何訪 梅文莉 郭冬 李輝亮 彭世清 戴好富
摘 要 植物激素在植物生長發(fā)育的過程中發(fā)揮了重要作用,對(duì)激素應(yīng)答元件的研究將有助于對(duì)植物激素作用機(jī)制的研究。對(duì)常用植物激素生長素、赤霉素、脫落酸、乙烯、水楊酸和茉莉酸的應(yīng)答元件研究進(jìn)行了全面的綜述,可為植物激素基因表達(dá)調(diào)控方面的研究提供有益的資料。
關(guān)鍵詞 植物激素;激素響應(yīng)基因;啟動(dòng)子;應(yīng)答元件
中圖分類號(hào) Q78 文獻(xiàn)標(biāo)識(shí)碼 A
Advancement of Phytohormone Response cis-elements
HE Fang1,2, MEI Weili1, GUO Dong1, LI Huiliang1, PENG Shiqing1 *, DAI Haofu1 *
1 Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture / Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
2 College of Agriculture, Hainan University, Haikou, Hainan 570228, China
Abstarct Phytohormones play an important role in plant growth and development, and the study of phytohormone response cis-elements will contribute to the understanding of the mechanisms of phytohormones. The paper makes a comprehensive review on the response cis-elements of several phytohormones, such as auxin, gibberellin, abscisic acid, ethylene, jasmonic acid and salicylic acid.
Key words Phytohormones; Gene respone phytohormone; Promoter; cis-element.
doi 10.3969/j.issn.1000-2561.2015.01.035
植物激素對(duì)植物的生長發(fā)育以及在植物應(yīng)對(duì)逆境方面具有重要的調(diào)節(jié)作用。植物激素是一類簡(jiǎn)單小分子有機(jī)化合物,但是生物合成途徑非常復(fù)雜。激素合成之后由于生理調(diào)控的需要將自動(dòng)運(yùn)輸?shù)阶饔貌课?,微量的激素就能引起明顯的生理效應(yīng)[1]。大多數(shù)植物激素在調(diào)控植物生長發(fā)育過程中作用比較復(fù)雜,同一種激素可以調(diào)控多個(gè)發(fā)育過程,而同一個(gè)特定的發(fā)育過程需要多種不同激素的協(xié)同作用[2]。
植物激素發(fā)揮特定生理功能的機(jī)制是非常復(fù)雜的,從植物激素信號(hào)的產(chǎn)生,包括激素的合成、活性與水平的調(diào)節(jié)及運(yùn)輸,到與膜受體結(jié)合,引起信號(hào)的感知和傳遞,最終誘導(dǎo)激素響應(yīng)基因的表達(dá)和特定的生理反應(yīng),是一個(gè)連續(xù)和相互影響的過程,其中每一個(gè)環(huán)節(jié)都受到多種內(nèi)外因子在多個(gè)層次上的調(diào)節(jié)[3](圖1為茉莉酸、受體、轉(zhuǎn)錄因子、目標(biāo)基因啟動(dòng)子元件、目標(biāo)基因表達(dá)的相互關(guān)系圖)。植物激素應(yīng)答元件是激素效應(yīng)基因啟動(dòng)子上的特定DNA序列,是轉(zhuǎn)錄因子的結(jié)合位點(diǎn),它們通過與轉(zhuǎn)錄因子的結(jié)合調(diào)控基因轉(zhuǎn)錄的精確起始和轉(zhuǎn)錄效率。植物激素本身不能直接作用于DNA,須先與其受體結(jié)合,促使受體蛋白激活再啟動(dòng)特定基因的表達(dá),從而引起生理反應(yīng)[3],因此植物激素效應(yīng)基因的啟動(dòng)子中應(yīng)答元件在對(duì)不同植物激素產(chǎn)生效應(yīng)的基因表達(dá)中發(fā)揮重要作用。筆者對(duì)植物激素應(yīng)答元件的研究進(jìn)展進(jìn)行了簡(jiǎn)要綜述,旨在加深人們對(duì)植物激素在植物生長發(fā)育過程中的作用機(jī)制的了解,為植物激素基因表達(dá)調(diào)控方面的研究提供有益的資料。
