmonary tuberculosis can be controlled by reducing the coefficientβ2,k2andb2.
drug resistance;pulmonary tuberculosis;equilibrium point;epidemical model
O 29;R 521
A
1007-824X(2015)03-0024-04
2014-12-11.E-mail:songyunna1999@163.com.
黑龍江省教育廳科研項(xiàng)目(12521647);齊齊哈爾醫(yī)學(xué)院青年基金項(xiàng)目(QY2013-02).
宋運(yùn)娜.具有耐藥性肺結(jié)核病模型的穩(wěn)定性分析 [J].揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,18(3):24-27.
(責(zé)任編輯 秋 實(shí))