国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

hUVECs在不同切應(yīng)力作用下的形態(tài)及纖毛發(fā)生

2015-04-29 00:44:03李秀毛生欣郭鵬飛陳城河何蕾
生命科學(xué)研究 2015年1期
關(guān)鍵詞:細(xì)胞骨架纖毛微管

李秀毛 生欣 郭鵬飛 陳城河 何蕾

摘要:分別應(yīng)用紫杉醇熒光和免疫熒光標(biāo)記法顯示hUVECs(human umbilical vein endothelial cells, hUVECs)在不同切應(yīng)力加載下微管骨架的裝配動(dòng)態(tài)及初級(jí)纖毛的形態(tài)發(fā)生。結(jié)果表明,以梯度切應(yīng)力加載24h,隨著切應(yīng)力增大,細(xì)胞由梭形逐漸變圓,長寬比降低,胞質(zhì)微管向細(xì)胞核周圍集結(jié)并發(fā)生裝配;14dynes/cm2切應(yīng)力加載48h后,微管向切應(yīng)力方向延伸導(dǎo)致細(xì)胞呈長梭型,微管停止裝配;以15dynes/cm2切應(yīng)力加載28h后,纖毛基體在細(xì)胞表面的定位不可見,纖毛微管解聚;再以1dynes/cm2切應(yīng)力加載18h,又可觀察到纖毛基體在細(xì)胞表面的重新定位。因此,切應(yīng)力作用可誘導(dǎo)hUVECs形態(tài)變化,該變化經(jīng)歷了微管骨架的解聚、向細(xì)胞核方向聚集及重新裝配過程;此外,切應(yīng)力能夠影響初級(jí)纖毛的形態(tài)發(fā)生,該現(xiàn)象可能導(dǎo)致了初級(jí)纖毛在心血管 系統(tǒng)中的分布不均,并為“纖毛疾病”的治療提供新的思路。關(guān)鍵詞:人臍靜脈內(nèi)皮細(xì)胞;切應(yīng)力;微管類細(xì)胞骨架;初級(jí)纖毛;纖毛發(fā)生中圖分類號(hào):Q245 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-7847(2015)01-0013-06

Changes on Morphology and Ciliogenesis of hUVECs Loaded on Different Flow Shear Stress

LI Xiu-mao1, SHENG Xin2*, GUO Peng-fei2, CHEN Cheng-he2, HE Lei2

(1. Cardiothoracic Surgery Department, Affiliated Hospital of Zunyi Medical College, Zunyi 563000, Guizhou, China;2. Department of Biochemistry, Zunyi Medical College, Zunyi 563000, Guizhou, China)

Abstract: The microtuhular cytoskeleton assembly dynamics and ciliogenesis of human umbilical vein en-dothelial cells (hUVECs) loaded on different flow shear stress were separately visualized by using FLUTAX direct-flurescent labeling and immunofluorescence with anti-y-tubulin antibody. The results demonstrated that when the cells were loaded on increased gradient flow shear stress for 24 h, the cell shape hecame spherical from spindle, the aspect ratio reduced, and the microtubules in cytoplasm gradually gathered around the nucleus and initiated assembly. When some cells were loaded on flow shear stress of 14 dynes/cm2 for about 48 h, the microtubules elongated to the direction of the flow shear stress and accomplished assem-bly, and the cell shape became elongated and spindled. The basal bodies of primary cilia could not he ob-served on the cell surface and microtuhules of cilia were depolymerased as cells were loaded on laminar shear stress (15 dynes/cm2) for 28 h, but interestingly, the basal bodies appeared if cells were further treated with flow shear stress of 1 dynes/cm2 for 18 h. Therefore, flow shear stress can induce changes of cytomor- phology of hUVECs which undergo a process of depolymerization, elongated and reassembly of microtuhules. Moreover, it also influent the ciliogenesis, which may result in disproportion distribution of the primary cilia in cardiovascular system, and provide new ideas for the treatment of ciliopathies.