1 生長素
生長素(auxin)是一類含有一個(gè)不飽和芳香族環(huán)和一個(gè)乙酸側(cè)鏈的內(nèi)源激素,在植物體內(nèi)大多以吲哚乙酸(IAA)形式存在。生長素最顯著的作用是促進(jìn)生長,還具有促進(jìn)愈傷組織形成、維持頂端優(yōu)勢(shì)、胚胎中軸的建立和誘導(dǎo)生根等作用。生長素的濃度對(duì)生長素的作用有較大影響,并且有組織特異性[4]。
目前關(guān)于生長素的調(diào)控機(jī)制有較多研究,一般認(rèn)為TIR1是生長素受體[4-5],ARF是一類生長素響應(yīng)因子,ARF作為轉(zhuǎn)錄因子能夠特異地與基因啟動(dòng)子中的生長素應(yīng)答元件結(jié)合,激活或抑制基因的表達(dá)[6],泛素介導(dǎo)的依賴于26S蛋白酶體的蛋白降解途徑在生長素調(diào)控發(fā)揮重要作用。目前,已經(jīng)鑒定的生長素應(yīng)答元件有Ocs-element、TGA-1、GATA-box、AuxRE、TGA-box、AuxRR-core和As-1-box等(表1)。
1.1 TGA-box
Liu等[10]發(fā)現(xiàn)在大豆IAA應(yīng)答基因GH3啟動(dòng)子上有3個(gè)順式作用元件與生長素誘導(dǎo)有關(guān),其中有2個(gè)是TGA-box,它們是強(qiáng)有力的轉(zhuǎn)錄因子結(jié)合位點(diǎn),在生長素誘導(dǎo)表達(dá)GH3蛋白有重要作用。Sarvestani1等[11]對(duì)青蒿中與青蒿素合成相關(guān)基因DBR2啟動(dòng)子進(jìn)行研究發(fā)現(xiàn)其含有TGA-box保守的TGACGTAA序列,可能與IAA應(yīng)答相關(guān)。
1.2 AuxRE
AuxRE元件最早的研究是對(duì)GH3啟動(dòng)子的研究,Liu等[10]研究發(fā)現(xiàn)GH3啟動(dòng)子是1個(gè)很好的生長素應(yīng)答基因的啟動(dòng)子,它含有AuxRE序列TGTCTC,將GH3啟動(dòng)子與GUS的融合基因轉(zhuǎn)入煙草,它的表達(dá)受生長素誘導(dǎo)。Lee等[9]研究發(fā)現(xiàn)大豆幼苗時(shí)期生長素可以誘導(dǎo)tubB1的表達(dá),對(duì)啟動(dòng)子順式作用元件分析發(fā)現(xiàn)了AuxRE元件,將啟動(dòng)子轉(zhuǎn)入擬南芥后用生長素進(jìn)行處理可以顯著的上調(diào)GUS蛋白的表達(dá),并且這個(gè)誘導(dǎo)可以被生長素運(yùn)輸抑制劑NPA抑制。
2 脫落酸(abscisic acid,ABA)
脫落酸是一種具有倍半萜結(jié)構(gòu)的植物激素。脫落酸(ABA)在植物發(fā)育的很多方面發(fā)揮調(diào)控作用,包括種子儲(chǔ)存蛋白和脂肪的合成,促進(jìn)種子干燥和休眠,抑制植物從胚胎到萌發(fā)及從營養(yǎng)生長到生殖生長的轉(zhuǎn)變;此外ABA還介導(dǎo)植物對(duì)脫水、鹽脅迫等逆境誘導(dǎo)的生理反應(yīng)[14]。關(guān)于脫落酸的分子調(diào)控機(jī)制還不是太清楚,清楚的是G蛋白偶聯(lián)受體參與ABA誘導(dǎo)的一系列生理活動(dòng)[14],PYRl/PYL/RCAR被證明具備ABA受體功能,為進(jìn)一步理解ABA信號(hào)轉(zhuǎn)導(dǎo)途徑夯實(shí)了基礎(chǔ)[15]。目前已經(jīng)鑒定出很多受ABA誘導(dǎo)表達(dá)啟動(dòng)子的順式作用元件,如:ABRE、G-box、Emla、Emlb、MotifI、MotifIII、CE3、E-motif、TCGTGT-motif等(表2)。
2.1 ABRE
