楊招軍+羅鵬飛
摘要 在隨機(jī)雙曲折現(xiàn)條件下,顯式地給出了具有指數(shù)函數(shù)(CARA)效用的最優(yōu)跨期消費與投資組合;在非完備市場下,顯式給出了基于CARA效用的收益流的效用無差別價格.結(jié)果表明:最優(yōu)投資比例以及收益流的價值不受隨機(jī)雙曲折現(xiàn)因子的影響;在低折扣階段,本文的最優(yōu)消費水平高于Merton模型下的對應(yīng)值,低折扣時期越短或高低折扣值相差越大,消費差距越明顯.
關(guān)鍵詞 隨機(jī)雙曲折現(xiàn);投資消費;效用無差別定價
中圖分類號 F224.0 文獻(xiàn)標(biāo)識碼 A
AbstractWe explicitly derive the optimal intertemporal consumption and investment with stochastic hyperbolic discounting for a constant absolute risk aversion (CARA) investor. After that, we explicitly present the utilitybased indifference price of cashflows received by the investor. We find that the optimal investment and indifference price do not depend on the discount factor but during the low discounting period, the optimal consumption is more than that under Merton model. The shorter the low discounting period or the bigger the difference between the high and low discount factor, the more obvious the distinction between the two optimal consumptions.
Key wordsstochastic hyperbolic discounting; investment and consumption; utilitybased indifference pricing
1引言
很多經(jīng)濟(jì)決策問題都是跨期決策,需要對當(dāng)前與未來報酬和消費的權(quán)衡,其中用來衡量現(xiàn)在與將來權(quán)重的折現(xiàn)率具有決定作用.例如,投資者在追求整體目標(biāo)最優(yōu)時,往往會在較小且較早的報酬與較大且較遠(yuǎn)的報酬中做出權(quán)衡,選擇的結(jié)果決定于時間折扣率:只有當(dāng)折扣系數(shù)隨時間衰減足夠快時,投資者才會偏好較小且較早的報酬.
目前具有常數(shù)折現(xiàn)率的指數(shù)折現(xiàn)函數(shù)被廣泛用來分析經(jīng)濟(jì)問題.這種指數(shù)折現(xiàn)函數(shù)確定的時間偏好是連續(xù)一致的,不會產(chǎn)生任何急劇變化.然而,心理行為科學(xué)家和經(jīng)濟(jì)學(xué)家有大量實驗證據(jù)表明:人的偏好并不是連續(xù)不變的,參見Thaler and Shefrin(1981)[1],Ainslie & Haslam(1992)[2],Kirby and Herrnstein(1995)[3],Myerson and Green(1995)[4],Dellavigna and Malmendier(2006)[5].為此,經(jīng)濟(jì)學(xué)家引入了隨機(jī)雙曲折現(xiàn)模型,即在未來某個隨機(jī)時刻以后,時間折扣因子急劇減少.參見 Barro(1999)[6], Dellavigna and Malmendier(2004)[7], Grenadier and Wang(2007)[8], PalaciosHuerta and PerezKakabadse (2013)[9],Zou et al(2014)[10].
PalaciosHuerta and PerezKakabadse (2013)[9]基于隨機(jī)雙曲折現(xiàn)模型,給出了在無限生命期內(nèi),具有冪效用(CRRA)投資者的消費投資問題,給出了最優(yōu)消費和投資的解析解.Zou et al.(2014)[10]將Haris and Laibson(2013)[11]的隨機(jī)雙曲折現(xiàn)模型結(jié)合Merton(1969,1971)[12,13],考慮了在有限生命期內(nèi)的最優(yōu)消費和投資問題,對對數(shù)效用函數(shù)給出了解析解,冪效用給出了數(shù)值解,得出與Merton模型相比較,隨機(jī)雙曲折現(xiàn)提高了消費水平,同時,投資在風(fēng)險資產(chǎn)的比例不受其影響.