Key words: human umbilical vein endothelial cells (hUVECs); flow shear stress (FSS); microtuhular cy-toskeleton; primary cilia; ciliogenesis(Life Science Research, 2015 , 19(1): 013~018)

近年來,基于局部血流動(dòng)力學(xué)與心血管疾病發(fā)生、發(fā)展的密切關(guān)系,血流切應(yīng)力(flow shear stress, FSS)對(duì)血管內(nèi)皮細(xì)胞(vascular endothelial cells, VECs)的形態(tài)及功能影響成為研究熱點(diǎn)[1,2]。人們發(fā)現(xiàn),體內(nèi)較高切應(yīng)力區(qū)域的VECs多為橢圓形,而低切應(yīng)力區(qū)域多為多角形[3]。體外實(shí)驗(yàn)證實(shí),在切位力作用下,細(xì)胞傾向于向切應(yīng)力方向定位[4]。大多數(shù)的研究認(rèn)為切應(yīng)力對(duì)細(xì)胞形態(tài)變化的影響主要源于肌動(dòng)蛋內(nèi)的重組[5],相比之下有關(guān)微管類細(xì)胞骨架在此過程中的作用還缺乏深入的研究在細(xì)胞功能方面,高速、單向的血流所產(chǎn)生的層流切應(yīng)力(≥15dynes/cm2)對(duì)VECs具有抗血栓、抗增生、抗炎癥等作用,而低速、擺動(dòng)或回旋的血流所產(chǎn)生的低切應(yīng)力(<4 dynes/cm2)或異常切應(yīng)力能夠促進(jìn)其發(fā)生炎癥并導(dǎo)致動(dòng)脈粥樣硬化(Atherosclerosis, As)[6、7]。作為VECs表面的FSS感受器,初級(jí)纖毛(primary cilia)上定位多種受體和離子通道.其結(jié)構(gòu)的完整性是保證正常信號(hào)傳遞的基礎(chǔ)[8]。值得注意的是,初級(jí)纖毛并非對(duì)所有的FSS敏感。早在2004年,lomini等以人胳靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells, hUVECs)為材料,以抗acetyl-a-微管蛋白抗體對(duì)初級(jí)纖毛進(jìn)行標(biāo)記,發(fā)現(xiàn)在層流FSS作用下,初級(jí)纖毛發(fā)生解聚[9]。van der Heiden等隨后報(bào)道了在雞胚胎心內(nèi)膜內(nèi)皮細(xì)胞中,分布于低FSS區(qū)域的細(xì)胞突起正是初級(jí)纖毛[10]。Hierck等證實(shí)了初級(jí)纖毛在心血管系統(tǒng)中的分布依賴于血流模式[11],高FSS區(qū)域的內(nèi)皮細(xì)胞通常不具有纖毛,而低FSS區(qū)域的內(nèi)皮細(xì)胞則存在纖毛的定位。由此我們推測(cè),F(xiàn)SS的變化在一定范圍內(nèi)能夠影響纖毛發(fā)生。為此,作者所在課題組建立了hUVECs的體外流動(dòng)培養(yǎng)模塑,采用直接及免疫熒光標(biāo)記技術(shù),對(duì)其在不同F(xiàn)SS作用下形態(tài)變化及纖毛發(fā)生進(jìn)行了系統(tǒng)的觀察。

1 材料與方法

1.1 材料

hUVECs購于中國典型培養(yǎng)物保藏中心,傳代培養(yǎng)。

1.2 方法

以平行平板流動(dòng)小室(parallel-plate flow chamber, glycotech)為流室,以數(shù)字精密蠕動(dòng)泵為動(dòng)力,并以真空泵維持系統(tǒng)密封性建立起內(nèi)皮細(xì)胞體外流動(dòng)培養(yǎng)系統(tǒng)(見圖1)[12]。直接熒光采用本實(shí)驗(yàn)室改進(jìn)的FLUTAX方法[13],主要步驟如下:1)分別將靜置和切應(yīng)力加載培養(yǎng)的hUVECs以4%的多聚甲醛中固定30min,0.01mol/LPBS清洗3次,每次5min;2)1μmol/LFLUTAX2(Molecular Probes)染色10min,0.01mol/LPBS漂洗5min;3)以防猝滅劑封片,Olym-pus IX71熒光顯微鏡觀察、拍照。