ABRE是研究最多的ABA應(yīng)答元件,Shen等[19-20]在研究大麥HVA1和HVA22發(fā)現(xiàn)了3個(gè)與ABA應(yīng)答相關(guān)的元件,分別是ABRE、CE1和CE3,通過改變?cè)目截悢?shù)、元件間距和元件的不同組合來探索這些元件的相互作用關(guān)系,根據(jù)結(jié)果推斷大麥HVA1和HVA22啟動(dòng)子需要2個(gè)ABRE或者1個(gè)ABRE和1個(gè)CE元件才具有ABA誘導(dǎo)活性,但ACGT-box和1個(gè)CE元件的旁側(cè)序列對(duì)啟動(dòng)子的活性也有一定的影響。Yang等[26]研究發(fā)現(xiàn)大米ABL1在不同的組織中都有表達(dá),并且它的表達(dá)受激素ABA和IAA的調(diào)控。ABL1的缺失突變體可以抑制ABA的效應(yīng),ABL1蛋白在體內(nèi)直接和ABA應(yīng)答元件(ABREs,G-box)結(jié)合,ABL1突變體對(duì)外源IAA高度敏感,一些含ABRE的基因與乙烯代謝或信號(hào)途徑有關(guān),表明ABL1能對(duì)ABA和IAA作出應(yīng)答是通過直接調(diào)控ABRE應(yīng)答元件來實(shí)現(xiàn)的。
2.2 E-motif
Chung等[24]研究發(fā)現(xiàn)ABA可以誘導(dǎo)胡蘿卜Dc3的表達(dá),Dc3是由PPR和DPR兩部分構(gòu)成,TCGTGT-motifs在DPR上,5個(gè)和E-motif相似的含有保守的ACACGTGCA序列在PPR中,通過構(gòu)建一系列含有GUS報(bào)告基因的缺失表達(dá)載體轉(zhuǎn)入煙草中,發(fā)現(xiàn)Dc3啟動(dòng)子可受ABA的調(diào)控。在胚胎中DPR和PPR都和常見的核蛋白相互作用,并且它們?cè)谥参锝M織中都能受ABA的調(diào)控。
3 赤霉素(gibberellin acid, GA)
GA是一類較大的環(huán)二萜類化合物,在植物整個(gè)生命循環(huán)過程中起著重要的調(diào)控作用。它最顯著的效應(yīng)是促進(jìn)植物莖伸長,GA不但能夠在植物不同的生長發(fā)育階段發(fā)揮功效,如種子的萌發(fā)、莖的伸長、葉片的發(fā)育以及花和果實(shí)的發(fā)育等過程,還能在培育植物抗逆新品種及提高農(nóng)作物產(chǎn)量等方面發(fā)揮重要作用,水稻“綠色革命”基因(SD1)和小麥“綠色革命”基因(RHT1)都和赤霉素有著重要的關(guān)系。GA的受體是GID1,GA結(jié)合其受體GID1后誘導(dǎo)形成GA-GID1-DELLA蛋白復(fù)合體[27],通過26S蛋白酶體途徑介導(dǎo)降解進(jìn)而激活GA誘導(dǎo)的下游基因的表達(dá)[28]。目前關(guān)于赤霉素應(yīng)答元件的報(bào)道還不是很多,主要有以下6種:GARE-motif,TAACAAA-motif,TATCCAC-motif,P-box,TATC-box,F(xiàn)-BOX(表3)。
3.1 P-box
Mena等[32]研究發(fā)現(xiàn)大麥糊粉細(xì)胞萌發(fā)之后,GA可誘導(dǎo)水解酶基因的表達(dá),對(duì)其中1個(gè)水解酶基因啟動(dòng)子功能分析發(fā)現(xiàn)1個(gè)富含嘧啶堿基的的模體CCTTTT即P-box,它能和轉(zhuǎn)錄因子BPBF結(jié)合,從而調(diào)控GA誘導(dǎo)表達(dá)的基因。
3.2 TAACAAA-motif和TATCCAC-motif
Gubler等[30]對(duì)大麥高等電點(diǎn)的alpha-amylase基因啟動(dòng)子研究發(fā)現(xiàn)在-174下游區(qū)域有GA和ABA應(yīng)答元件TAACAAA-motif和TATCCAC-motif。TATCCAC-motif對(duì)提高TAACAAA-motif功能具有協(xié)同作用,TAACAAA-motif還表現(xiàn)出應(yīng)答ABA效應(yīng)的功能。
4 乙烯(ethylene,ETH)