上式表明:基于隨機(jī)雙曲線折現(xiàn)模型,具有隨機(jī)收益流的投資者在無風(fēng)險資產(chǎn)的比例不受隨機(jī)雙曲參數(shù)的影響;相比Merton模型,本模型的最優(yōu)消費水平更高,當(dāng)β越小或λ越大,其差別越明顯.即在低折扣階段,本文的最優(yōu)消費水平高于Merton模型下的對應(yīng)值,低折扣時期越短或高低折扣值相差越大,消費差距越明顯.這與上文的解釋相同.
4結(jié)論
本文研究了隨機(jī)雙曲折現(xiàn)條件下,具有指數(shù)效用(CARA)的投資者的跨期消費儲蓄與投資組合,以及在非完備市場下基于CARA效用的收益流的效用無差別定價.本文得到了企業(yè)家的最優(yōu)消費、最優(yōu)投資以及收益流效用無差別價格的解析解.結(jié)果表明最優(yōu)投資比例以及收益流的效用無差別價格不受隨機(jī)雙曲折現(xiàn)因子的影響;本文的最優(yōu)消費水平高于Merton模型下的對應(yīng)值,投資者越偏好當(dāng)前消費,其差距越明顯.考慮到資產(chǎn)定價與投資消費具有密切的關(guān)系、以及當(dāng)投資者收益流面臨較大本性風(fēng)險時效用無差別定價具有明顯的合理性,本文結(jié)論對于進(jìn)一步發(fā)展隨機(jī)雙曲折現(xiàn)條件下的資產(chǎn)定價理論具有一定的參考價值.
參考文獻(xiàn)
[1]R H THALER, H M SHEFRIN. An economic theory of selfcontrol [J]. Political Economy, 1981, 89(2): 392-406.
[2]G AINSLE, N HASLAM. Hyperbolic discounting[C]//Loewenstein, George, Elster, Jon(Eds.), Choice Over Time. Russell Sage, New York, 1992.
[3]K N KIRBY, R J HERRNSTEIN. Preference reversals due to myopic discounting of delayed reward [J]. Psychological Science. 1995, 6(2): 83-89.
[4]J MYERSON, L GREEN. Discounting of delayed rewards: models of individual choice [J]. Journal of the experimental analysis of behavior, 1995, 64(3): 263-276.
[5]S DELLAVIGNA, U MALMENDIER. Paying not to go the gym [J].The American Economic Review, 2006, 96(3): 694-719.
[6]R J BARRO, 1999. Ramsey meets Laibson in the neoclassical growth model [J]. Quarterly Journal of Economics, 1999, 114(4): 1125-1152.
[7]S DELLAVIGNA, U MALMENDIER. Contract design and selfcontrol: Theory and evidence [J]. The Quarterly Journal of Economics, 2004, 119(2): 353-402.
[8]S R GRENADIER, N WANG. Investment under uncertainty and timeinconsistent preferences [J]. Journal of Financial Economics, 2007, 84(1): 2-39.
[9]I PALACIOSHUERTA, A PEREZ KAKABADSE. Consumption and portfolio rules with stochastic hyperbolic discounting[R].Spain:University of the Basque Country, 2013.
[10]Z R ZHOU, S CHEN, L WEDGE. Finite horizon consumption and portfolio decisions with stochastic hyperbolic discounting [J]. Journal of Mathematical Economics, 2014(52):70-18.
[11]C HARRIS, D LAIBSON. Instantaneous gratification [J]. The Quarterly Journal of Economics. 2013, 128(1): 205-248.
[12]R C MERTON. Lifetime portfolio selection under uncertainty: the continuoustime case [J]. The review of Economics and Statistics, 1969, 51(3): 247-257.
[13]R C MERTON. Optimum consumption and portfolio rules in a continuoustime model [J]. Journal of Economic Theory, 1971, 3(4): 374-413.
[14]X L WANG, Z J YANG. Pricing Contingent Convertible Bond with Idiosyncratic Risk[R].Changsha: School of Finance and Statistics, Hunan University, 2012.
[15]王曉林,楊招軍. 非系統(tǒng)風(fēng)險與公司最優(yōu)資本結(jié)構(gòu)[J]. 經(jīng)濟(jì)數(shù)學(xué), 2014, 31(1):21-28.