免疫熒光采用本實(shí)驗(yàn)室改進(jìn)的方法[14]:1)分別將靜置和切應(yīng)力加載培養(yǎng)的hUVECs以4%的多聚甲醛中固定30min,0.01mol/LPBS清洗3次,每次5min;2)以0.2%TritonX-100覆蓋于細(xì)胞上,室溫下處理2min;0.01mol/LPBS清洗3次,每次5min;3)以PBS-3%BSA清洗3次,每次5min;4)以20μL1:1000稀釋的抗y-微管蛋白抗體一抗覆蓋于細(xì)胞上,4℃下孵育過夜,以PBS-3%BSA清洗3次,每次5min;5)以20μL1:100稀釋的FITC標(biāo)記的二抗覆蓋于細(xì)胞上,室溫下孵育45min,以PBS-3%BSA清洗3次,每次5min;6)以防粹滅劑封片,OlympusIX71突光顯微鏡觀察、拍照。

細(xì)胞周期檢測(cè)方法參照試劑盒(南京凱基生物科技發(fā)展有限公司,Cell Cycle Detection Kit)說明進(jìn)行,步驟如下:1)細(xì)胞以PBS洗去培養(yǎng)基,加入無EDTA胰蛋白酶消化,離心收集;2)PBS清洗3次;3)制備的單細(xì)胞懸液用體積分?jǐn)?shù)為70%乙醇固定,4℃保存,染色前用PBS洗去固定液;4)加100μLRNaseA37℃水浴30min,再加入400μLPI染色混勻,4℃避光30min;5)以正常細(xì)胞作對(duì)照,在30min內(nèi)進(jìn)行流式細(xì)胞儀檢。

2結(jié)果

2.1梯度切應(yīng)力加載24后hUVECs微管類細(xì)胞骨架及細(xì)胞形態(tài)變化FLUTAX為紫杉醇的熒光衍生物,其相對(duì)分子質(zhì)量小,易透過細(xì)胞膜并特異性結(jié)合于αβ-微管蛋白二聚體,能夠清晰地顯示微管類細(xì)胞骨架在細(xì)胞中的分布和走向,進(jìn)一步通過熒光的細(xì)胞定位和強(qiáng)度對(duì)細(xì)胞形態(tài)、微管的聚集和走向進(jìn)行定性和定量分析:本研究分別對(duì)hUVECs進(jìn)行了梯度切應(yīng)力(0-14dynes/cm2)加載作用,并以FLUTAX法對(duì)微管類細(xì)胞骨架進(jìn)行了染色和觀察(圖2)。結(jié)果顯示,靜置培養(yǎng)(0dynes/cm2)時(shí),hU-VECs的細(xì)胞形態(tài)主要呈梭形或三角形,胞質(zhì)微管以細(xì)胞核為中心向多個(gè)方向延仲,細(xì)胞長寬比較大,排列無明顯的方向性(圖2A),且細(xì)胞核內(nèi)部熒光染色較淺(圖2白色箭頭所示);通過熒光強(qiáng)度可見微管在胞質(zhì)中的分布均勻,除個(gè)別處于形態(tài)發(fā)生時(shí)期的細(xì)胞外,未見明顯的微管裝配現(xiàn)象發(fā)生。隨著切應(yīng)力的增大,細(xì)胞由梭形逐漸變圓,細(xì)胞長寬比逐漸降低,胞質(zhì)微管逐漸聚集到細(xì)胞核周圍,熒光在細(xì)胞核周圍明顯增強(qiáng),大部分細(xì)胞可觀察到微管在此集結(jié)和裝配(圖2B-H),其中,以14dynes/cm2加載24h最為明顯。當(dāng)14dynes/cnr加載48h后,在部分區(qū)域可觀察到微管骨架向切應(yīng)力方向延伸使整個(gè)細(xì)胞呈長梭型;絕大多數(shù)細(xì)胞熒光染色較淺,微管裝配停止(圖3B)。