乙烯分子式為C2H4,是植物激素中結(jié)構(gòu)最為簡(jiǎn)單的氣態(tài)物質(zhì)。它是1種植物內(nèi)源激素,在分生組織,萌發(fā)的種子、凋謝的花朵和成熟過程中的果實(shí)能產(chǎn)生較多的乙烯,乙烯影響著植物生長發(fā)育的許多過程,如種子萌發(fā)、花與葉片的衰老、果實(shí)成熟、葉的脫落、根表皮細(xì)胞命運(yùn)決定、性別決定、細(xì)胞程序化死亡、對(duì)各種環(huán)境脅迫與病原體襲擊等。植物乙烯誘導(dǎo)表達(dá)基因研究最多的是防御基因,當(dāng)面對(duì)環(huán)境脅迫或有病原菌入侵時(shí),乙烯能激活這類基因的表達(dá)。乙烯誘導(dǎo)表達(dá)的防御基因的啟動(dòng)子有共同的順式作用元件:GCC-box。在成熟和衰老時(shí)表達(dá)的基因,其啟動(dòng)子沒有可識(shí)別的GCC-box,存在其他乙烯響應(yīng)元件(ethylene-responsive element,ERE)(表4)。
ATTTCAAA-motif。Tapia等[39]研究發(fā)現(xiàn)TLC1家族在體內(nèi)能受乙烯、茉莉酸甲酯、水楊酸等誘導(dǎo)表達(dá),從L. Chilense基因組中分離得到一個(gè)TLC1家族的基因TLC1.1,其啟動(dòng)子上發(fā)現(xiàn)2個(gè)57 bp的串聯(lián)重復(fù)序列,包含1個(gè)ATTTCAAA序列,這先前就被證明為乙烯應(yīng)答元件,把1個(gè)或2個(gè)ERE-box和GUS基因融合起來構(gòu)建表達(dá)載體轉(zhuǎn)入煙草,表達(dá)分析表明乙烯應(yīng)答基因的表達(dá)需要這些應(yīng)答元件,Tapia認(rèn)為乙烯依賴的信號(hào)是調(diào)控TLC1.1表達(dá)的主要信號(hào)途徑。
5 水楊酸(salicylic acid, SA)
SA是一種小分子酚類植物激素,它是植物體內(nèi)一種普遍存在的內(nèi)源信號(hào)分子,它的化學(xué)成分是鄰羥基苯甲酸。SA在植物的許多生理過程中起調(diào)控作用,尤其是植物的抗逆性,如植物的抗病、抗鹽、抗熱、抗寒、抗旱、抗紫外線輻射、耐鉛等重金屬脅迫等,還能在果實(shí)貯藏保鮮、成熟、衰老等方面起作用。目前對(duì)SA的調(diào)控機(jī)制有了大量研究,信號(hào)轉(zhuǎn)遞途徑基本研究清楚,SA是激活植物防御反應(yīng)的天然信號(hào)分子[42]。SA應(yīng)答元件目前為止發(fā)現(xiàn)了5種(表5)。
Ocs-element。Chen等[41]研究發(fā)現(xiàn)GSTs是植物脅迫反應(yīng)中的一類多功能酶,Ocs-elements是在一些病原體和GST啟動(dòng)子發(fā)現(xiàn)的一種增強(qiáng)子序列,通過瞬時(shí)表達(dá)和轉(zhuǎn)基因擬南芥來驗(yàn)證Ocs-elements在應(yīng)答SA、生長素和H2O2中的作用,還對(duì)Ocs element進(jìn)行了組織特異性分析,發(fā)現(xiàn)在根組織里有最大的活性,并且其他的元件也在反應(yīng)中起協(xié)同作用,這些發(fā)現(xiàn)證明Ocs element在應(yīng)答SA和H2O2脅迫反應(yīng)中有重要作用。
6 茉莉酸類物質(zhì)(jasmonates, JAs)
茉莉酸(jasmonic acid, JA)及其揮發(fā)性甲酯衍生物茉莉酸甲酯(methyl-jasmonate, MeJA)和氨基酸衍生物統(tǒng)稱為茉莉酸類物質(zhì)(jasmonates, JAs),是植物體內(nèi)起整體性調(diào)控作用的植物生長調(diào)節(jié)物質(zhì)。茉莉酸信號(hào)途徑中的COI1基因編碼F-box蛋白,茉莉酸的受體是COI1,激素與受體F-Box蛋白直接結(jié)合激活信號(hào)通路, 相應(yīng)的受體E3泛素連接酶復(fù)合體與下游負(fù)調(diào)節(jié)因子相互作用, 并使其通過26S 蛋白酶體途徑降解, 進(jìn)而啟動(dòng)下游激素應(yīng)答反應(yīng)[49-50]。茉莉酸作為內(nèi)源信號(hào)分子參與植物在機(jī)械傷害、病蟲害、脫水、鹽脅迫、低溫等條件下的抗逆反應(yīng),誘導(dǎo)一系列與抗逆有關(guān)的基因表達(dá),已經(jīng)鑒定與茉莉酸甲酯誘導(dǎo)有關(guān)的順式作用元件有:G-box、GAGTA-element、13 bp-motif、W-box、E-box、GCC-box、as-1 JASE、Box1、JERE、CGTCA-motif 和TGACG-motif(表6)。
