王芝皓 吳黎軍
摘要 考慮了帶二元連續(xù)變利息力的Sparre Andersen風險模型. 研究了積累值盈余過程的表達式與性質(zhì);在利率遞增環(huán)境下, 利用推廣后的調(diào)節(jié)系數(shù)方程組與遞歸技術(shù)推導(dǎo)了最終破產(chǎn)概率的上界, 結(jié)論表明得到的破產(chǎn)概率上界是更為一般的Lundberg指數(shù)上界.
關(guān)鍵詞 二元變利息力;Sparre Andersen模型;最終破產(chǎn)概率;調(diào)節(jié)系數(shù)方程組;Lundberg上界
中圖分類號 O211.6 F222.3 文獻標識碼 A
AbstractWe consider the Sparre Andersen Model modified by the inclusion of a binary continuous variable interest force. The properties and presentation of accumulated surplus process are studied, the upper bounds for the ultimate ruin probabilities are derived by recursive techniques and adjustment coefficient equation system in increasing interest environment. The conclusion we derived is also a generalization of Lundbergtype upper bounds.
Key wordsbinary variable interest force; Sparre Andersen Model; ultimate ruin probabilities; adjustment coefficient equation system; Lundbergtype upper bound
1引言
保險中有關(guān)風險模型破產(chǎn)概率問題已被廣泛的研究,許多學者對經(jīng)典的風險模型做出了不同程度的推廣,文獻1討論了帶常利率的兩個非標準更新方程模型的破產(chǎn)概率問題;文獻2討論了帶常利率與后尾賠款的SemiMarkov風險模型的破產(chǎn)概率.文獻3研究了一類推廣的復(fù)合PoissonGeometric風險相依模型.利用盈余過程的鞅性,得到了產(chǎn)概率公式;文獻4討論了獨立平穩(wěn)增量風險過程的鞅方法與 Lundberg方程;文獻5, 6研究了帶有常利息力的風險模型的破產(chǎn)概率Lundberg上界.帶利率的風險模型是關(guān)于保險公司收入與索賠的隨機過程,對保險產(chǎn)品設(shè)計及保險公司經(jīng)營管理都有理論指導(dǎo)意義,由于市場利率的變化與時間有關(guān),與帶常利率的風險模型相比,去研究帶連續(xù)變利率的風險模型顯得更加具有實際意義.本文中把二元連續(xù)遞增變利息力引入風險模型中,推導(dǎo)出盈余過程的表達式,利用遞歸技術(shù)得到了連續(xù)利率遞增環(huán)境下最終破產(chǎn)概率的Lundberg型上界.
5結(jié)論
本文考慮了帶二元連續(xù)變利息力風險模型破產(chǎn)問題, 實際中某一時期的利率是隨時間變化而變化的, 比帶常利率的風險模型相比帶變利率的風險模型更據(jù)意義. 通過遞歸技術(shù)得到了最終破產(chǎn)概率的上界, 結(jié)果表明所得到的破產(chǎn)概率上界所滿足的不等式是更為一般的Lundberg不等式.
參考文獻
1Y YANG ,J LIN, C HUANG, et al. The finitetime ruin probability in two nonstandard renewal risk models with constant interest rate and dependent subexponential claimsJ. Journal of the Korean Statistical Society, 2012, 41(2): 213-224.
2H YANG, K XUE. Ruin Probability in a SemiMarkov risk model with constant Interest force and heavytailed claimsJ. Acta Mathematica Scientia, 2013, 33(4): 998-1006.
3呂東東,趙明清,李發(fā)高,等. 一類推廣的復(fù)合PoissonGeometric相依風險模型的破產(chǎn)概率J.經(jīng)濟數(shù)學,2013,30(4):71-75.
4秦伶俐, 吳黎軍. 獨立平穩(wěn)增量風險過程的鞅方法與 Lundberg 方程J. 統(tǒng)計與決策,2007(21): 38-40.
5J CAI, D DICKSON. Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interestJ. Insurance: Mathematics and Economics, 2003, 32(1): 61-71.
6W YANG, Y HU. Upper bounds for ultimate ruin probabilities in the Sparre Andersen risk model with interest and a nonlinear dividend barrierJ. Statistics and Probability Letters, 2009, 79(1): 63-69.
7S G KELLISON. 利息理論M.尚漢冀,譯.上海: 上??茖W技術(shù)出版社, 1998.
8嚴士鍵, 劉秀英. 測度與概率M.北京: 北京師范大學出版社, 2003.