2.2 層流切應(yīng)力加載12~28h后hUVECs初級(jí)纖毛發(fā)生

為探索hUVECs的纖毛發(fā)生和定位情況,本實(shí)驗(yàn)以抗微管蛋白抗體標(biāo)記纖毛基體,并以DAPI標(biāo)記細(xì)胞核;分別觀察加載同一層流切應(yīng)力(15dynes/cnr)0、12、28h,以及在28h之后改變切應(yīng)力大小為1dynes/cm2繼續(xù)加載18h.γ-微管蛋白在細(xì)胞表面的定位情況定位于細(xì)胞核周圍的紅色亮點(diǎn)為纖毛基體所在(圖4箭頭所示)結(jié)果表明,在靜置培養(yǎng)的細(xì)胞表面存在初級(jí)纖毛的定位,但纖毛多定位于細(xì)胞中央(圖4A、A〃);隨著切應(yīng)力加載時(shí)間的逐漸增大,在細(xì)胞核周圍可觀察到微管在某一區(qū)域逐漸集結(jié)和裝配,纖毛基體定位逐漸偏離細(xì)胞中央,與細(xì)胞質(zhì)延伸方向一致(圖4B)當(dāng)以層流切應(yīng)力加載28h時(shí),大多數(shù)細(xì)胞觀察不到纖毛基體在細(xì)胞表面的定位,組成纖毛的微管發(fā)生了解聚(圖4C、C〃);但當(dāng)細(xì)胞再加載1dynes/cm2切應(yīng)力18h后,又可觀察到纖毛基體在細(xì)胞表面的重新定位,且位于細(xì)胞質(zhì)延伸區(qū)(圖4D、D〃),表明在較低切應(yīng)力加載下細(xì)胞又發(fā)生了微管的重新裝配并形成了新的纖毛。另外,為檢測(cè)FSS對(duì)細(xì)胞生長及周期的影響,通過細(xì)胞周期檢測(cè)試劑盒對(duì)細(xì)胞層流切應(yīng)力加載28h后再加載1dynes/cm2切應(yīng)力18h的細(xì)胞進(jìn)行了PI染色和流式細(xì)胞術(shù)檢測(cè)。結(jié)果表明,與對(duì)照組相似,大部分細(xì)胞處于G0、G1期且未見S期及凋亡細(xì)胞,但處于G2、M期的細(xì)胞較對(duì)照少,幾乎看不到,細(xì)胞生長處于平臺(tái)期(圖5),源于加載切應(yīng)力的近48h期間細(xì)胞基本長滿載玻片使分裂期細(xì)胞相對(duì)較少。由此可見,在長時(shí)間加載切應(yīng)力期間,細(xì)胞的生長和周期并未受到影響。

3討論

3.1 切應(yīng)力可誘導(dǎo)hUVECs微管類細(xì)胞骨架發(fā)生重新裝配并導(dǎo)致細(xì)胞形態(tài)變化

hUVECs在靜置培養(yǎng)條件下,細(xì)胞融合后呈鵝卵石狀,細(xì)胞形態(tài)為梭型或多角形,細(xì)胞的長寬較為分明[15]。早在20世紀(jì)90年代,就有報(bào)道顯示血流動(dòng)力學(xué)能夠使細(xì)胞形態(tài)由鵝卵石狀轉(zhuǎn)變?yōu)殚L梭型[14],這一變化主要來源于細(xì)胞骨架重構(gòu)[16],最新的研究也顯示,對(duì)內(nèi)皮細(xì)胞加載適當(dāng)?shù)那袘?yīng)力可導(dǎo)致細(xì)胞逐漸變?yōu)殚L梭型,其長軸與血流切應(yīng)力方向一致,且切應(yīng)力越大所需要的加載時(shí)間相應(yīng)越短[17]。而本實(shí)驗(yàn)的研究結(jié)果表明,內(nèi)皮細(xì)胞骨架的改變并非直接變?yōu)殚L梭型,而是隨著切應(yīng)力的增大,經(jīng)過了一個(gè)過渡狀態(tài)即圓形,再逐漸向切應(yīng)力方向伸展,且細(xì)胞骨架可觀察到明顯的裝配階段:因此推測(cè),在切應(yīng)力誘導(dǎo)細(xì)胞形態(tài)變化過程中,細(xì)胞骨架首先發(fā)生了解聚,再進(jìn)一步向切應(yīng)力方向重新裝配成長梭型。同時(shí),我們也注意到按照“鋪路石”樣排列緊密的細(xì)胞在切應(yīng)力作用下更容易形成鈍圓的形態(tài),而非長梭型,由此推測(cè),細(xì)胞之間沒有間隙的狀態(tài)下,細(xì)胞形態(tài)的改變受到了彼此的約束,切應(yīng)力的誘導(dǎo)作用更傾向于導(dǎo)致細(xì)胞骨架的解聚.并向細(xì)胞核周圍聚攏.而要使細(xì)胞骨架按照相應(yīng)的作用力方向重新排列需要電大的切應(yīng)力作用更多的時(shí)間,而這樣的切應(yīng)力大小是體內(nèi)靜脈血流所不能達(dá)到的,因此,在活體靜脈管壁中的內(nèi)皮細(xì)胞形態(tài)不易形成按照血流方向的梭型排列方式。綜上所述,切應(yīng)力作用是可以誘導(dǎo)hUVECs發(fā)生形態(tài)變化的,這一變化的發(fā)生經(jīng)歷了微管類細(xì)胞骨架的解聚、向細(xì)胞核方向聚集以及重新裝配等過程。