6.1 E-box
Miyamoto等[54]研究水稻的防御反應(yīng)發(fā)現(xiàn)OsChia4a是一種易受JA誘導(dǎo)表達(dá)的基因,通過寡核苷酸微陣列技術(shù)分析發(fā)現(xiàn), 經(jīng)JA誘導(dǎo)的水稻懸浮培養(yǎng)細(xì)胞中的OsChia4a基因表達(dá)明顯增強(qiáng),超過常規(guī)的一些防衛(wèi)基因的上調(diào)水平。通過啟動(dòng)子缺失表達(dá)和點(diǎn)突變?cè)囼?yàn)確定在ATG轉(zhuǎn)錄起始位點(diǎn)上游-515到-265之間存在1個(gè)JA應(yīng)答元件E-box(CANNTG)。Jung等[61]對(duì)CALTPII啟動(dòng)子進(jìn)行功能鑒定,預(yù)測(cè)分析發(fā)現(xiàn)了ERE-box, W-box等順式作用元件,利用農(nóng)桿菌介導(dǎo)的瞬時(shí)表達(dá)方法研究發(fā)現(xiàn)激素乙烯,SA和MeJA能強(qiáng)有力的增強(qiáng)啟動(dòng)子的活性,缺失表達(dá)試驗(yàn)結(jié)果表明所有缺失片段都不具有SA的應(yīng)答效應(yīng),在-830 bp~-422 bp的缺失片段具有乙烯應(yīng)答效應(yīng),MeJA的應(yīng)答效應(yīng)可能與ERE-box或W-box有關(guān),具體是那個(gè)元件發(fā)揮了作用還有待進(jìn)一步研究。
6.2 JRE
Zhang等[59]在研究長春花發(fā)現(xiàn)乙烯響應(yīng)因子ORCA3控制與萜類吲哚生物堿的生物合成相關(guān)的茉莉酸響應(yīng)基因的激活。ORCA3的表達(dá)受茉莉酸的誘導(dǎo),它的啟動(dòng)子包含一個(gè)JRE。通過轉(zhuǎn)擬南芥試驗(yàn)證實(shí)了JRE元件的茉莉酸應(yīng)答活性,并且在體內(nèi)和體外都和轉(zhuǎn)錄因子AtMYC2相互作用。在atmyc2-1突變體背景下分析JRE介導(dǎo)的報(bào)告基因的表達(dá),結(jié)果表明活性是嚴(yán)格依賴于AtMYC2。
7 植物激素的交互作用
大量研究發(fā)現(xiàn)植物體內(nèi)各種植物激素之間有相互作用,既可以相互促進(jìn)增效,又可相互拮抗抵消,還可以相互誘導(dǎo),并且有反饋調(diào)節(jié)作用,關(guān)于植物激素的調(diào)控機(jī)制相當(dāng)復(fù)雜,至少?zèng)]有完全研究透徹。已有多篇文獻(xiàn)報(bào)道同一種植物激素順式作用元件可以應(yīng)答不同的植物激素,不同順式元件之間的偶聯(lián)也可能引起不同組合之間的相互作用,這可能是導(dǎo)致植物之間有相互作用的原因。
7.1 GCC-box
研究表明GCC-box既是乙烯的元件又是茉莉酸的應(yīng)答元件,GCC-box是由GCC串聯(lián)重復(fù)而成,核心序列為GCCGCC。如果缺失GCC-box和點(diǎn)突變GCC-box將導(dǎo)致啟動(dòng)子ETH和JA應(yīng)答活性喪失。Takagi[62]等在研究煙草Gln2基因受乙烯誘導(dǎo)表達(dá),對(duì)其啟動(dòng)子序列分析表明有2個(gè)拷貝的GCC-box,將這2個(gè)GCC-box與CaMV35S啟動(dòng)子連接轉(zhuǎn)入煙草,經(jīng)乙烯誘導(dǎo)處理發(fā)現(xiàn)報(bào)告基因的表達(dá)明顯增強(qiáng),表明GCC-box具有乙烯誘導(dǎo)活性(Takagi,1995)。PDF1.2是擬南芥編碼防御蛋白基因, 它在體內(nèi)的表達(dá)受到MeJA的誘導(dǎo), Brown等[55]在擬南芥PDF1.2基因啟動(dòng)子中找到了順式作用元件GCC-box,點(diǎn)突變?cè)囼?yàn)表明,GCC-box是應(yīng)答茉莉酸必要的順式作用元件,其下游序列中可能也存在部分作用元件參與到茉莉酸應(yīng)答反應(yīng)中。Dieuwertje等[63]研究發(fā)現(xiàn)防御激素SA和JA在調(diào)節(jié)植物的免疫信號(hào)網(wǎng)絡(luò)中有重要作用,它們是拮抗作用,但是這種現(xiàn)象的分子作用機(jī)制還不清楚。