3.2切應(yīng)力可影響hUVECs初級(jí)纖毛在細(xì)胞表面的定位和發(fā)生

纖毛的形成過程被稱為纖毛發(fā)生,涉及纖毛基體的定位和纖毛軸絲裝配。通常情況下,纖毛發(fā)生受到細(xì)胞周期的調(diào)控[18]。然而近年來的研究顯示藥理學(xué)作用或外界環(huán)境的變化均能夠影響纖毛的發(fā)生或長度,這種現(xiàn)象不依賴于細(xì)胞周期,屬于自我裝配過程。更有直接證據(jù)顯示來自于細(xì)胞基質(zhì)的機(jī)械信號(hào)能夠快速調(diào)節(jié)腱細(xì)胞纖毛長度[19]。在心血管系統(tǒng)中,初級(jí)纖毛在動(dòng)脈及胚胎心臟內(nèi)表面的分布也與血流模式相關(guān)[20],但血流模式是否能夠調(diào)節(jié)初級(jí)纖毛的發(fā)生及長度變化還未見報(bào)道。本實(shí)驗(yàn)表明hUVECs初級(jí)纖毛在15dynes/cm2切應(yīng)力作用28h以上將發(fā)生解聚,該切應(yīng)力大小接近于體內(nèi)正常血流產(chǎn)生的層流切應(yīng)力,因此初級(jí)纖毛較少出現(xiàn)于正常血流區(qū)域血管內(nèi)皮細(xì)胞表面;此外,當(dāng)再次以低切應(yīng)力(1dynes/cm2)誘導(dǎo)細(xì)胞18h后,可觀察到纖毛裝配的發(fā)生,而該過程與細(xì)胞周期無關(guān)。因此,本研究進(jìn)一步證實(shí)了外界機(jī)械作用力能夠影響初級(jí)纖毛的形態(tài)發(fā)生過程,該現(xiàn)象可能導(dǎo)致了初級(jí)纖毛在心血管系統(tǒng)中的分布不均。

3.3外界環(huán)境對(duì)纖毛發(fā)生的影響為纖毛疾病的治療提供新思路

初級(jí)纖毛作為機(jī)械和化學(xué)信號(hào)傳感器,廣泛存在于上皮、軟骨、成纖維以及神經(jīng)元等多種細(xì)胞表面,大量的研究表明初級(jí)纖毛能夠通過調(diào)節(jié)多條信號(hào)通路(如Hh、Wm等)參與細(xì)胞的增殖、遷移、分化及動(dòng)態(tài)平衡等過程[18]。纖毛結(jié)構(gòu)和功能異常將導(dǎo)致一系列疾病的發(fā)生,包括多囊腎病(polycystickidneydisease,PKD)、腎結(jié)核、Bardet-Biedl綜合征等[21]。此外,由于新纖毛基體的定位方向決定了細(xì)胞乃至胚胎發(fā)育的極性方向[22],初級(jí)纖毛的缺失將導(dǎo)致細(xì)胞乃至胚胎極性分化的隨機(jī)性[23]。因此,纖毛結(jié)構(gòu)的完整性及正常的纖毛發(fā)生對(duì)維持機(jī)體正常功能和發(fā)育具有不可忽視作用,而本研究的結(jié)果證實(shí)了一定的外界機(jī)械作用力可影響初級(jí)纖毛的形態(tài)發(fā)生,進(jìn)一步探索該現(xiàn)象的發(fā)生機(jī)制將為纖毛相關(guān)疾病的治療提供新的思路