SA抑制JA途徑是在E3泛素連接酶SCFCOI1-JAZ下游發(fā)揮作用,并且不穩(wěn)定也不受JA誘導(dǎo)降解的JAZs也可以被SA影響。通過硅片啟動(dòng)子分析SA與JA之間的相互作用關(guān)系發(fā)現(xiàn)受SA抑制的JA響應(yīng)基因啟動(dòng)子1 000 bp區(qū)域富含JA應(yīng)答元件GCC-BOX。構(gòu)建含有4個(gè)重復(fù)的GCC-box與GUS報(bào)告基因融合表達(dá)載體,試驗(yàn)證明GCC-BOX足以介導(dǎo)SA抑制JA響應(yīng)基因的表達(dá)。
7.2 W-box
研究表明W-box是SA、ETH和MeJA的應(yīng)答元件,W-box的核心序列是TTGAC。Mohr等[48]研究發(fā)現(xiàn)擬南芥抗病基因RPP8受SA的調(diào)控,對(duì)啟動(dòng)子序列進(jìn)行分析發(fā)現(xiàn)其含有3個(gè)W-box,對(duì)這3個(gè)W-box進(jìn)行定點(diǎn)突變?cè)囼?yàn)?zāi)芎艽蟪潭葴p弱基因的表達(dá)。模體檢索發(fā)現(xiàn)W-box是唯一已知在擬南芥中超表達(dá)的與核苷酸結(jié)合的富含亮氨酸的啟動(dòng)子順式作用元件。Lan等[64]研究發(fā)現(xiàn)受SA調(diào)控的WRKY類轉(zhuǎn)錄因子OsWRKY77與W-box結(jié)合參與擬南芥的抗病機(jī)制。Zheng等[53]在對(duì)白毛楊PtDrl02啟動(dòng)子的研究中發(fā)現(xiàn)了W-box的MeJA應(yīng)答功能。PtDrl02屬于TIR-NBS基因家族,其表達(dá)具有組織特異性,啟動(dòng)子缺失表達(dá)試驗(yàn)表明,轉(zhuǎn)錄起始位點(diǎn)上游-669到-467含有響應(yīng)傷害和MeJA的應(yīng)答,利用在線軟件在啟動(dòng)子進(jìn)行預(yù)測(cè)分析發(fā)現(xiàn)-669到-467含有兩個(gè)W-box(TTGACT/TTGACA)。
8 結(jié)語
目前人們對(duì)植物激素調(diào)控的機(jī)制進(jìn)行了大量研究, 同時(shí)分離出了大量激素應(yīng)答有關(guān)的基因, 并鑒定出了相應(yīng)的啟動(dòng)子, 發(fā)現(xiàn)了大量的激素應(yīng)答元件, 但要真正從分子水平弄清楚植物激素作用的分子機(jī)制, 還有大量的工作要做。對(duì)植物激素應(yīng)答元件的深入研究, 將有助于在分子水平上闡明植物激素的作用機(jī)制,為有效地利用植物激素提供依據(jù)。
參考文獻(xiàn)
[1] Santner A, Calderon-Villalobos L I A, Estelle M. Plant hormones are versatile chemical regulators of plant growth[J]. Nat Chem Biol, 2009, 5(5): 301-307.
[2] Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development[J]. Nat Rev Gene, 2009, 10(5): 305-317.
[3] Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Ann Bot, 2013 111(6): 1 021-1 058.
[4] Peer W A. From perception to attenuation: auxin signalling and responses[J]. Curr Opin Plant Biol, 2013, 16(5): 561-568.
[5] Wang R, Estelle M. Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway[J]. Curr Opin Plant Biol, 2014, 21C: 51-58.
[6] Pierre-Jerome E, Moss B L, Nemhauser J L. Tuning the auxin transcriptional response[J]. J Exp Bot, 2013, 64(9): 2 557-2 563.