參考文獻(xiàn)(References):

[1]HOVE J R. KOSTE R W,F(xiàn)OROUHAR A S,et al.Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis[J].Nature,2003,421(2):172-177.

[2]姜宗來.心血管生物力學(xué)研究的新進(jìn)展[J].醫(yī)用生物力學(xué)(JIANG Zong—lai. Recent advances in cardiovascular biomechanics [J]. Journal of Medical Biomechanics),2010,25(4):313-351.

[3]LEVESQUE M J,NEREM R M.The elongation and orientation of cultured endothelial cells in response to shear stress [J]. Journal of Biomechanical Engineering,1985,107(4):341-347.

[4]MALEK A M, IZUMO S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress[J]. Journal of Cell Science, 1996, 109(Pt 4): 713-726.

[5]CHIU J J. CHIEN S.Effects of disturbed flow on vascular en-dothelium: pathophysiological basis and clinical perspectives[J]. Physiological Reviews,2011.91(1):327-387.

[6]王貴學(xué).切應(yīng)力變化與動(dòng)脈粥樣硬化斑塊的形成和破裂[J]. 中國動(dòng)脈粥樣硬化雜志(WANG Gui-xue. Changes of flow shear stress and formation and breach of atherosclerotic plaque [J]. Chinese Journal of Arteriosclerosis),2009,17(8):625-627.

[7]HARRISON D G,WIDDER J,GRUMBACH I,et al.Endothelial mechanotransduction,nitric oxide and vascular inflammationfj. Journal of Internal Medicine, 2006,259⑷:351-363.

[8]潘俊敏.衣藻、纖毛與“纖毛相關(guān)疾病”[J].中國科學(xué)c輯:生命科學(xué)(PANG JurmiirL Chlamydomonas,cilia and Ciliopathies[J]. Science in China (Series G Life Sciences)),2008,38(5):399-409.

[9]IOMINI C. TEJADA K,MO W,et al. Primary cilia of human endothelial cells disassemble under laminar shear stress[J]. Journal of Cell Biology,2004. 164(6):811-817.

[10]van der HEIDEN K,HIERCK B P,KRAMS R,et al.En-dothelial primary cilia in areas of disturbed flow are the base of atherosclerosis[J]. Atherosclerosis,2008,196(2):542-550.

[11]HIERCK B P. van der HEIDEN K,ALKEMADE F E,et al. Primary cilia sensitize endothelial cells for fluid shear stress [J]. Developmental Dynamics,2008,237(3):725-735.

[12]LANE W 0.JANTZEN A E,CARLON T A,et al. Parallelplate flow chamber and continuous flow circuit to evaluate en dothelial progenitor cells under laminar flow shear stressf. Journal of Visualized Experiments,2012,59(e3349):1-12.

[13]何蘭,曾紅,沈潔,等.FLUTAX法顯示纖毛蟲微管胞器的改良[J].動(dòng)物學(xué)雜志(HE Lan,ZENG Hong,SHEN Jie,et al.Improve the display of microtubular organelles by FLUTAX [J]. Chinese Journal of Zoology),2006,41(3):56-61.

[14]周素娟,尹飛,生欣,等.冠突偽尾柱蟲的皮皮層纖毛器微管胞器及其形態(tài)發(fā)生[J].動(dòng)物學(xué)報(bào)(ZHOU Su-juan,YIN Fei,SHENG Xin,et al. Morphology and morphogenesis of the ciliature microtubular organelles in the ventral cortex of Pseu—dourostyla cristala (Hyportrichida, Ciliophora)[J]. Current Zo-ology),2008,54(2):299-308.