[7] Ulmasov T, Hagen G, Guilfoyle T. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues[J]. Plant Mol Biol, 1994, 26(4): 1 055-1 064.
[8] Pastuglia M, Roby D, Dumas C, et al. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea[J]. Plant Cell, 1997, 9(1): 49-60.
[9] Lee E A, Han I S. Auxin Activates Promoter of a Soybean β-tubulin, tubB1 Gene[J]. Gene Genomics, 2005, 27(4): 383-388.
[10] Liu Z B, Hagen G, Guilfoyle T J. A G-box-binding protein from soybean binds to the E1 auxin-response element in the soybean GH3 promoter and contains a proline-rich repression domain[J]. Plant Physiol, 1997, 115(2): 397-407.
[11] Sarvestani R, Peyghambary S A, Abbasi A. Isolation and characterization of DBR2 gene promoter from Iranian Artemisia annua[J]. J Agri Sci Tech, 2014, 16(1): 191-202.
[12] Kim H J, Murai N, Fang D D, et al. Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues[J]. Plant Sci, 2011, 180(2): 323-332.
[13] Ducos E, Fraysse A S, Boutry M. NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum[J]. FEBS Letters, 2005, 579(30): 6 791-6 795.
[14] Rosenbaum D M, Rasmussen S G F, Kobilka B K. The structure and function of G-protein-coupled receptors[J]. Nature, 2009, 459(7245): 356-363.
[15] Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1 068-1 071.
[16] Sakata Y, Nakamura I, Taji T, et al. Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element[J]. Plant Signal Behav, 2010,5(9): 1 061-1 066
[17] Kurek I, Harvey A J, Lonsdale D M, et al. Isolation and characterization of the wheat prolyl isomerase FK506-binding protein(FKBP)73 promoter[J]. Plant Mol Biol, 2000, 42(3): 489-497.
[18] Ono A, Izawa T, Chua N H, et al. The rab16B promotor of rice contains two distinct abscisic acid-responsive elements[J].Plant Physiol, 1996, 112(2): 483-491.
[19] Shen Q, Casaretto J A, Zhang P, et al. Functional definition of ABA-response complexes: the promoter units necessary and sufficient for ABA induction of gene expression in barley (Hordeum vulgare L.)[J]. Plant Mol Biol, 2004, 54(1): 111-124.
[20] Shen Q, Zhang P, Ho T D. Modular nature of abscisic acid (ABA)response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley[J]. Plant Cell, 1996, 8(7): 1 107-1 119.
[21] Liu S, Kriz A, Duncan D, et al. Abscisic acid-regulated Glb1 transient expression in cultured maize P3377 cells[J]. Plant Cell Rep, 1998, 17(8): 650-655.
[22] Guan L M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response[J]. Plant J, 2000, 22(2): 87-95.
[23] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Pro Nat Acad Sci, 2000, 97(21): 11 632-11 637.
[24] Chung H J, Fu H Y, Thomas T L. Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulatcd expression of the carrot Dc3 gene[J]. Planta, 2005, 220(3): 424-433.
[25] Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theoretical and Applied Genetics, 2003, 106(5): 923-930.
[26] Yang X, Yang Y N, Xue L J, et al. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes[J]. Plant Physiol, 2011, 156(3): 1 397-1 409.
[27] Murase K, Hirano Y, Sun T P, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221): 459-463.
[28] Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Ann Rev Plant Biol, 2004, 55: 555-590.
[29] Pastuglia M, Roby D, Dumas C, et al. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea[J]. Plant Cell, 1997, 9(1): 49-60.
[30] Gubler F, Jacobsen J V. Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene[J]. Plant Cell, 1992, 4(11): 1 435-1 441.
[31] Li H, Wang Y, Li X, et al. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1[J]. Mol Biol Rep, 2011, 38(1): 191-197.
[32] Mena M, Cejudo F J, Isabel-Lamoneda I, et al. A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone[J]. Plant Physiol, 2002, 130(1): 111-119.
[33] Shan D P, Huang J G, Yang Y T, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid[J]. New Phytol, 2007, 176(1): 70-81.
[34] Ariizumi T, Lawrence P K, Steber C M. The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling[J]. Plant Physiol, 2011, 155(2): 765-775.
[35] Wang F, Cui X, Sun Y, et al. Ethylene signaling and regulation in plant growth and stress responses[J]. Plant Cell Rep, 2013, 32(7): 1 099-1 109.
[36] Sessa G, Meller Y, Fluhr R. A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1b gene[J]. Plant Mol Biol, 1995, 28(1): 145-153.