[15]GEERTS W J C,VOCKING K,SCHOONENS N,et al. Cobblestone hUVECs:A human model system for studying primary ciliogenesis[J]. Journal of Structural Biology,2011,176(3):350- 359.

[16]GALBRAITH C G,SKALAK R,CHIEN S. Shear stress in-duces spatial reorganization of the endothelial cell cytoskele ton[J]. Cell Motility and the Cytoskeleton,1998,40(4):317-330.

[17]張魯,嚴(yán)志強(qiáng),李玉青,等.流體切應(yīng)力梯度對(duì)血管內(nèi)皮細(xì)胞排列和形狀的影響[J].醫(yī)用生物力學(xué)(ZHANG Lu,YAN Zhi- qiang,LI Yu-qing,et al. Effect of flow shear stress gradient on the arrangement and shape of endothelial cells[J]. Journal of Medical Biomechanics),2010,25(5):328-333.

[18]MIYOSHI K,KASAHRAK,MIYAZAKI I,et al. Factors that influence primary cilium length[J]. Acta Medica Okayama,2011,65(5):279-285.

[19]GARDNER K, ARNOCZKY S P,LAYAGNINO M. Effect of in vitro stress -deprivation and cyclic loading on the length of tendon cell cilia in situ[J]. Journal of Orthopaedic Research,2011.29(4):582-587.

[20]SLOUGH J, COONEY L,BRUECKNER M. Monocilia in the embryonic mouse heart suggests a direct role or cilia in car?diac morphogenesis[J]. Developmental Dynamics,2008. 237(9):2304-2314.

[21]郁勝強(qiáng),梅長林.纖毛在多囊腎病發(fā)病中的作用[J].診斷學(xué)理論與實(shí)踐(YU Sheng-qiang,MEI Chang-lin.Function of primary cilia on the attack of polycystic kidney diseasefj]. Journal of Diag?nostics Concepts and Practice),2007,6(6):507-508.

[22]BELL A J,SATIR P,GRIMES G W. Mirrorimaged doublets of Tetmemena pustulata:implications for the development of left- right asymmetry[J]. Developmental Dynamicsl,2008,314(1):150-160.

[23]SCHNEIDER L,CAMMER M.,LEHMAN J.et al. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts[J]. Cellular Physiology and Biochemistry,2010,25(2-3):279-292.

猜你喜歡
細(xì)胞骨架纖毛微管
耳蝸動(dòng)纖毛在聽覺系統(tǒng)中的作用研究進(jìn)展
簡單和可控的NiO/ZnO孔微管的制備及對(duì)痕量H2S氣體的增強(qiáng)傳感
土槿皮乙酸對(duì)血管內(nèi)皮細(xì)胞遷移和細(xì)胞骨架的影響
內(nèi)耳毛細(xì)胞靜纖毛高度調(diào)控分子機(jī)制
自然雜志(2022年3期)2022-08-18 03:00:06
胡蘿卜微管蚜
——水芹主要害蟲識(shí)別與為害癥狀
長江蔬菜(2022年13期)2022-07-29 01:21:32
初級(jí)纖毛在常見皮膚腫瘤中的研究進(jìn)展
“洋蔥細(xì)胞骨架的制作技術(shù)研究”一 文附圖
胸腔微管引流并注入尿激酶治療結(jié)核性胸膜炎
細(xì)胞骨架在ns脈沖誘導(dǎo)腫瘤細(xì)胞凋亡中的作用
絕熱圓腔內(nèi)4根冷熱微管陣列振動(dòng)強(qiáng)化傳熱實(shí)驗(yàn)
虹口区| 肇庆市| 张家川| 鹤岗市| 安图县| 鲁甸县| 分宜县| 景谷| 海南省| 承德县| 米易县| 包头市| 资源县| 石泉县| 德化县| 靖远县| 木里| 广平县| 门源| 宁河县| 通海县| 瑞金市| 通化县| 海淀区| 湖南省| 来安县| 南投县| 宁阳县| 阿拉尔市| 潞西市| 昌邑市| 鞍山市| 衡阳县| 曲水县| 唐山市| 华安县| 甘泉县| 潼关县| 湟源县| 北京市| 淳化县|