[37] Zarei A, Korbes A P, Younessi P, et al. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis[J]. Plant Mol Biol, 2011, 75(4-5): 321-331.
[38] Rawat R, Xu Z F, Yao K M, et al. Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena encoding cysteine proteinase[J]. Plant Mol Biol, 2005, 57(2): 629-643.
[39] Tapia G, Verdugo I, Yanez M, et al. Involvement of ethylene in stress-induced expression of the TLC1. 1 retrotransposon from Lycopersicon chilense Dun[J]. Plant Physiol, 2005, 138(4): 2 075-2 086.
[40] Jung H W, Kim K D, Hwang B K. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene(CALTPI)and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses[J]. Planta, 2005, 221(3): 361-373.
[41] Boatwright J L, Pajerowska-Mukhtar K. Salicylic acid: an old hormone up to new tricks[J]. Mol Plant Pathol, 2013, 14: 623-34.
[42] Yan S, Dong X. Perception of the plant immune signal salicylic acid[J]. Curr Opin Plant Biol, 2014, 16; 20C: 64-68
[43] Chen W, Singh K B. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element[J]. Plant J, 1999, 19(6): 667-677.
[44] Shah J, Klessig D F. Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related β-1,3-glucanase gene, PR-2d[J]. Plant J, 1996, 10(6): 1 089-1 101.
[45] Wang L, Tsuda K, Truman W, et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling[J]. Plant J, 2011, 67(6): 1 029-1 041.
[46] Fonseca J P, Menossi M, Thibaud-Nissen F, et al. Functional analysis of a TGA factor-binding site located in the promoter region controlling salicylic acid-induced NIMIN-1 expression in Arabidopsis[J]. Gene Mol Res, 2010, 9(1): 167-175.
[47] Jupin I, Chua N H. Activation of the CaMV as-1 cis-element by salicylic acid: differential DNA-binding of a factor related to TGA1a[J]. EMBO J, 1996, 15(20): 5679.
[48] Mohr T J, Mammarella N D, Hoff T, et al. The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W-box cis elements[J]. Mol Plant-Micro Interac, 2010, 23(10): 1 303-1 315.
[49] Xu L, Liu F, Lechner E, et al. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis[J]. Plant Cell, 2002, 14(8): 1 919-1 935.
[50] Xie D X, Feys B F, James S, et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280(5366): 1 091-1 094.
[51] Boter M, Ruíz-Rivero O, Abdeen A, et al. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis[J]. Genes Devel, 2004, 18(13): 1 577-1 591.
[52] Takeda S, Sugimoto K, Otsuki H, et al. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors[J]. Plant J, 1999, 18(4): 383-393.
[53] Zheng H, Lin S, Zhang Q, et al. Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar[J]. Plant Cell Rep, 2010, 29(5): 449-460.
[54] Miyamoto K, shimizu T, Lin F, et al . Identifioation of an E-box motif, responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice[J]. Plant Physiol, 2012, 169(6):621-627.
[55] Brown R L , Kazan K , MeGrath K C, et al. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis[J]. Plant Physiol, 2003, 132(2): 1 020-1 032.
[56] Rouster J, Leah R, Mundy J, et al. Identifieation of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain[J]. Plant J, 1997, 11(3): 513-523.
[57] He Y, Gan S. Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis[J]. Plant Mol Biol, 2001, 47(5): 595-605.
[58] Pyee J, Kolattukudy P E. The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea)and their expression patterns[J]. Plant J, 1995, 7(1): 49-59.
[59] Zhang H, Hedhili S, Montiel G, et al. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus[J]. Plant J, 2011, 67(1): 61-71.
[60] Su M, Li X F, Ma X Y, et al. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment[J]. Plant Sci, 2011, 181(6): 652-659.
[61] Jung H W, Lim C W, Hwang B K. Isolation and functional analysis of a pepper lipid transfer protein III(CALTPIII)gene promoter during signaling to pathogen, abiotic and environmental stresses[J]. Plant Sci, 2006, 170(2): 258-266.
[62] Takagi M O, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182.
[63] Van der Does D, Leon-Reyes A, Koornneef A, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59[J]. Plant Cell , 2013, 25(2): 744-761.
[64] Lan A, Huang J, Zhao W, et al. A salicylic acid-induced rice (Oryza sativa L.)transcription factor OsWRKY77 is involved in disease resistance of Arabidopsis thaliana[J]. Plant Biol, 2013, 15(3): 452-461.